Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Psychol Med ; 53(15): 7170-7179, 2023 Nov.
Article in English | MEDLINE | ID: mdl-36951141

ABSTRACT

BACKGROUND: Psychological trauma exposure and posttraumatic stress disorder (PTSD) have been associated with advanced epigenetic age. However, whether epigenetic aging measured at the time of trauma predicts the subsequent development of PTSD outcomes is unknown. Moreover, the neural substrates underlying posttraumatic outcomes associated with epigenetic aging are unclear. METHODS: We examined a multi-ancestry cohort of women and men (n = 289) who presented to the emergency department (ED) after trauma. Blood DNA was collected at ED presentation, and EPIC DNA methylation arrays were used to assess four widely used metrics of epigenetic aging (HorvathAge, HannumAge, PhenoAge, and GrimAge). PTSD symptoms were evaluated longitudinally at the time of ED presentation and over the ensuing 6 months. Structural and functional neuroimaging was performed 2 weeks after trauma. RESULTS: After covariate adjustment and correction for multiple comparisons, advanced ED GrimAge predicted increased risk for 6-month probable PTSD diagnosis. Secondary analyses suggested that the prediction of PTSD by GrimAge was driven by worse trajectories for intrusive memories and nightmares. Advanced ED GrimAge was also associated with reduced volume of the whole amygdala and specific amygdala subregions, including the cortico-amygdaloid transition and the cortical and accessory basal nuclei. CONCLUSIONS: Our findings shed new light on the relation between biological aging and trauma-related phenotypes, suggesting that GrimAge measured at the time of trauma predicts PTSD trajectories and is associated with relevant brain alterations. Furthering these findings has the potential to enhance early prevention and treatment of posttraumatic psychiatric sequelae.


Subject(s)
Stress Disorders, Post-Traumatic , Male , Humans , Female , Stress Disorders, Post-Traumatic/psychology , Aging , Amygdala/diagnostic imaging , Functional Neuroimaging , Epigenesis, Genetic
2.
Proc Natl Acad Sci U S A ; 116(23): 11370-11379, 2019 06 04.
Article in English | MEDLINE | ID: mdl-31113877

ABSTRACT

Aging and psychosocial stress are associated with increased inflammation and disease risk, but the underlying molecular mechanisms are unclear. Because both aging and stress are also associated with lasting epigenetic changes, a plausible hypothesis is that stress along the lifespan could confer disease risk through epigenetic effects on molecules involved in inflammatory processes. Here, by combining large-scale analyses in human cohorts with experiments in cells, we report that FKBP5, a protein implicated in stress physiology, contributes to these relations. Across independent human cohorts (total n > 3,000), aging synergized with stress-related phenotypes, measured with childhood trauma and major depression questionnaires, to epigenetically up-regulate FKBP5 expression. These age/stress-related epigenetic effects were recapitulated in a cellular model of replicative senescence, whereby we exposed replicating human fibroblasts to stress (glucocorticoid) hormones. Unbiased genome-wide analyses in human blood linked higher FKBP5 mRNA with a proinflammatory profile and altered NF-κB-related gene networks. Accordingly, experiments in immune cells showed that higher FKBP5 promotes inflammation by strengthening the interactions of NF-κB regulatory kinases, whereas opposing FKBP5 either by genetic deletion (CRISPR/Cas9-mediated) or selective pharmacological inhibition prevented the effects on NF-κB. Further, the age/stress-related epigenetic signature enhanced FKBP5 response to NF-κB through a positive feedback loop and was present in individuals with a history of acute myocardial infarction, a disease state linked to peripheral inflammation. These findings suggest that aging/stress-driven FKBP5-NF-κB signaling mediates inflammation, potentially contributing to cardiovascular risk, and may thus point to novel biomarker and treatment possibilities.


Subject(s)
Aging/genetics , Cardiovascular Diseases/genetics , Epigenesis, Genetic/genetics , Inflammation/genetics , NF-kappa B/genetics , Stress, Psychological/genetics , Tacrolimus Binding Proteins/genetics , Up-Regulation/genetics , Cellular Senescence/genetics , Child, Preschool , Depressive Disorder, Major/genetics , Female , Genome-Wide Association Study/methods , Humans , Male , Risk Factors , Signal Transduction/genetics
3.
Brain Behav Immun ; 92: 49-56, 2021 02.
Article in English | MEDLINE | ID: mdl-33221485

ABSTRACT

Hypothalamic-pituitary-adrenal (HPA) axis dysregulation has been associated with altered immune function, but the underlying molecular mechanisms are unclear. Epigenetic processes, including DNA methylation, respond to the glucocorticoid end-products of the HPA axis (cortisol in humans) and could be involved in this neuroendocrine-immune crosstalk. Here we examined the extent to which variations in HPA axis regulation are associated with peripheral blood DNA (CpG) methylation changes in 57 chronically stressed caregivers and 67 control women. DNA methylation was determined with the Illumina 450k array for a panel of genes involved in HPA axis and immune function. HPA axis feedback was assessed with the low-dose dexamethasone suppression test (DST), measuring the extent to which cortisol secretion is suppressed by the synthetic glucocorticoid dexamethasone. After multiple testing correction in the entire cohort, higher post-DST cortisol, reflecting blunted HPA axis negative feedback, but not baseline waking cortisol, was associated with lower DNA methylation at eight TNF and two FKBP5 CpG sites. Caregiver group status was associated with lower methylation at two IL6 CpG sites. Since associations were most robust with TNF methylation (32% of the 450k-covered sites), we further examined functionality of this epigenetic signature in cultured peripheral blood mononuclear cells in 33 participants; intriguingly, lower TNF methylation resulted in higher ex vivo TNF mRNA following immune stimulation. Taken together, our findings link chronic stress and HPA axis regulation with epigenetic signatures at immune-related genes, thereby providing novel insights into how aberrant HPA axis function may contribute to heightened inflammation and disease risk.


Subject(s)
Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Dexamethasone , Epigenesis, Genetic , Female , Humans , Hydrocortisone , Leukocytes, Mononuclear
4.
Mol Psychiatry ; 25(9): 1986-1999, 2020 09.
Article in English | MEDLINE | ID: mdl-31863020

ABSTRACT

Exposure to traumatic events is common. While many individuals recover following trauma exposure, a substantial subset develop adverse posttraumatic neuropsychiatric sequelae (APNS) such as posttraumatic stress, major depression, and regional or widespread chronic musculoskeletal pain. APNS cause substantial burden to the individual and to society, causing functional impairment and physical disability, risk for suicide, lost workdays, and increased health care costs. Contemporary treatment is limited by an inability to identify individuals at high risk of APNS in the immediate aftermath of trauma, and an inability to identify optimal treatments for individual patients. Our purpose is to provide a comprehensive review describing candidate blood-based biomarkers that may help to identify those at high risk of APNS and/or guide individual intervention decision-making. Such blood-based biomarkers include circulating biological factors such as hormones, proteins, immune molecules, neuropeptides, neurotransmitters, mRNA, and noncoding RNA expression signatures, while we do not review genetic and epigenetic biomarkers due to other recent reviews of this topic. The current state of the literature on circulating risk biomarkers of APNS is summarized, and key considerations and challenges for their discovery and translation are discussed. We also describe the AURORA study, a specific example of current scientific efforts to identify such circulating risk biomarkers and the largest study to date focused on identifying risk and prognostic factors in the aftermath of trauma exposure.


Subject(s)
Chronic Pain , Depressive Disorder, Major , Humans
5.
Int J Mol Sci ; 22(16)2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34445485

ABSTRACT

Environmental stress is ubiquitous in modern societies and can exert a profound and cumulative impact on cell function and health phenotypes. This impact is thought to be in large part mediated by the action of glucocorticoid stress hormones, primarily cortisol in humans. While the underlying molecular mechanisms are unclear, epigenetics-the chemical changes that regulate genomic function without altering the genetic code-has emerged as a key link between environmental exposures and phenotypic outcomes. The present study assessed genome-wide DNA (CpG) methylation, one of the key epigenetic mechanisms, at three timepoints during prolonged (51-day) exposure of cultured human fibroblasts to naturalistic cortisol levels, which can be reached in human tissues during in vivo stress. The findings support a spatiotemporal model of profound and widespread stress hormone-driven methylomic changes that emerge at selected CpG sites, are more likely to spread to nearby located CpGs, and quantitatively accrue at open sea, glucocorticoid receptor binding, and chromatin-accessible sites. Taken together, these findings provide novel insights into how prolonged stress may impact the epigenome, with potentially important implications for stress-related phenotypes.


Subject(s)
DNA Methylation , Epigenomics/methods , Fibroblasts/metabolism , Gene Expression Regulation/drug effects , Hydrocortisone/pharmacology , Longevity , Stress, Physiological , CpG Islands , Fibroblasts/drug effects , Humans
6.
Mol Psychiatry ; 24(9): 1268-1283, 2019 09.
Article in English | MEDLINE | ID: mdl-30867558

ABSTRACT

Resilience is a neurobiological entity that shapes an individual's response to trauma. Resilience has been implicated as the principal mediator in the development of mental illness following exposure to trauma. Although animal models have traditionally defined resilience as molecular and behavioral changes in stress responsive circuits following trauma, this concept needs to be further clarified for both research and clinical use. Here, we analyze the construct of resilience from a translational perspective and review optimal measurement methods and models. We also seek to distinguish between resilience, stress vulnerability, and posttraumatic growth. We propose that resilience can be quantified as a multifactorial determinant of physiological parameters, epigenetic modulators, and neurobiological candidate markers. This multifactorial definition can determine PTSD risk before and after trauma exposure. From this perspective, we propose the use of an 'R Factor' analogous to Spearman's g factor for intelligence to denote these multifactorial determinants. In addition, we also propose a novel concept called 'resilience reserve', analogous to Stern's cognitive reserve, to summarize the sum total of physiological processes that protect and compensate for the effect of trauma. We propose the development and application of challenge tasks to measure 'resilience reserve' and guide the assessment and monitoring of 'R Factor' as a biomarker for PTSD.


Subject(s)
Resilience, Psychological/classification , Stress Disorders, Post-Traumatic/psychology , Stress Disorders, Post-Traumatic/therapy , Animals , Biomarkers , Humans , Neurobiology , Stress, Psychological , Treatment Outcome
9.
Nat Chem Biol ; 11(1): 33-7, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25436518

ABSTRACT

The FK506-binding protein 51 (FKBP51, encoded by the FKBP5 gene) is an established risk factor for stress-related psychiatric disorders such as major depression. Drug discovery for FKBP51 has been hampered by the inability to pharmacologically differentiate against the structurally similar but functional opposing homolog FKBP52, and all known FKBP ligands are unselective. Here, we report the discovery of the potent and highly selective inhibitors of FKBP51, SAFit1 and SAFit2. This new class of ligands achieves selectivity for FKBP51 by an induced-fit mechanism that is much less favorable for FKBP52. By using these ligands, we demonstrate that selective inhibition of FKBP51 enhances neurite elongation in neuronal cultures and improves neuroendocrine feedback and stress-coping behavior in mice. Our findings provide the structural and functional basis for the development of mechanistically new antidepressants.


Subject(s)
Tacrolimus Binding Proteins/antagonists & inhibitors , Adaptation, Psychological/drug effects , Animals , Antidepressive Agents/pharmacology , Behavior, Animal/drug effects , Binding Sites/drug effects , Cells, Cultured , Drug Discovery , Humans , Male , Mice , Mice, Inbred C57BL , Mutation/genetics , Neurites/drug effects , Protein Conformation , Tacrolimus Binding Proteins/chemistry , Tacrolimus Binding Proteins/drug effects
10.
Neuroimage ; 128: 125-137, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26747746

ABSTRACT

The human hippocampal formation can be divided into a set of cytoarchitecturally and functionally distinct subregions, involved in different aspects of memory formation. Neuroanatomical disruptions within these subregions are associated with several debilitating brain disorders including Alzheimer's disease, major depression, schizophrenia, and bipolar disorder. Multi-center brain imaging consortia, such as the Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) consortium, are interested in studying disease effects on these subregions, and in the genetic factors that affect them. For large-scale studies, automated extraction and subsequent genomic association studies of these hippocampal subregion measures may provide additional insight. Here, we evaluated the test-retest reliability and transplatform reliability (1.5T versus 3T) of the subregion segmentation module in the FreeSurfer software package using three independent cohorts of healthy adults, one young (Queensland Twins Imaging Study, N=39), another elderly (Alzheimer's Disease Neuroimaging Initiative, ADNI-2, N=163) and another mixed cohort of healthy and depressed participants (Max Planck Institute, MPIP, N=598). We also investigated agreement between the most recent version of this algorithm (v6.0) and an older version (v5.3), again using the ADNI-2 and MPIP cohorts in addition to a sample from the Netherlands Study for Depression and Anxiety (NESDA) (N=221). Finally, we estimated the heritability (h(2)) of the segmented subregion volumes using the full sample of young, healthy QTIM twins (N=728). Test-retest reliability was high for all twelve subregions in the 3T ADNI-2 sample (intraclass correlation coefficient (ICC)=0.70-0.97) and moderate-to-high in the 4T QTIM sample (ICC=0.5-0.89). Transplatform reliability was strong for eleven of the twelve subregions (ICC=0.66-0.96); however, the hippocampal fissure was not consistently reconstructed across 1.5T and 3T field strengths (ICC=0.47-0.57). Between-version agreement was moderate for the hippocampal tail, subiculum and presubiculum (ICC=0.78-0.84; Dice Similarity Coefficient (DSC)=0.55-0.70), and poor for all other subregions (ICC=0.34-0.81; DSC=0.28-0.51). All hippocampal subregion volumes were highly heritable (h(2)=0.67-0.91). Our findings indicate that eleven of the twelve human hippocampal subregions segmented using FreeSurfer version 6.0 may serve as reliable and informative quantitative phenotypes for future multi-site imaging genetics initiatives such as those of the ENIGMA consortium.


Subject(s)
Hippocampus/anatomy & histology , Image Processing, Computer-Assisted/methods , Neuroimaging/methods , Adult , Aged , Aged, 80 and over , Algorithms , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Anxiety Disorders/genetics , Anxiety Disorders/pathology , Depressive Disorder/genetics , Depressive Disorder/pathology , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Phenotype , Software
11.
J Child Psychol Psychiatry ; 57(6): 674-5, 2016 06.
Article in English | MEDLINE | ID: mdl-27192952

ABSTRACT

Psychological stress can exert a lasting impact on the aging process. This hypothesis, long posited by Hans Selye, has been supported by evidence linking stressors with several aging-related disease phenotypes. However, little is known about the molecular mechanisms underlying this association. Among plausible mechanisms linking stress and aging, evidence supports the role of epigenetic modifications, a set of molecular processes that can be induced by environmental stressors and regulate gene expression without altering the underlying genetic sequence. In particular, recent evidence shows that psychological stress can accelerate epigenetic aging, a measure based on DNA methylation prediction of chronological age that shows promise as biomarker of aging. Some studies further suggest that epigenetic aging could be modifiable, albeit others contradict this hypothesis. Future studies will need to determine the preventability or reversibility of epigenetic aging in response to distinct interventions and the potential clinical implications of such a prevention or reversal.


Subject(s)
Aging/physiology , Cellular Senescence/physiology , Epigenesis, Genetic/physiology , Stress, Psychological , Humans
12.
Mol Cell Neurosci ; 61: 187-200, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24983519

ABSTRACT

Enzymes that regulate histone lysine methylation play important roles in neuronal differentiation, but little is known about their contributions to activity-regulated gene transcription in differentiated neurons. We characterized activity-regulated expression of lysine demethylases and lysine methyltransferases in the hippocampus of adult male mice following pilocarpine-induced seizure. Pilocarpine drove a 20-fold increase in mRNA encoding the histone H3 lysine 27-specific demethylase Kdm6b selectively in granule neurons of the dentate gyrus, and this induction was recapitulated in cultured hippocampal neurons by bicuculline and 4-aminopyridine (Bic + 4AP) stimulation of synaptic activity. Because activity-regulated gene expression is highly correlated with neuronal survival, we tested the requirement for Kdm6b expression in Bic + 4AP induced preconditioning of neuronal survival. Prior exposure to Bic + 4AP promoted neuronal survival in control neurons upon growth factor withdrawal; however, this effect was ablated when we knocked down Kdm6b expression. Loss of Kdm6b did not disrupt activity-induced expression of most genes, including that of a gene set previously established to promote neuronal survival in this assay. However, using bioinformatic analysis of RNA sequencing data, we discovered that Kdm6b knockdown neurons showed impaired inducibility of a discrete set of genes annotated for their function in inflammation. These data reveal a novel function for Kdm6b in activity-regulated neuronal survival, and they suggest that activity- and Kdm6b-dependent regulation of inflammatory gene pathways may serve as an adaptive pro-survival response to increased neuronal activity.


Subject(s)
Hippocampus/pathology , Jumonji Domain-Containing Histone Demethylases/metabolism , Neurons/metabolism , Seizures/pathology , 4-Aminopyridine/pharmacology , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Bicuculline/pharmacology , Cell Survival/drug effects , Cell Survival/genetics , Cells, Cultured , Disease Models, Animal , GABA-A Receptor Antagonists/pharmacology , Gene Expression Regulation/drug effects , Hippocampus/drug effects , Jumonji Domain-Containing Histone Demethylases/genetics , Male , Mice , Mice, Inbred C57BL , Muscarinic Agonists/toxicity , Neurons/drug effects , Pilocarpine/toxicity , Potassium Channel Blockers/pharmacology , RNA Interference/physiology , Seizures/chemically induced
14.
Am J Geriatr Psychiatry ; 22(12): 1504-12, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24378256

ABSTRACT

OBJECTIVES: Smaller hippocampal volumes are observed in depression but it remains unclear how antidepressant response and persistent depression relate to changes in hippocampal volume. We examined the longitudinal relationship between hippocampal atrophy and course of late-life depression. SETTING: Academic medical center. PARTICIPANTS: Depressed and never-depressed cognitively intact subjects age 60 years or older. MEASUREMENTS: Depression severity was measured every three months with the Montgomery-Asberg Depression Rating Scale (MADRS). Participants also completed cranial 1.5-T magnetic resonance imaging every 2 years. We compared 2-year change in hippocampal volume based on remission status, then in expanded analyses examined how hippocampal volumes predicted MADRS score. RESULTS: In analyses of 92 depressed and 70 never-depressed subjects, over 2 years the cohort whose depression never remitted exhibited greater hippocampal atrophy than the never-depressed cohort. In expanded analyses of a broader sample of 152 depressed elders, depression severity was significantly predicted by a hippocampus × time interaction where smaller hippocampus volumes over time were associated with greater depression severity. CONCLUSIONS: Hippocampal atrophy is associated with greater and persistent depression severity. Neuropathological studies are needed to determine if this atrophy is related to the toxic effects of persistent depression or related to underlying Alzheimer disease.


Subject(s)
Depressive Disorder, Major/physiopathology , Disease Progression , Hippocampus/pathology , Aged , Aged, 80 and over , Antidepressive Agents/therapeutic use , Atrophy/pathology , Depressive Disorder, Major/drug therapy , Female , Humans , Longitudinal Studies , Magnetic Resonance Imaging , Male , Middle Aged , Recurrence , Remission Induction , Severity of Illness Index
15.
Neurocase ; 20(4): 466-73, 2014 Aug.
Article in English | MEDLINE | ID: mdl-23672654

ABSTRACT

¹8F-florbetapir positron emission tomography (PET) imaging of the brain is now approved by the Food and Drug Administration (FDA) approved for estimation of ß -amyloid neuritic plaque density when evaluating patients with cognitive impairment. However, its impact on clinical decision-making is not known. We present 11 cases (age range 67-84) of cognitively impaired subjects in whom clinician surveys were done before and after PET scanning to document the theoretical impact of amyloid imaging on the diagnosis and treatment plan of cognitively impaired subjects. Subjects have been clinically followed for about 5 months after the PET scan. Negative scans occurred in five cases, leading to a change in diagnosis for four patients and a change in treatment plan for two of these cases. Positive scans occurred in six cases, leading to a change in diagnosis for four patients and a change in treatment plan for three of these cases. Following the scan, only one case had indeterminate diagnosis. Our series suggests that both positive and negative florbetapir PET scans may enhance diagnostic certainty and impact clinical decision-making. Controlled longitudinal studies are needed to confirm our data and determine best practices.


Subject(s)
Amyloid beta-Peptides/metabolism , Aniline Compounds , Ethylene Glycols , Plaque, Amyloid/diagnostic imaging , Radiopharmaceuticals , Aged , Aged, 80 and over , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/drug therapy , Cholinesterase Inhibitors/therapeutic use , Cognitive Dysfunction/etiology , Cognitive Dysfunction/psychology , Diagnosis, Differential , Female , Frontotemporal Dementia/diagnostic imaging , Frontotemporal Dementia/drug therapy , Humans , Male , Memory Disorders/etiology , Memory Disorders/psychology , Neuropsychological Tests , Plaque, Amyloid/psychology , Plaque, Amyloid/therapy , Positron-Emission Tomography
16.
Geroscience ; 46(2): 2425-2439, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37985642

ABSTRACT

Although aging has been investigated extensively at the organismal and cellular level, the morphological changes that individual cells undergo along their replicative lifespan have not been precisely quantified. Here, we present the results of a readily accessible machine learning-based pipeline that uses standard fluorescence microscope and open access software to quantify the minute morphological changes that human fibroblasts undergo during their replicative lifespan in culture. Applying this pipeline in a widely used fibroblast cell line (IMR-90), we find that advanced replicative age robustly increases (+28-79%) cell surface area, perimeter, number and total length of pseudopodia, and nuclear surface area, while decreasing cell circularity, with phenotypic changes largely occurring as replicative senescence is reached. These senescence-related morphological changes are recapitulated, albeit to a variable extent, in primary dermal fibroblasts derived from human donors of different ancestry, age, and sex groups. By performing integrative analysis of single-cell morphology, our pipeline further classifies senescent-like cells and quantifies how their numbers increase with replicative senescence in IMR-90 cells and in dermal fibroblasts across all tested donors. These findings provide quantitative insights into replicative senescence, while demonstrating applicability of a readily accessible computational pipeline for high-throughput cell phenotyping in aging research.


Subject(s)
Aging , Cellular Senescence , Humans , Cells, Cultured , Fibroblasts
17.
Article in English | MEDLINE | ID: mdl-37591789

ABSTRACT

OBJECTIVES: Deprived living environments contribute to greater heart failure (HF) risk among non-Hispanic Black persons, who disproportionately occupy disadvantaged neighborhoods. The mechanisms for these effects are not fully explicated, partially attributable to an insufficient understanding of the individual factors that contribute additional risk or resilience to the impact of neighborhood disadvantage on health. The objective of this study was, therefore, to clarify the complex pathways over which such exposures act to facilitate more targeted, effective interventions. Given the evidence for a mediating role of biological age and a moderating role of individual psychosocial characteristics in the neighborhood disadvantage-HF link, we tested a moderated mediation mechanism. METHODS: Using multilevel causal moderated mediation models, we prospectively examined whether the association of neighborhood disadvantage with incident HF mediated through accelerated biological aging, captured by the GrimAge epigenetic clock, is moderated by hypothesized psychosocial risk (negative affect) and resilience (optimism) factors. RESULTS: Among a sample of 1,448 Black participants in the shared Jackson Heart Study-Atherosclerosis Risk in Communities cohort (mean age 64.3 years), 334 adjudicated incident hospitalized HF events occurred over a median follow-up of 18 years. In models adjusted for age and sex, the indirect (GrimAge-mediated) effect of neighborhood disadvantage was moderated by psychosocial risk such that for every standard deviation increase in negative affect the hazards of HF was 1.18 (95% confidence interval = 1.05, 1.36). No moderated mediation effect was detected for optimism. DISCUSSION: Findings support the necessity for multilevel interventions simultaneously addressing neighborhood and individual psychosocial risk in the reduction of HF among Black persons.


Subject(s)
Aging , Heart Failure , Neighborhood Characteristics , Resilience, Psychological , Humans , Black or African American , Heart Failure/epidemiology , Incidence , Mediation Analysis , Risk Factors , Middle Aged
18.
bioRxiv ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38948883

ABSTRACT

Traumatic social experiences redefine socially motivated behaviors to enhance safety and survival. Although many brain regions have been implicated in signaling a social threat, the mechanisms by which global neural networks regulate such motivated behaviors remain unclear. To address this issue, we first combined traditional and modern behavioral tracking techniques in mice to assess both approach and avoidance, as well as sub-second behavioral changes, during a social threat learning task. We were able to identify previously undescribed body and tail movements during social threat learning and recognition that demonstrate unique alterations into the behavioral structure of social motivation. We then utilized inter-regional correlation analysis of brain activity after a mouse recognizes a social threat to explore functional communication amongst brain regions implicated in social motivation. Broad brain activity changes were observed within the nucleus accumbens, the paraventricular thalamus, the ventromedial hypothalamus, and the nucleus of reuniens. Inter-regional correlation analysis revealed a reshaping of the functional connectivity across the brain when mice recognize a social threat. Altogether, these findings suggest that reshaping of functional brain connectivity may be necessary to alter the behavioral structure of social motivation when a social threat is encountered.

