Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Ecotoxicol Environ Saf ; 202: 110924, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32800211

ABSTRACT

Fabrication of poly-(N-isopropylmethacrylamide-co-methacrylic acid) [p(NMA)] microgels to be utilized as microreactors to synthesize stable Ag nanoparticles for catalytic reductive degradation of dyes has been addressed in this work. Both p(NMA) microgel and Ag-p(NMA) hybrid microgel systems have been analyzed by Fourier transform infra-red and Dynamic light scattering, Ultraviolet-Visible spectroscopy, X-ray diffraction and Transmission electron microscopy. Catalytic activity of Ag-p(NMA) towards reductive degradation of Congo Red (CR), Methyl Orange (MO) and Alizarin Yellow (AY) was investigated under different operating conditions. Spectrophotometry was employed to check the progress of reaction while the rate constant (kapp) value of degradation reaction was determined under various conditions to optimize reaction parameters for rapid and economical degradation of these dyes. An increase in kapp value was observed by increasing feed content of dye up to a certain value that decreases again by further increment in dye concentration which reflects that catalysis follows Langmuir-Hinshelwood mechanism. A gradual increase in the kapp value was also observed with increasing quantity of hybrid microgel used as a catalyst. By comparing kapp values of degradation of aforementioned dyes, it was found that Ag-p(NMA) hybrid microgel gives better activity for MO dye degradation in comparison to catalytic degradation of CR and AY.


Subject(s)
Azo Compounds/chemistry , Metal Nanoparticles/chemistry , Silver/chemistry , Catalysis , Coloring Agents/chemistry , Congo Red/chemistry , Hydrogels/chemistry , Microscopy, Electron, Transmission , Polymers/chemistry , Spectrophotometry , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL