Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 145
Filter
1.
Cell ; 174(6): 1337-1338, 2018 09 06.
Article in English | MEDLINE | ID: mdl-30193105

ABSTRACT

Various neurexin transcripts are thought to serve as presynaptic "hub" molecules by binding to their specific synaptic partners. In this issue, Zhang et al. demonstrate that neurexins are heparan sulfate (HS) proteoglycans and that the HS modification is important for synaptic function in vitro and in vivo. These findings open up the possibility of many more binding partners for the neurexins.


Subject(s)
Glycosaminoglycans , Nerve Tissue Proteins , Heparitin Sulfate , Neurons , Synapses
2.
Proc Natl Acad Sci U S A ; 121(31): e2406655121, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39052831

ABSTRACT

Delta receptors (GluD1 and GluD2), members of the large ionotropic glutamate receptor (iGluR) family, play a central role in numerous neurodevelopmental and psychiatric disorders. The amino-terminal domain (ATD) of GluD orchestrates synapse formation and maturation processes through its interaction with the Cbln family of synaptic organizers and neurexin (Nrxn). The transsynaptic triad of Nrxn-Cbln-GluD also serves as a potent regulator of synaptic plasticity, at both excitatory and inhibitory synapses. Despite these recognized functions, there is still debate as to whether GluD functions as a "canonical" ion channel, similar to other iGluRs. A recent report proposes that the ATD of GluD2 imposes conformational constraints on channel activity; removal of this constraint by binding to Cbln1 and Nrxn, or removal of the ATD, reveals channel activity in GluD2 upon administration of glycine (Gly) and d-serine (d-Ser), two GluD ligands. We were able to reproduce currents when Gly or d-Ser was administered to clusters of heterologous human embryonic kidney 293 (HEK293) cells expressing Cbln1, GluD2 (or GluD1), and Nrxn. However, Gly or d-Ser, but also l-glutamate (l-Glu), evoked similar currents in naive (i.e., untransfected) HEK293 cells and in GluD2-null Purkinje neurons. Furthermore, no current was detected in isolated HEK293 cells expressing GluD2 lacking the ATD upon administration of Gly. Taken together, these results cast doubt on the previously proposed hypothesis that extracellular ligands directly gate wild-type GluD channels.


Subject(s)
Ion Channel Gating , Receptors, Glutamate , Animals , Humans , Mice , Glycine/metabolism , HEK293 Cells , Ion Channel Gating/drug effects , Ligand-Gated Ion Channels/metabolism , Ligand-Gated Ion Channels/genetics , Ligands , Receptors, Glutamate/metabolism , Serine/metabolism
3.
Proc Natl Acad Sci U S A ; 121(6): e2313887121, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38294939

ABSTRACT

Neurotransmitter receptors are essential components of synapses for communication between neurons in the brain. Because the spatiotemporal expression profiles and dynamics of neurotransmitter receptors involved in many functions are delicately governed in the brain, in vivo research tools with high spatiotemporal resolution for receptors in intact brains are highly desirable. Covalent labeling by chemical reaction (chemical labeling) of proteins without genetic manipulation is now a powerful method for analyzing receptors in vitro. However, selective target receptor labeling in the brain has not yet been achieved. This study shows that ligand-directed alkoxyacylimidazole (LDAI) chemistry can be used to selectively tether synthetic probes to target endogenous receptors in living mouse brains. The reactive LDAI reagents with negative charges were found to diffuse well over the whole brain and could selectively label target endogenous receptors, including AMPAR, NMDAR, mGlu1, and GABAAR. This simple and robust labeling protocol was then used for various applications: three-dimensional spatial mapping of endogenous receptors in the brains of healthy and disease-model mice; multi-color receptor imaging; and pulse-chase analysis of the receptor dynamics in postnatal mouse brains. Here, results demonstrated that bioorthogonal receptor modification in living animal brains may provide innovative molecular tools that contribute to the in-depth understanding of complicated brain functions.


Subject(s)
Neurons , Proteins , Mice , Animals , Indicators and Reagents , Ligands , Brain
4.
EMBO Rep ; 24(3): e54701, 2023 03 06.
Article in English | MEDLINE | ID: mdl-36683567

ABSTRACT

Transmembrane proteins are internalized by clathrin- and caveolin-dependent endocytosis. Both pathways converge on early endosomes and are thought to share the small GTPase Rab5 as common regulator. In contrast to this notion, we show here that the clathrin- and caveolin-mediated endocytic pathways are differentially regulated. Rab5 and Rab21 localize to distinct populations of early endosomes in cortical neurons and preferentially regulate clathrin- and caveolin-mediated pathways, respectively, suggesting heterogeneity in the early endosomes, rather than a converging point. Suppression of Rab21, but not Rab5, results in decreased plasma membrane localization and total protein levels of caveolin-1, which perturbs immature neurite pruning of cortical neurons, an in vivo-specific step of neuronal maturation. Taken together, our data indicate that clathrin- and caveolin-mediated endocytic pathways run in parallel in early endosomes, which show different molecular regulation and physiological function.


Subject(s)
Caveolin 1 , Endosomes , Caveolin 1/metabolism , Endosomes/metabolism , rab5 GTP-Binding Proteins/metabolism , Endocytosis , Clathrin/metabolism
5.
Int J Mol Sci ; 24(23)2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38069416

ABSTRACT

Mammalian auditory hair cells transduce sound-evoked traveling waves in the cochlea into nerve stimuli, which are essential for hearing function. Pillar cells located between the inner and outer hair cells are involved in the formation of the tunnel of Corti, which incorporates outer-hair-cell-driven fluid oscillation and basilar membrane movement, leading to the fine-tuned frequency-specific perception of sounds by the inner hair cells. However, the detailed molecular mechanism underlying the development and maintenance of pillar cells remains to be elucidated. In this study, we examined the expression and function of brain-specific angiogenesis inhibitor 3 (Bai3), an adhesion G-protein-coupled receptor, in the cochlea. We found that Bai3 was expressed in hair cells in neonatal mice and pillar cells in adult mice, and, interestingly, Bai3 knockout mice revealed the abnormal formation of pillar cells, with the elevation of the hearing threshold in a frequency-dependent manner. Furthermore, old Bai3 knockout mice showed the degeneration of hair cells and spiral ganglion neurons in the basal turn. The results suggest that Bai3 plays a crucial role in the development and/or maintenance of pillar cells, which, in turn, are necessary for normal hearing function. Our results may contribute to understanding the mechanisms of hearing loss in human patients.


Subject(s)
Cochlea , Hearing , Membrane Proteins , Nerve Tissue Proteins , Animals , Mice , Brain , Cochlea/metabolism , Hair Cells, Auditory, Outer , Mice, Knockout , Nerve Tissue Proteins/genetics , Membrane Proteins/genetics
6.
J Biol Chem ; 297(2): 100949, 2021 08.
Article in English | MEDLINE | ID: mdl-34252460

ABSTRACT

Long-term potentiation (LTP) and long-term depression (LTD) of excitatory neurotransmission are believed to be the neuronal basis of learning and memory. Both processes are primarily mediated by neuronal activity-induced transport of postsynaptic AMPA-type glutamate receptors (AMPARs). While AMPAR subunits and their specific phosphorylation sites mediate differential AMPAR trafficking, LTP and LTD could also occur in a subunit-independent manner. Thus, it remains unclear whether and how certain AMPAR subunits with phosphorylation sites are preferentially recruited to or removed from synapses during LTP and LTD. Using immunoblot and immunocytochemical analysis, we show that phosphomimetic mutations of the membrane-proximal region (MPR) in GluA1 AMPAR subunits affect the subunit-dependent endosomal transport of AMPARs during chemical LTD. AP-2 and AP-3, adaptor protein complexes necessary for clathrin-mediated endocytosis and late endosomal/lysosomal trafficking, respectively, are reported to be recruited to AMPARs by binding to the AMPAR auxiliary subunit, stargazin (STG), in an AMPAR subunit-independent manner. However, the association of AP-3, but not AP-2, with STG was indirectly inhibited by the phosphomimetic mutation in the MPR of GluA1. Thus, although AMPARs containing the phosphomimetic mutation at the MPR of GluA1 were endocytosed by a chemical LTD-inducing stimulus, they were quickly recycled back to the cell surface in hippocampal neurons. These results could explain how the phosphorylation status of GluA1-MPR plays a dominant role in subunit-independent STG-mediated AMPAR trafficking during LTD.


Subject(s)
Hippocampus , Receptors, AMPA , Endocytosis , Long-Term Potentiation , Receptors, Glutamate/metabolism , Synapses , Synaptic Transmission
7.
Annu Rev Physiol ; 80: 243-262, 2018 02 10.
Article in English | MEDLINE | ID: mdl-29166241

ABSTRACT

Research in the last two decades has identified many synaptic organizers in the central nervous system that directly regulate the assembly of pre- and/or postsynaptic molecules, such as synaptic vesicles, active zone proteins, and neurotransmitter receptors. They are classified into secreted factors and cell adhesion molecules, such as neurexins and neuroligins. Certain secreted factors are termed extracellular scaffolding proteins (ESPs) because they are components of the synaptic extracellular matrix and serve as a scaffold at the synaptic cleft. These include Lgi1, Cbln1, neuronal pentraxins, Hevin, thrombospondins, and glypicans. Diffusible secreted factors, such as Wnts, fibroblast growth factors, and semaphorins, tend to act from a distance. In contrast, ESPs remain at the synaptic cleft and often help synaptic adhesion and/or accumulation of postsynaptic receptors. Many fundamental questions remain about when, how, and why various synaptic organizers establish and modify the vast numbers of connections during development and throughout life.


Subject(s)
Brain/metabolism , Neuronal Plasticity/physiology , Spinal Cord/metabolism , Synapses/metabolism , Animals , C-Reactive Protein/metabolism , Humans , Nerve Tissue Proteins/metabolism , Protein Precursors/metabolism , Thrombospondins/metabolism , Wnt Proteins/metabolism
8.
J Neurosci ; 40(45): 8746-8766, 2020 11 04.
Article in English | MEDLINE | ID: mdl-33046553

ABSTRACT

Methyl-CpG binding protein 2 (MeCP2) is a nuclear protein critical for normal brain function, and both depletion and overexpression of MeCP2 lead to severe neurodevelopmental disease, Rett syndrome (RTT) and MECP2 multiplication disorder, respectively. However, the molecular mechanism by which abnormal MeCP2 dosage causes neuronal dysfunction remains unclear. As MeCP2 expression is nearly equivalent to that of core histones and because it binds DNA throughout the genome, one possible function of MeCP2 is to regulate the 3D structure of chromatin. Here, to examine whether and how MeCP2 levels impact chromatin structure, we used high-resolution confocal and electron microscopy and examined heterochromatic foci of neurons in mice. Using models of RTT and MECP2 triplication syndrome, we found that the heterochromatin structure was significantly affected by the alteration in MeCP2 levels. Analysis of mice expressing either MeCP2-R270X or MeCP2-G273X, which have nonsense mutations in the upstream and downstream regions of the AT-hook 2 domain, respectively, showed that the magnitude of heterochromatin changes was tightly correlated with the phenotypic severity. Postnatal alteration in MeCP2 levels also induced significant changes in the heterochromatin structure, which underscored importance of correct MeCP2 dosage in mature neurons. Finally, functional analysis of MeCP2-overexpressing mice showed that the behavioral and transcriptomic alterations in these mice correlated significantly with the MeCP2 levels and occurred in parallel with the heterochromatin changes. Taken together, our findings demonstrate the essential role of MeCP2 in regulating the 3D structure of neuronal chromatin, which may serve as a potential mechanism that drives pathogenesis of MeCP2-related disorders.SIGNIFICANCE STATEMENT Neuronal function is critically dependent on methyl-CpG binding protein 2 (MeCP2), a nuclear protein abundantly expressed in neurons. The importance of MeCP2 is underscored by the severe childhood neurologic disorders, Rett syndrome (RTT) and MECP2 multiplication disorders, which are caused by depletion and overabundance of MeCP2, respectively. To clarify the molecular function of MeCP2 and to understand the pathogenesis of MECP2-related disorders, we performed detailed structural analyses of neuronal nuclei by using mouse models and high-resolution microscopy. We show that the level of MeCP2 critically regulates 3D structure of heterochromatic foci, and this is mediated in part by the AT-hook 2 domain of MeCP2. Our results demonstrate that one primary function of MeCP2 is to regulate chromatin structure.


Subject(s)
Chromatin/chemistry , Methyl-CpG-Binding Protein 2 , Neurons/pathology , Protein Structure, Tertiary/genetics , Animals , Cell Nucleolus/genetics , Cell Nucleolus/ultrastructure , Cerebral Cortex/pathology , Cerebral Cortex/ultrastructure , Chromatin/ultrastructure , Codon, Nonsense/genetics , Developmental Disabilities/genetics , Developmental Disabilities/pathology , Female , Histones/metabolism , Male , Methyl-CpG-Binding Protein 2/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/ultrastructure , Protein Binding , Pyramidal Cells/pathology , Pyramidal Cells/ultrastructure , Transcriptome/genetics
9.
J Biol Chem ; 295(27): 9244-9262, 2020 07 03.
Article in English | MEDLINE | ID: mdl-32434929

ABSTRACT

Calsyntenin-3 (Clstn3) is a postsynaptic adhesion molecule that induces presynaptic differentiation via presynaptic neurexins (Nrxns), but whether Nrxns directly bind to Clstn3 has been a matter of debate. Here, using LC-MS/MS-based protein analysis, confocal microscopy, RNAscope assays, and electrophysiological recordings, we show that ß-Nrxns directly interact via their LNS domain with Clstn3 and Clstn3 cadherin domains. Expression of splice site 4 (SS4) insert-positive ß-Nrxn variants, but not insert-negative variants, reversed the impaired Clstn3 synaptogenic activity observed in Nrxn-deficient neurons. Consistently, Clstn3 selectively formed complexes with SS4-positive Nrxns in vivo Neuron-specific Clstn3 deletion caused significant reductions in number of excitatory synaptic inputs. Moreover, expression of Clstn3 cadherin domains in CA1 neurons of Clstn3 conditional knockout mice rescued structural deficits in excitatory synapses, especially within the stratum radiatum layer. Collectively, our results suggest that Clstn3 links to SS4-positive Nrxns to induce presynaptic differentiation and orchestrate excitatory synapse development in specific hippocampal neural circuits, including Schaffer collateral afferents.


Subject(s)
Calcium-Binding Proteins/metabolism , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism , Neural Cell Adhesion Molecules/metabolism , Animals , Cadherins/metabolism , Calcium-Binding Proteins/physiology , Chromatography, Liquid/methods , Hippocampus/metabolism , Membrane Proteins/physiology , Mice , Nerve Tissue Proteins/physiology , Neural Cell Adhesion Molecules/physiology , Neurons/metabolism , Synapses/metabolism , Tandem Mass Spectrometry/methods
10.
EMBO J ; 36(9): 1227-1242, 2017 05 02.
Article in English | MEDLINE | ID: mdl-28283581

ABSTRACT

The axon initial segment (AIS) is a specialized domain essential for neuronal function, the formation of which begins with localization of an ankyrin-G (AnkG) scaffold. However, the mechanism directing and maintaining AnkG localization is largely unknown. In this study, we demonstrate that in vivo knockdown of microtubule cross-linking factor 1 (MTCL1) in cerebellar Purkinje cells causes loss of axonal polarity coupled with AnkG mislocalization. MTCL1 lacking MT-stabilizing activity failed to restore these defects, and stable MT bundles spanning the AIS were disorganized in knockdown cells. Interestingly, during early postnatal development, colocalization of MTCL1 with these stable MT bundles was observed prominently in the axon hillock and proximal axon. These results indicate that MTCL1-mediated formation of stable MT bundles is crucial for maintenance of AnkG localization. We also demonstrate that Mtcl1 gene disruption results in abnormal motor coordination with Purkinje cell degeneration, and provide evidence suggesting possible involvement of MTCL1 dysfunction in the pathogenesis of spinocerebellar ataxia.


Subject(s)
Axon Initial Segment/physiology , Microtubule-Associated Proteins/metabolism , Purkinje Cells/cytology , Purkinje Cells/physiology , Animals , Gene Knockdown Techniques , Gene Knockout Techniques , Mice , Mice, Knockout , Motor Disorders
11.
Bioorg Med Chem ; 30: 115947, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33360195

ABSTRACT

The ability to incorporate a desired functionality into proteins of interest in a site-specific manner can provide powerful tools for investigating biological systems and creating therapeutic conjugates. However, there are not any universal methods that can be applied to all proteins, and it is thus important to explore the chemical strategy for protein modification. In this paper, we developed a new reactive peptide tag/probe pair system for site-specific covalent protein labeling. This method relies on the recognition-driven reaction of a peptide tag and a molecular probe, which comprises the lysine-containing short histidine tag (KH6 or H6K) and a binuclear nickel (II)- nitrilotriacetic acid (Ni2+-NTA) complex probe containing a lysine-reactive N-acyl-N-alkyl sulfonamide (NASA) group. The selective interaction of the His-tag and Ni2+-NTA propeles a rapid nucleophilic reaction between a lysine residue of the tag and the electrophilic NASA group of the probe by the proximity effect, resulting in the tag-site-specific functionalization of proteins. We characterized the reactive profile and site-specificity of this method using model peptides and proteins in vitro, and demonstrated the general utility for production of a nanobody-chemical probe conjugate without compromising its binding ability.


Subject(s)
Histidine/chemistry , Indicators and Reagents/chemistry , Molecular Probes/chemistry , Proteins/chemistry , Staining and Labeling , Sulfonamides/chemistry , HEK293 Cells , Histidine/metabolism , Humans , Indicators and Reagents/metabolism , Lysine/chemistry , Lysine/metabolism , Models, Molecular , Molecular Probes/metabolism , Molecular Structure , Nickel/chemistry , Nickel/metabolism , Nitrilotriacetic Acid/chemistry , Nitrilotriacetic Acid/metabolism , Proteins/metabolism , Sulfonamides/metabolism
13.
Mol Pain ; 16: 1744806920960856, 2020.
Article in English | MEDLINE | ID: mdl-32985330

ABSTRACT

Capsaicin is an agonist of transient receptor potential cation channel subfamily V member 1 (TRPV1). Strong TRPV1 stimulation with capsaicin causes mitochondrial damage in primary sensory neurons. However, the effect of repetitive and moderate exposure to capsaicin on the integrity of neuronal mitochondria remains largely unknown. Our electron microscopic analysis revealed that repetitive stimulation of the facial skin of mice with 10 mM capsaicin induced short-term damage to the mitochondria in small-sized trigeminal ganglion neurons. Further, capsaicin-treated mice exhibited decreased sensitivity to noxious heat stimulation, indicating TRPV1 dysfunction, in parallel with the mitochondrial damage in the trigeminal ganglion neurons. To analyze the capsaicin-induced mitochondrial damage and its relevant cellular events in detail, we performed cell-based assays using TRPV1-expressing PC12 cells. Dose-dependent capsaicin-mediated mitochondrial toxicity was observed. High doses of capsaicin caused rapid destruction of mitochondrial internal structure, while low doses induced mitochondrial swelling. Further, capsaicin induced a dose-dependent loss of mitochondria and autophagy-mediated degradation of mitochondria (mitophagy). Concomitantly, transcriptional upregulation of mitochondrial proteins, cytochrome c oxidase subunit IV, Mic60/Mitofilin, and voltage-dependent anion channel 1 was observed, which implied induction of mitochondrial biogenesis to compensate for the loss of mitochondria. Collectively, although trigeminal ganglion neurons transiently exhibit mitochondrial damage and TRPV1 dysfunction following moderate capsaicin exposure, they appear to be resilient to such a challenge. Our in vitro data show a dose-response relationship in capsaicin-mediated mitochondrial toxicity. We postulate that induction of mitophagy and mitochondrial biogenesis in response to capsaicin stimulation play important roles in repairing the damaged mitochondrial system.


Subject(s)
Capsaicin/pharmacology , Mitochondria/drug effects , Mitochondria/metabolism , Neurons/drug effects , TRPV Cation Channels/metabolism , Trigeminal Ganglion/drug effects , Animals , Capsaicin/toxicity , Electron Transport Complex IV/genetics , Electron Transport Complex IV/metabolism , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Hot Temperature , Male , Mice , Mice, Inbred C57BL , Microscopy, Electron , Mitochondria/enzymology , Mitochondria/ultrastructure , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Mitophagy/drug effects , Muscle Proteins/genetics , Muscle Proteins/metabolism , Neurons/metabolism , Neurons/ultrastructure , PC12 Cells , Rats , Real-Time Polymerase Chain Reaction , TRPV Cation Channels/genetics , Trigeminal Ganglion/cytology , Trigeminal Ganglion/metabolism , Voltage-Dependent Anion Channel 1/genetics , Voltage-Dependent Anion Channel 1/metabolism
14.
Proc Natl Acad Sci U S A ; 114(28): 7438-7443, 2017 07 11.
Article in English | MEDLINE | ID: mdl-28655840

ABSTRACT

Astrocytes regulate synaptic transmission through controlling neurotransmitter concentrations around synapses. Little is known, however, about their roles in neural circuit development. Here we report that Bergmann glia (BG), specialized cerebellar astrocytes that thoroughly enwrap Purkinje cells (PCs), are essential for synaptic organization in PCs through the action of the l-glutamate/l-aspartate transporter (GLAST). In GLAST-knockout mice, dendritic innervation by the main ascending climbing fiber (CF) branch was significantly weakened, whereas the transverse branch, which is thin and nonsynaptogenic in control mice, was transformed into thick and synaptogenic branches. Both types of CF branches frequently produced aberrant wiring to proximal and distal dendrites, causing multiple CF-PC innervation. Our electrophysiological analysis revealed that slow and small CF-evoked excitatory postsynaptic currents (EPSCs) were recorded from almost all PCs in GLAST-knockout mice. These atypical CF-EPSCs were far more numerous and had significantly faster 10-90% rise time than those elicited by glutamate spillover under pharmacological blockade of glial glutamate transporters. Innervation by parallel fibers (PFs) was also affected. PF synapses were robustly increased in the entire dendritic trees, leading to impaired segregation of CF and PF territories. Furthermore, lamellate BG processes were retracted from PC dendrites and synapses, leading to the exposure of these neuronal elements to the extracellular milieus. These synaptic and glial phenotypes were reproduced in wild-type mice after functional blockade of glial glutamate transporters. These findings highlight that glutamate transporter function by GLAST on BG plays important roles in development and maintenance of proper synaptic wiring and wrapping in PCs.