19.
Aging (Albany NY) ; 16(10): 8446-8471, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38809417

ABSTRACT

We investigated relations of depressive symptoms, antidepressant use, and epigenetic age acceleration with all-cause mortality risk among postmenopausal women. Data were analyzed from ≤1,900 participants in the Women's Health Initiative study testing four-way decomposition models. After a median 20.4y follow-up, 1,161 deaths occurred. Approximately 11% had elevated depressive symptoms (EDS+), 7% were taking antidepressant medication at baseline (ANTIDEP+), while 16.5% fell into either category (EDS_ANTIDEP+). Baseline ANTIDEP+, longitudinal transition into ANTIDEP+ and accelerated epigenetic aging directly predicted increased mortality risk. GrimAge DNA methylation age acceleration (AgeAccelGrim) partially mediated total effects of baseline ANTIDEP+ and EDS_ANTIDEP+ on all-cause mortality risk in socio-demographic factors-adjusted models (Pure Indirect Effect >0, P < 0.05; Total Effect >0, P < 0.05). Thus, higher AgeAccelGrim partially explained the relationship between antidepressant use and increased all-cause mortality risk, though only prior to controlling for lifestyle and health-related factors. Antidepressant use and epigenetic age acceleration independently predicted increased all-cause mortality risk. Further studies are needed in varying populations.


Subject(s)
Antidepressive Agents , DNA Methylation , Depression , Epigenesis, Genetic , Postmenopause , Humans , Female , Antidepressive Agents/therapeutic use , Depression/genetics , Depression/drug therapy , Middle Aged , Aged , Aging/genetics , Mortality
20.
J Acad Nutr Diet ; 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38215906

ABSTRACT

BACKGROUND: Higher diet quality scores are associated with a lower risk for many chronic diseases and all-cause mortality; however, it is unclear if diet quality is associated with aging biology. OBJECTIVE: This study aimed to examine the association between diet quality and a measure of biological aging known as epigenetic aging. DESIGN: A cross-sectional data analysis was used to examine the association between three diet quality scores based on self-reported food frequency questionnaire data and five measures of epigenetic aging based on DNA methylation (DNAm) data from peripheral blood. PARTICIPANTS/SETTING: This study included 4,500 postmenopausal women recruited from multiple sites across the United States (1993-98), aged 50 to 79 years, with food frequency questionnaire and DNAm data available from the Women's Health Initiative baseline visit. MAIN OUTCOME MEASURES: Five established epigenetic aging measures were generated from HumanMethylation450 Beadchip DNAm data, including AgeAccelHannum, AgeAccelHorvath, AgeAccelPheno, AgeAccelGrim, and DunedinPACE. STATISTICAL ANALYSES PERFORMED: Linear mixed models were used to test for associations between three diet quality scores (Healthy Eating Index, Dietary Approaches to Stop Hypertension, and alternate Mediterranean diet scores) and epigenetic aging measures, adjusted for age, race and ethnicity, education, tobacco smoking, physical activity, Women's Health Initiative substudy from which DNAm data were obtained, and DNAm-based estimates of leukocyte proportions. RESULTS: Healthy Eating Index, Dietary Approaches to Stop Hypertension, and alternate Mediterranean diet scores were all inversely associated with AgeAccelPheno, AgeAccelGrim, and DunedinPACE (P < 0.05), with the largest effects with DunedinPACE. A one standard deviation increment in diet quality scores was associated with a decrement (ß ± SE) in DunedinPACE z score of -0.097 ± 0.014 (P = 9.70 x 10-13) for Healthy Eating Index, -0.107 ± 0.014 (P = 1.53 x 10-14) for Dietary Approaches to Stop Hypertension, and -0.068 ± 0.013 (P = 2.31 x 10-07) for the alternate Mediterranean diet. CONCLUSIONS: In postmenopausal women, diet quality scores were inversely associated with DNAm-based measures of biological aging, particularly DunedinPACE.

SELECTION OF CITATIONS
SEARCH DETAIL