Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Commun Biol ; 7(1): 460, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649481

ABSTRACT

NGLY1 deficiency is a genetic disease caused by biallelic mutations of the Ngly1 gene. Although epileptic seizure is one of the most severe symptoms in patients with NGLY1 deficiency, preclinical studies have not been conducted due to the lack of animal models for epileptic seizures in NGLY1 deficiency. Here, we observed the behaviors of male and female Ngly1-/- mice by video monitoring and found that these mice exhibit spontaneous seizure-like behaviors. Gene expression analyses and enzyme immunoassay revealed significant decreases in oxytocin, a well-known neuropeptide, in the hypothalamus of Ngly1-/- mice. Seizure-like behaviors in Ngly1-/- mice were transiently suppressed by a single intranasal administration of oxytocin. These findings suggest the therapeutic potential of oxytocin for epileptic seizure in patients with NGLY1 deficiency and contribute to the clarification of the disease mechanism.


Subject(s)
Congenital Disorders of Glycosylation , Oxytocin , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase , Seizures , Animals , Female , Male , Mice , Administration, Intranasal , Behavior, Animal/drug effects , Disease Models, Animal , Hypothalamus/metabolism , Hypothalamus/drug effects , Mice, Inbred C57BL , Mice, Knockout , Oxytocin/administration & dosage , Oxytocin/pharmacology , Seizures/drug therapy , Seizures/etiology , Congenital Disorders of Glycosylation/complications , Congenital Disorders of Glycosylation/drug therapy , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase/deficiency
2.
Eur J Cell Biol ; 103(3): 151446, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39059105

ABSTRACT

Chromosome 15q11.2-13.1 duplication (Dup15q) syndrome is one of the most common autism spectrum disorders (ASDs) associated with copy number variants (CNVs). For the analysis of CNV-relevant pathological cellular phenotypes, a CNV-corrected isogenic cell line is useful for excluding the influence of genetic background. Here, we devised a strategy to remove the isodicentric chromosome 15 by inserting a puro-ΔTK selection cassette into the extra chromosome using the CRISPR-Cas9 system, followed by a subsequent two-step drug selection. A series of assays, including qPCR-based copy number analysis and karyotype analysis, confirmed the elimination of the extra chromosome. Furthermore, cerebral organoids were generated from the parental Dup15q iPSCs and their isogenic iPSCs. scRNA-seq analysis revealed the alteration of expression levels in ion-channel-related genes and synapse-related genes in glutamatergic and GABAergic neurons in Dup15q organoids, respectively. The established isogenic cell line is a valuable resource for unraveling cellular and molecular alterations associated with Dup15q syndrome.


Subject(s)
Chromosomes, Human, Pair 15 , Induced Pluripotent Stem Cells , Humans , Induced Pluripotent Stem Cells/metabolism , Chromosomes, Human, Pair 15/genetics , Chromosomes, Human, Pair 15/metabolism , Chromosome Duplication , DNA Copy Number Variations , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/metabolism , Organoids/metabolism , Chromosome Aberrations , Intellectual Disability
SELECTION OF CITATIONS
SEARCH DETAIL