Subject(s)
Excitatory Amino Acid Transporter 1/genetics , Excitatory Amino Acid Transporter 1/physiology , Neuroglia/physiology , Purkinje Cells/physiology , Synapses/physiology , Amino Acid Transport System X-AG/genetics , Amino Acid Transport System X-AG/physiology , Animals , Astrocytes/physiology , Cerebellum/physiology , Dendrites/physiology , Excitatory Postsynaptic Potentials/physiology , Genotype , Glutamic Acid , Green Fluorescent Proteins/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/physiology , Phenotype , Synaptic Transmission/physiology
15.
J Physiol ; 597(3): 903-920, 2019 02.
Article in English | MEDLINE | ID: mdl-30382582

ABSTRACT

KEY POINTS: NMDA receptors (NMDARs) are required for long-term depression (LTD) at parallel fibre-Purkinje cell synapses, but their cellular localization and physiological functions in vivo are unclear. NMDARs in molecular-layer interneurons (MLIs), but not granule cells or Purkinje cells, are required for LTD, but not long-term potentiation induced by low-frequency stimulation of parallel fibres. Nitric oxide produced by NMDAR activation in MLIs probably mediates LTD induction. NMDARs in granule cells or Purkinje cells are dispensable for motor learning during adaptation of horizontal optokinetic responses. ABSTRACT: Long-term potentiation (LTP) and depression (LTD), which serve as cellular synaptic plasticity models for learning and memory, are crucially regulated by N-methyl-d-aspartate receptors (NMDARs) in various brain regions. In the cerebellum, LTP and LTD at parallel fibre (PF)-Purkinje cell (PC) synapses are thought to mediate certain forms of motor learning. However, while NMDARs are essential for LTD in vitro, their cellular localization remains controversial. In addition, whether and how NMDARs mediate motor learning in vivo remains unclear. Here, we examined the contribution of NMDARs expressed in granule cells (GCs), PCs and molecular-layer interneurons (MLIs) to LTD/LTP and motor learning by generating GC-, PC- and MLI/PC-specific knockouts of Grin1, a gene encoding an obligatory GluN1 subunit of NMDARs. While robust LTD and LTP were induced at PF-PC synapses in GC- and PC-specific Grin1 (GC-Grin1 and PC-Grin1, respectively) conditional knockout (cKO) mice, only LTD was impaired in MLI/PC-specific Grin1 (MLI/PC-Grin1) cKO mice. Application of diethylamine nitric oxide (NO) sodium, a potent NO donor, to the cerebellar slices restored LTD in MLI/PC-Grin1 cKO mice, suggesting that NO is probably downstream to NMDARs. Furthermore, the adaptation of horizontal optokinetic responses (hOKR), a cerebellar motor learning task, was normally observed in GC-Grin1 cKO and PC-Grin1 cKO mice, but not in MLI/PC-Grin1 cKO mice. These results indicate that it is the NMDARs expressed in MLIs, but not in PCs or GCs, that play important roles in LTD in vitro and motor learning in vivo.


Subject(s)
Cerebellum/metabolism , Depression/metabolism , Interneurons/metabolism , Learning/physiology , Long-Term Synaptic Depression/physiology , Neurons/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Cerebellum/physiopathology , Depression/physiopathology , Excitatory Postsynaptic Potentials/physiology , Long-Term Potentiation/physiology , Memory/physiology , Mice , Mice, Transgenic , Neuronal Plasticity/physiology , Neurons/physiology , Purkinje Cells/metabolism , Purkinje Cells/physiology , Synapses/metabolism
16.
J Neurochem ; 150(3): 249-263, 2019 08.
Article in English | MEDLINE | ID: mdl-31188471

ABSTRACT

Hyaluronan is synthesized, secreted, and anchored by hyaluronan synthases (HAS) at the plasma membrane and comprises the backbone of perineuronal nets around neuronal soma and dendrites. However, the molecular targets of hyaluronan to regulate synaptic transmission in the central nervous system have not been fully identified. Here, we report that hyaluronan is a negative regulator of excitatory signals. At excitatory synapses, glutamate is removed by glutamate transporters to turn off the signal and prevent excitotoxicity. Hyaluronan synthesized by HAS supports the activity of glial glutamate transporter 1 (GLT1). GLT1 also retracted from cellular processes of cultured astrocytes after hyaluronidase treatment and hyaluronan synthesis inhibition. A serial knockout study showed that all three HAS subtypes recruit GLT1 to cellular processes. Furthermore, hyaluronidase treatment activated neurons in a dissociated rat hippocampal culture and caused neuronal damage due to excitotoxicity. Our findings reveal that hyaluronan helps to turn off excitatory signals by supporting glutamate clearance. Cover Image for this issue: doi: 10.1111/jnc.14516.


Subject(s)
Amino Acid Transport System X-AG/metabolism , Brain/metabolism , Hyaluronic Acid/biosynthesis , Synaptic Transmission/physiology , Animals , Astrocytes/metabolism , Mice , Mice, Inbred C57BL , Neurons/metabolism , Rats , Rats, Sprague-Dawley
17.
Cerebellum ; 17(6): 709-721, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30046996

ABSTRACT

Synapses are precisely established, maintained, and modified throughout life by molecules called synaptic organizers, which include neurexins and neuroligins (Nlgn). Despite the importance of synaptic organizers in defining functions of neuronal circuits, the cellular and subcellular localization of many synaptic organizers has remained largely elusive because of the paucity of specific antibodies for immunohistochemical studies. In the present study, rather than raising specific antibodies, we generated knock-in mice in which a hemagglutinin (HA) epitope was inserted in the Nlgn1 gene. We have achieved high-throughput and precise gene editing by delivering the CRISPR/Cas9 system into zygotes. Using HA-Nlgn1 mice, we found that HA-Nlgn1 was enriched at synapses between parallel fibers and molecular layer interneurons (MLIs) and the glomeruli, in which mossy fiber terminals synapse onto granule cell dendrites. HA immunoreactivity was colocalized with postsynaptic density 95 at these synapses, indicating that endogenous Nlgn1 is localized at excitatory postsynaptic sites. In contrast, HA-Nlgn1 signals were very weak in dendrites and somata of Purkinje cells. Interestingly, HA-immunoreactivities were also observed in the pinceau, a specialized structure formed by MLI axons and astrocytes. HA-immunoreactivities in the pinceau were significantly reduced by knockdown of Nlgn1 in MLIs, indicating that in addition to postsynaptic sites, Nlgn1 is also localized at MLI axons. Our results indicate that epitope-tagging by electroporation-based gene editing with CRISPR/Cas9 is a viable and powerful method for mapping endogenous synaptic organizers with subcellular resolution, without the need for specific antibodies for each protein.


Subject(s)
Cell Adhesion Molecules, Neuronal/metabolism , Cerebellum/cytology , Cerebellum/metabolism , Animals , Astrocytes/cytology , Astrocytes/metabolism , CRISPR-Cas Systems , Cell Adhesion Molecules, Neuronal/genetics , Epitopes , Gene Knockdown Techniques , Genetic Engineering , HEK293 Cells , Hemagglutinins/genetics , Hemagglutinins/immunology , Hippocampus/cytology , Hippocampus/metabolism , Humans , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Inbred ICR , Mice, Transgenic , Neurons/cytology , Neurons/metabolism , Synapses/metabolism
18.
Cephalalgia ; 38(5): 833-845, 2018 04.
Article in English | MEDLINE | ID: mdl-28554243

ABSTRACT

Background Recent genome-wide association studies have identified transient receptor potential M8 ( TRPM8) as a migraine susceptibility gene. TRPM8 is a nonselective cation channel that mediates cool perception. However, its precise role in migraine pathophysiology is elusive. Transient receptor potential V1 (TRPV1) is a nonselective cation channel activated by noxious heat. Both TRPM8 and TRPV1 are expressed in trigeminal ganglion (TG) neurons. Methods We investigated the functional roles of TRPM8 and TRPV1 in a meningeal inflammation-based migraine model by measuring the effects of facial TRPM8 activation on thermal allodynia and assessing receptor coexpression changes in TG neurons. We performed retrograde tracer labeling to identify TG neurons innervating the face and dura. Results We found that pharmacological TRPM8 activation reversed the meningeal inflammation-induced lowering of the facial heat pain threshold, an effect abolished by genetic ablation of TRPM8. No significant changes in the heat pain threshold were seen in sham-operated animals. Meningeal inflammation caused dynamic alterations in TRPM8/TRPV1 coexpression patterns in TG neurons, and colocalization was most pronounced when the ameliorating effect of TRPM8 activation on thermal allodynia was maximal. Our tracer assay disclosed the presence of dura-innervating TG neurons sending collaterals to the face. Approximately half of them were TRPV1-positive. We also demonstrated functional inhibition of TRPV1 by TRPM8 in a cell-based assay using c-Jun N-terminal kinase phosphorylation as a surrogate marker. Conclusions Our findings provide a plausible mechanism to explain how facial TRPM8 activation can relieve migraine by suppressing TRPV1 activity. Facial TRPM8 appears to be a promising therapeutic target for migraine.


Subject(s)
Migraine Disorders/metabolism , Migraine Disorders/physiopathology , TRPM Cation Channels/biosynthesis , TRPV Cation Channels/biosynthesis , Trigeminal Ganglion/metabolism , Trigeminal Ganglion/physiopathology , Animals , Facial Pain/metabolism , Facial Pain/physiopathology , Hyperalgesia/metabolism , Hyperalgesia/physiopathology , Male , Mice, Inbred C57BL , Mice, Knockout , PC12 Cells , Pain Measurement/methods , Rats
19.
J Neurosci ; 36(46): 11801-11816, 2016 11 16.
Article in English | MEDLINE | ID: mdl-27852787

ABSTRACT

The cerebellum is thought to be involved in cognitive functions in addition to its well established role in motor coordination and motor learning in humans. Cerebellin 1 (Cbln1) is predominantly expressed in cerebellar granule cells and plays a crucial role in the formation and function of parallel fiber-Purkinje cell synapses. Although genes encoding Cbln1 and its postsynaptic receptor, the delta2 glutamate receptor (GluD2), are suggested to be associated with autistic-like traits and many psychiatric disorders, whether such cognitive impairments are caused by cerebellar dysfunction remains unclear. In the present study, we investigated whether and how Cbln1 signaling is involved in non-motor functions in adult mice. We show that acquisition and retention/retrieval of cued and contextual fear memory were impaired in Cbln1-null mice. In situ hybridization and immunohistochemical analyses revealed that Cbln1 is expressed in various extracerebellar regions, including the retrosplenial granular cortex and the hippocampus. In the hippocampus, Cbln1 immunoreactivity was present at the molecular layer of the dentate gyrus and the stratum lacunosum-moleculare without overt mRNA expression, suggesting that Cbln1 is provided by perforant path fibers. Retention/retrieval, but not acquisition, of cued and contextual fear memory was impaired in forebrain-predominant Cbln1-null mice. Spatial learning in the radial arm water maze was also abrogated. In contrast, acquisition of fear memory was affected in cerebellum-predominant Cbln1-null mice. These results indicate that Cbln1 in the forebrain and cerebellum mediates specific aspects of fear conditioning and spatial memory differentially and that Cbln1 signaling likely regulates motor and non-motor functions in multiple brain regions. SIGNIFICANCE STATEMENT: Despites its well known role in motor coordination and motor learning, whether and how the cerebellum is involved in cognitive functions remains less clear. Cerebellin 1 (Cbln1) is highly expressed in the cerebellum and serves as an essential synaptic organizer. Although genes encoding Cbln1 and its receptor are associated with many psychiatric disorders, it remains unknown whether such cognitive impairments are caused by cerebellar dysfunction. Here, we show that Cbln1 is also expressed in the forebrain, including the hippocampus and retrosplenial granular cortex. Using forebrain- and cerebellum-predominant conditional Cbln1-null mice, we show that Cbln1 in the forebrain and cerebellum mediates specific aspects of fear conditioning and spatial memory differentially, indicating that Cbln1 signaling regulates both motor and non-motor functions in multiple brain regions.


Subject(s)
Cerebellum/physiology , Extinction, Psychological/physiology , Fear/physiology , Nerve Tissue Proteins/metabolism , Prosencephalon/physiology , Protein Precursors/metabolism , Spatial Memory/physiology , Animals , Conditioning, Classical/physiology , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Motor Cortex/physiology , Movement/physiology
20.
Biochem Biophys Res Commun ; 490(2): 296-301, 2017 08 19.
Article in English | MEDLINE | ID: mdl-28610919

ABSTRACT

Pluripotent human embryonic stem cells (hESCs) can differentiate into multiple cell lineages, thus, providing one of the best platforms to study molecular mechanisms during cell differentiation. Recently, we have reported rapid and efficient differentiation of hESCs into functional neurons by introducing a cocktail of synthetic mRNAs encoding five transcription factors (TFs): NEUROG1, NEUROG2, NEUROG3, NEUROD1, and NEUROD2. Here we further tested a possibility that even single transcription factors, when expressed ectopically, can differentiate hESCs into neurons. To this end, we established hESC lines in which each of these TFs can be overexpressed by the doxycycline-inducible piggyBac vector. The overexpression of any of these five TFs indeed caused a rapid and rather uniform differentiation of hESCs, which were identified as neurons based on their morphologies, qRT-PCR, and immunohistochemistry. Furthermore, calcium-imaging analyses and patch clamp recordings demonstrated that these differentiated cells are electrophysiologically functional. Interestingly, neural differentiations occurred despite the cell culture conditions that rather promote the maintenance of the undifferentiated state. These results indicate that over-expression of each of these five TFs can override the pluripotency-specific gene network and force hESCs to differentiate into neurons.


Subject(s)
Cell Differentiation/genetics , Human Embryonic Stem Cells/cytology , Neurons/cytology , Transcription Factors/genetics , Transcription Factors/metabolism , Transgenes/genetics , Cells, Cultured , Human Embryonic Stem Cells/metabolism , Humans , Neurons/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL