Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
Clin Infect Dis ; 78(2): 312-323, 2024 02 17.
Article in English | MEDLINE | ID: mdl-37738676

ABSTRACT

BACKGROUND: The use of assays detecting cytomegalovirus (CMV)-specific T cell-mediated immunity may individualize the duration of antiviral prophylaxis after transplantation. METHODS: In this randomized trial, kidney and liver transplant recipients from 6 centers in Switzerland were enrolled if they were CMV-seronegative with seropositive donors or CMV-seropositive receiving antithymocyte globulins. Patients were randomized to a duration of antiviral prophylaxis based on immune monitoring (intervention) or a fixed duration (control). Patients in the control group were planned to receive 180 days (CMV-seronegative) or 90 days (CMV-seropositive) of valganciclovir. Patients were assessed monthly with a CMV ELISpot assay (T-Track CMV); prophylaxis in the intervention group was stopped if the assay was positive. The co-primary outcomes were the proportion of patients with clinically significant CMV infection and reduction in days of prophylaxis. Between-group differences were adjusted for CMV serostatus. RESULTS: Overall, 193 patients were randomized (92 in the immune-monitoring group and 101 in the control group), of whom 185 had evaluation of the primary outcome (87 and 98 patients). CMV infection occurred in 26 of 87 (adjusted percentage, 30.9%) in the immune-monitoring group and in 32 of 98 (adjusted percentage, 31.1%) in the control group (adjusted risk difference, -0.1; 95% confidence interval [CI], -13.0% to 12.7%; P = .064). The duration of prophylaxis was shorter in the immune-monitoring group (adjusted difference, -26.0 days; 95%, CI, -41.1 to -10.8 days; P < .001). CONCLUSIONS: Immune monitoring resulted in a significant reduction of antiviral prophylaxis, but we were unable to establish noninferiority of this approach on the co-primary outcome of CMV infection. CLINICAL TRIALS REGISTRATION: NCT02538172.


Subject(s)
Cytomegalovirus Infections , Organ Transplantation , Humans , Cytomegalovirus , Antiviral Agents/therapeutic use , Monitoring, Immunologic , Cytomegalovirus Infections/diagnosis , Transplant Recipients , Organ Transplantation/adverse effects , Ganciclovir/therapeutic use
2.
Blood ; 137(23): 3225-3236, 2021 06 10.
Article in English | MEDLINE | ID: mdl-33827115

ABSTRACT

Primary immunodeficiencies in the costimulatory molecule CD27 and its ligand, CD70, predispose for pathologies of uncontrolled Epstein-Barr virus (EBV) infection in nearly all affected patients. We demonstrate that both depletion of CD27+ cells and antibody blocking of CD27 interaction with CD70 cause uncontrolled EBV infection in mice with reconstituted human immune system components. While overall CD8+ T-cell expansion and composition are unaltered after antibody blocking of CD27, only some EBV-specific CD8+ T-cell responses, exemplified by early lytic EBV antigen BMLF1-specific CD8+ T cells, are inhibited in their proliferation and killing of EBV-transformed B cells. This suggests that CD27 is not required for all CD8+ T-cell expansions and cytotoxicity but is required for a subset of CD8+ T-cell responses that protect us from EBV pathology.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Epstein-Barr Virus Infections/immunology , Herpesvirus 4, Human/immunology , Immunity, Cellular , Phosphoproteins/immunology , Trans-Activators/immunology , Tumor Necrosis Factor Receptor Superfamily, Member 7/immunology , Animals , B-Lymphocytes/immunology , Cell Transformation, Viral/genetics , Cell Transformation, Viral/immunology , Epstein-Barr Virus Infections/genetics , Herpesvirus 4, Human/genetics , Humans , Mice , Mice, Inbred NOD , Mice, Transgenic , Phosphoproteins/genetics , Trans-Activators/genetics , Tumor Necrosis Factor Receptor Superfamily, Member 7/genetics
3.
Eur J Immunol ; 51(1): 64-75, 2021 01.
Article in English | MEDLINE | ID: mdl-32949466

ABSTRACT

Immune responses to Epstein-Barr virus (EBV) infection synergize with the main genetic risk factor HLA-DRB1*15:01 (HLA-DR15) to increase the likelihood to develop the autoimmune disease multiple sclerosis (MS) at least sevenfold. In order to gain insights into this synergy, we investigated HLA-DR15 positive human immune compartments after reconstitution in immune-compromised mice (humanized mice) with and without EBV infection. We detected elevated activation of both CD4+ and CD8+ T cells in HLA-DR15 donor-reconstituted humanized mice at steady state, even when compared to immune compartments carrying HLA-DRB1*04:01 (HLA-DR4), which is associated with other autoimmune diseases. Increased CD8+ T cell expansion and activation was also observed in HLA-DR15 donor-reconstituted humanized mice after EBV infection. Despite this higher immune activation, EBV viral loads were less well controlled in the context of HLA-DR15. Indeed, HLA-DR15-restricted CD4+ T cell clones recognized EBV-transformed B cell lines less efficiently and demonstrated cross-reactivity toward allogeneic target cells and one MS autoantigen. These findings suggest that EBV as one of the main environmental risk factors and HLA-DR15 as the main genetic risk factor for MS synergize by priming hyperreactive T-cell compartments, which then control the viral infection less efficiently and contain cross-reactive CD4+ T cell clones.


Subject(s)
Epstein-Barr Virus Infections/immunology , HLA-DR Serological Subtypes/immunology , Multiple Sclerosis/immunology , Adaptive Immunity , Animals , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cross Reactions , Disease Models, Animal , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/virology , Genetic Predisposition to Disease , HLA-A2 Antigen/genetics , HLA-A2 Antigen/immunology , HLA-DR Serological Subtypes/genetics , Herpesvirus 4, Human/immunology , Humans , Isoantigens , Lymphocyte Activation , Mice , Mice, Inbred NOD , Mice, SCID , Mice, Transgenic , Multiple Sclerosis/etiology , Multiple Sclerosis/genetics , Myelin Sheath/immunology , Risk Factors
4.
Transfus Med Hemother ; 49(6): 338-345, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36654973

ABSTRACT

Introduction: Screening of hepatitis B surface antigen (HBsAg) and individual-donation nucleic acid amplification testing (ID-NAT) of blood donors have become standard to detect hepatitis B virus (HBV) infection. However, there is still a residual risk of HBV transmission by blood components of donors suffering from occult HBV infection (OBI). Therefore, many countries implemented universal testing of anti-HBV core antigen (anti-HBc) antibodies in order to increase blood safety. In Switzerland, anti-HBc testing is not part of the routine blood donor-screening repertoire. Therefore, we sought to assess prevalence of donors with OBI in a Swiss blood donor collective. Methods: Blood donations were prospectively investigated for the presence of anti-HBc antibodies during two time periods (I: all donors, March 2017; II: first-time donors only, April 2017 until February 2018). Anti-HBc-positive findings were confirmed by an anti-HBc neutralization test. Discarded plasma samples of anti-HBc-confirmed positive donors were ultracentrifuged and subsequently retested by regular HBV-ID-NAT to search for traces of HBV. Results: During time period I, 78 (1.6%) individuals out of 4,923 donors were confirmed anti-HBc-positive. Sixty-nine (88%) anti-HBc-positive samples were available and processed by ultracentrifugation followed by repeat HBV-ID-NAT. Four samples (5.8%) were found positive for HBV DNA. Sixty-five (94.2%) samples remained HBV NAT-negative upon ultracentrifugation. During time period II, 56 (0.9%) donor samples out of 6,509 exhibited anti-HBc-confirmed positive. Fifty-five (98%) samples could be reassessed by HBV-ID-NAT upon ultracentrifugation. Three (5.5%) samples contained HBV DNA and 52 (94.5%) samples remained HBV NAT-negative. Conclusion: Overall, we detected 7 viremic OBI carriers among 11,432 blood donors, which tested negative for HBV by standard HBV-ID-NAT and HBsAg screening. In contrast, OBI carriers showed positive anti-HBc findings which could be confirmed in 83.8% of the cases. Thus, OBI might be missed by the current HBV screening process of Swiss blood donors. We suggest to review current HBV screening algorithm. Extended donor screening by anti-HBc testing may unmask OBI carriers and contribute to blood safety for the recipient of blood products.

5.
Ther Umsch ; 79(9): 448-453, 2022 Nov.
Article in German | MEDLINE | ID: mdl-36303534

ABSTRACT

Lyme Disease - Laboratory Diagnostics Abstract. Lyme borreliosis is caused by Borrelia burgdorferi. Laboratory testing for Borrelia-specific antibodies is crucial for the diagnosis of Lyme borreliosis in addition to clinical definitions. The diagnostic approach consists of a two-tier testing: firstly, a highly sensitive screening test such as an enzyme immunoassay and secondly, a highly specific confirmatory assay such as a line immunoblot. The screening test detects Borrelia-specific IgM and IgG antibodies but also unspecific antibodies or cross-reactive antibodies against Treponema (causative agent of syphilis). Thus, a reactive screening test always needs confirmation by a specific test such as the immunoblot thereby resolving specific antibodies against different Borrelia antigens. Moreover, the characteristic spectrum of bands in the immunoblot provides evidence to divide the immune response into an early or a late stage of the disease. For the diagnosis of Lyme neuroborreliosis, intrathecal antibody production to B. burgdorferi should be determined by analyzing paired serum and cerebrospinal fluid samples obtained on the same timepoint. Diagnostics of Lyme borreliosis requires a comprehensive report of Borrelia-specific antibody responses and clinical manifestations.


Subject(s)
Borrelia burgdorferi , Lyme Disease , Humans , Antibodies, Bacterial , Lyme Disease/diagnosis , Antigens, Bacterial , Immunoglobulin G
6.
PLoS Pathog ; 15(5): e1007748, 2019 05.
Article in English | MEDLINE | ID: mdl-31145756

ABSTRACT

Epstein Barr virus (EBV) is one of the most ubiquitous human pathogens in the world, persistently infecting more than 90% of the adult human population. It drives some of the strongest human CD8+ T cell responses, which can be observed during symptomatic primary infection known as infectious mononucleosis (IM). Despite high viral loads and prolonged CD8+ T cell stimulation during IM, EBV enters latency and is under lifelong immune control in most individuals that experience this disease. We investigated whether changes in T cell function, as frequently characterized by PD-1 up-regulation, occur during IM due to the prolonged exposure to high antigen levels. We readily detected the expansion of PD-1 positive CD8+ T cells together with high frequencies of Tim-3, 2B4, and KLRG1 expression during IM and in mice with reconstituted human immune system components (huNSG mice) that had been infected with a high dose of EBV. These PD-1 positive CD8+ T cells, however, retained proliferation, cytokine production, and cytotoxic abilities. Multiple subsets of CD8+ T cells expanded during EBV infection, including PD-1+Tim-3+KLRG1+ cells that express CXCR5 and TCF-1 germinal center homing and memory markers, and may also contain BATF3. Moreover, blocking the PD-1 axis compromised EBV specific immune control and resulted in virus-associated lymphomagenesis. Finally, PD-1+, Tim-3+, and KLRG1+ CD8+ T cell expansion coincided with declining viral loads during low dose EBV infection. These findings suggest that EBV infection primes PD-1 positive CD8+ T cell populations that rely on this receptor axis for the efficient immune control of this ubiquitous human tumor virus.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Epstein-Barr Virus Infections/immunology , Herpesvirus 4, Human/immunology , Programmed Cell Death 1 Receptor/metabolism , T-Lymphocytes, Cytotoxic/immunology , Viral Load/immunology , Adult , Animals , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/virology , Case-Control Studies , Cytokines/metabolism , Epstein-Barr Virus Infections/metabolism , Epstein-Barr Virus Infections/virology , Gene Expression Profiling , Humans , Inflammation Mediators/metabolism , Mice , Mice, Inbred NOD , Mice, SCID
7.
BMC Infect Dis ; 21(1): 1097, 2021 Oct 24.
Article in English | MEDLINE | ID: mdl-34689748

ABSTRACT

BACKGROUND: Aeromonas hydrophila is a gram-negative facultative anaerobic coccobacillus, which is an environmental opportunistic pathogen. A. hydrophila are involved in several infectious diseases such as gastroenteritis, septicemia and wound infections. However, gastroenteritis caused by Aeromonas spp. are rare and the clinical relevance of Aeromonas species in stool specimens is still under debate. CASE PRESENTATION: Our case concerns a 32-year-old woman who presented at hospital with a worsening watery diarrhea and fever requiring intensive care. A cholera-like illness was diagnosed. The patient had a past history of an anti-Hu syndrome with a myenteric ganglionitis. A molecular multiplex RT-PCR (QIAstat-Dx Gastrointestinal Panel, QIAGEN) covering a broad spectrum of diverse gastrointestinal pathogens performed directly from the stool was negative but the stool culture revealed growth of A. hydrophila. Further investigations of the A. hydrophila strain in cell cultures revealed the presence of a cytotoxic enterotoxin. CONCLUSIONS: Although A. hydrophila rarely causes gastroenteritis, Aeromonas spp. should be considered as a causative agent of severe gastroenteritis with a cholera-like presentation. This case highlights the need to perform culture methods from stool samples when PCR-based methods are negative and gastrointestinal infection is suspected.


Subject(s)
Aeromonas , Gastroenteritis , Gram-Negative Bacterial Infections , Adult , Aeromonas hydrophila , Colectomy , Diarrhea , Female , Gastroenteritis/diagnosis , Gram-Negative Bacterial Infections/diagnosis , Gram-Negative Bacterial Infections/drug therapy , Humans
8.
PLoS Pathog ; 14(4): e1007039, 2018 04.
Article in English | MEDLINE | ID: mdl-29709016

ABSTRACT

The oncogenic Epstein Barr virus (EBV) infects the majority of the human population and usually persists within its host for life without symptoms. The EBV oncoproteins nuclear antigen 3A (EBNA3A) and 3C (EBNA3C) are required for B cell transformation in vitro and are expressed in EBV associated immunoblastic lymphomas in vivo. In order to address the necessity of EBNA3A and EBNA3C for persistent EBV infection in vivo, we infected NOD-scid γcnull mice with reconstituted human immune system components (huNSG mice) with recombinant EBV mutants devoid of EBNA3A or EBNA3C expression. These EBV mutants established latent infection in secondary lymphoid organs of infected huNSG mice for at least 3 months, but did not cause tumor formation. Low level viral persistence in the absence of EBNA3A or EBNA3C seemed to be supported primarily by proliferation with the expression of early latent EBV gene products transitioning into absent viral protein expression without elevated lytic replication. In vitro, EBNA3A and EBNA3C deficient EBV infected B cells could be rescued from apoptosis through CD40 stimulation, mimicking T cell help in secondary lymphoid tissues. Thus, even in the absence of the oncogenes EBNA3A and 3C, EBV can access a latent gene expression pattern that is reminiscent of EBV persistence in healthy virus carriers without prior expression of its whole growth transforming program.


Subject(s)
B-Lymphocytes/virology , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Nuclear Antigens/metabolism , Herpesvirus 4, Human/pathogenicity , Animals , B-Lymphocytes/metabolism , Cells, Cultured , Epstein-Barr Virus Infections/metabolism , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Mice, Transgenic
9.
Clin Infect Dis ; 69(6): 987-994, 2019 08 30.
Article in English | MEDLINE | ID: mdl-30508036

ABSTRACT

BACKGROUND: Before kidney transplantation, donors and recipients are routinely screened for viral pathogens using specific tests. Little is known about unrecognized viruses of the urinary tract that potentially result in transmission. Using an open metagenomic approach, we aimed to comprehensively assess virus transmission in living-donor kidney transplantation. METHODS: Living kidney donors and their corresponding recipients were enrolled at the time of transplantation. Follow-up study visits for recipients were scheduled 4-6 weeks and 1 year thereafter. At each visit, plasma and urine samples were collected and transplant recipients were evaluated for signs of infection or other transplant-related complications. For metagenomic analysis, samples were enriched for viruses, amplified by anchored random polymerase chain reaction (PCR), and sequenced using high-throughput metagenomic sequencing. Viruses detected by sequencing were confirmed using real-time PCR. RESULTS: We analyzed a total of 30 living kidney donor and recipient pairs, with a follow-up of at least 1 year. In addition to viruses commonly detected during routine post-transplant virus monitoring, metagenomic sequencing detected JC polyomavirus (JCPyV) in the urine of 7 donors and their corresponding recipients. Phylogenetic analysis confirmed infection with the donor strain in 6 cases, suggesting transmission from the transplant donor to the recipient, despite recipient seropositivity for JCPyV at the time of transplantation. CONCLUSIONS: Metagenomic sequencing identified frequent transmission of JCPyV from kidney transplant donors to recipients. Considering the high incidence rate, future studies within larger cohorts are needed to define the relevance of JCPyV infection and the donor's virome for transplant outcomes.


Subject(s)
JC Virus/genetics , Kidney Transplantation/adverse effects , Living Donors , Metagenomics , Polyomavirus Infections/epidemiology , Polyomavirus Infections/etiology , Transplant Recipients , Adult , Comorbidity , DNA, Viral , Female , Germany/epidemiology , Humans , Immunosuppressive Agents/adverse effects , JC Virus/classification , Male , Metagenome , Metagenomics/methods , Middle Aged , Polyomavirus Infections/prevention & control , Polyomavirus Infections/transmission , Pre-Exposure Prophylaxis , Prevalence , Public Health Surveillance
10.
BMC Infect Dis ; 18(1): 33, 2018 01 11.
Article in English | MEDLINE | ID: mdl-29325543

ABSTRACT

BACKGROUND: We report a rare case of Mammalian orthoreovirus (MRV) infection in a child with a primary immunodeficiency (PID). Infections with Mammalian orthoreovirus are very rare and probably of zoonotic origin. Only a few cases have been described so far, including one with similar pathogenesis as in our case. CASE PRESENTATION: The patient, age 11, presented with flu-like symptoms and persistent severe diarrhea. Enterovirus has been detected over several months, however, exact typing of a positive cell culture remained inconclusive. Unbiased metagenomic sequencing then detected MRV in stool samples from several time points. The sequencing approach further revealed co-infection with a recombinant Coxsackievirus and Adenovirus. MRV-specific antibodies detected by immunofluorescence proved that the patient seroconverted. CONCLUSION: This case highlights the potential of unbiased metagenomic sequencing in supplementing routine diagnostic methods, especially in situations of chronic infection with multiple viruses as seen here in an immunocompromised host. The origin, transmission routes and implications of MRV infection in humans merit further investigation.


Subject(s)
Adenoviridae Infections/virology , Coxsackievirus Infections/virology , Immunologic Deficiency Syndromes/complications , Metagenomics/methods , Reoviridae Infections/virology , Adenoviridae Infections/etiology , Child , Coinfection , Coxsackievirus Infections/etiology , Diarrhea/virology , Enterovirus/genetics , Enterovirus/pathogenicity , Enterovirus Infections/virology , Female , Humans , Immunologic Deficiency Syndromes/virology , Orthoreovirus, Mammalian/genetics , Orthoreovirus, Mammalian/pathogenicity , Reoviridae Infections/etiology
11.
J Clin Microbiol ; 54(3): 543-8, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26659214

ABSTRACT

Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has entered clinical laboratories, facilitating identification of bacteria. Here, we evaluated the MALDI Biotyper (Bruker Daltonics) for the identification of fastidious Gram-negative rods (GNR). Three sample preparation methods, direct colony transfer, direct transfer plus on-target formic acid preparation, and ethanol-formic acid extraction, were analyzed for 151 clinical isolates. Direct colony transfer applied with the manufacturer's interpretation criteria resulted in overall species and genus identification rates of 43.0% and 32.5%, respectively; 23.2% of the isolates were not identified, and two misidentifications (1.3%) were observed. The species identification rates increased to 46.4% and 53.7% for direct transfer plus formic acid preparation and ethanol-formic acid extraction, respectively. In addition, we evaluated score value cutoff alterations. The identification rates hardly increased by reducing the genus cutoff, while reducing the 2.0 species cutoff to 1.9 and to 1.8 increased the identification rates to up to 66.2% without increasing the rate of misidentifications. This study shows that fastidious GNR can reliably be identified using the MALDI Biotyper. However, the identification rates do not reach those of nonfastidious GNR such as the Enterobacteriaceae. In addition, two approaches optimizing the identification of fastidious GNR by the MALDI Biotyper were demonstrated: formic acid-based on-target sample treatment and reductions in cutoff scores to increase the species identification rates.


Subject(s)
Bacteriological Techniques/methods , Gram-Negative Aerobic Rods and Cocci/classification , Gram-Negative Aerobic Rods and Cocci/isolation & purification , Gram-Negative Bacterial Infections/diagnosis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Humans , Sensitivity and Specificity , Specimen Handling/methods
12.
BMC Microbiol ; 16(1): 132, 2016 06 28.
Article in English | MEDLINE | ID: mdl-27349889

ABSTRACT

BACKGROUND: Broad-range fungal inter spacer region (ITS) polymerase chain reaction (PCR) has been evaluated for the detection and identification of fungi in clinical specimens from severely immunocompromised patients, but not in non-selected patients. Thus, the aim of this study was to compare the diagnostic performance of ITS PCR with that of fungal culture and to investigate its clinical impact on the diagnosis of fungal infections in non-immunocompromised patients. The corresponding patients' data were retrieved by detailed medical chart reviews. RESULTS: Results from 251 specimens showed a high concordance of 89.6 % for ITS PCR and fungal culture. The analytical sensitivity and specificity of ITS PCR considering culture as gold standard were 87.7 and 90.3 %, respectively, the positive and negative predictive value (PPV and NPV) were 76 and 95.5 %, respectively. Assessing the clinical probability of a fungal infection based on detailed chart reviews, PCR had a clinical sensitivity of 88.9 %, a specificity of 86.3 %, a PPV of 64.0 % and a NPV of 96.6 %. The overall performance of fungal broad-range PCR was similar to that of culture. CONCLUSIONS: Our data show that, in non-selected and non-immunocompromised patients, the performance of ITS PCR is similar to that of culture for detecting fungal infections, not the least because sensitivity of culture in patients under antifungal treatment is surprisingly high. Compared to culture, PCR has the advantage of a rapid time-to-result (approximately two working days), proper identification of rare pathogens, prompt initiation of a species-targeted antifungal treatment, and prospects for automation.


Subject(s)
DNA, Ribosomal Spacer/genetics , Fungi/genetics , Fungi/isolation & purification , Microbiological Techniques/methods , Mycoses/immunology , Mycoses/microbiology , Polymerase Chain Reaction/methods , Antifungal Agents/therapeutic use , DNA, Fungal/genetics , DNA, Fungal/isolation & purification , DNA, Ribosomal Spacer/analysis , Humans , Immunocompromised Host , Mycoses/diagnosis , Mycoses/drug therapy , Predictive Value of Tests , Reproducibility of Results , Sensitivity and Specificity
13.
BMC Infect Dis ; 15: 474, 2015 Oct 29.
Article in English | MEDLINE | ID: mdl-26511098

ABSTRACT

BACKGROUND: Hepatitis E virus (HEV) is the most recently discovered of the hepatotropic viruses, and is considered an emerging pathogen in developed countries with the possibility of fulminant hepatitis in immunocompromised patients. Especially in the latter elevated transaminases should be taken as a clue to consider HEV infection, as it can be treated by discontinuation of immunosuppression and/or ribavirin therapy. To our best knowledge, this is a unique case of autochthonous HEV infection with coincident reactivation of Epstein-Barr virus (EBV) infection in an immunosuppressed patient with rheumatoid arthritis (RA). CASE PRESENTATION: A 68-year-old Swiss woman with RA developed hepatitis initially diagnosed as methotrexate-induced liver injury, but later diagnosed as autochthonous HEV infection accompanied by reactivation of her latent EBV infection. She showed confounding serological results pointing to three hepatotropic viruses (HEV, Hepatitis B virus (HBV) and EBV) that could be resolved by detection of HEV and EBV viraemia. The patient recovered by temporary discontinuation of immunosuppressive therapy. CONCLUSIONS: In immunosuppressed patients with RA and signs of liver injury, HEV infection should be considered, as infection can be treated by discontinuation of immunosuppression. Although anti-HEV-IgM antibody assays can be used as first line virological tools, nucleic acid amplification tests (NAAT) for detection of HEV RNA are recommended--as in our case--if confounding serological results from other hepatotropic viruses are obtained. After discontinuation of immunosuppressive therapy, our patient recovered from both HEV infection and reactivation of latent EBV infection without sequelae.


Subject(s)
Arthritis, Rheumatoid/virology , Epstein-Barr Virus Infections/diagnosis , Hepatitis E/virology , Aged , Arthritis, Rheumatoid/immunology , Coinfection , Epstein-Barr Virus Infections/drug therapy , Female , Hepatitis Antibodies/blood , Hepatitis B virus/immunology , Hepatitis B virus/pathogenicity , Hepatitis E/drug therapy , Herpesvirus 4, Human/immunology , Herpesvirus 4, Human/pathogenicity , Humans , Immunocompromised Host , Immunosuppressive Agents/therapeutic use , Ribavirin/therapeutic use
14.
J Clin Microbiol ; 52(8): 2797-803, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24850347

ABSTRACT

Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is increasingly used for the identification of bacteria and fungi in the diagnostic laboratory. We evaluated the mold database of Bruker Daltonik (Bremen, Germany), the Filamentous Fungi Library 1.0. First, we studied 83 phenotypically and molecularly well-characterized, nondermatophyte, nondematiaceous molds from a clinical strain collection. Using the manufacturer-recommended interpretation criteria, genus and species identification rates were 78.3% and 54.2%, respectively. Reducing the species cutoff from 2.0 to 1.7 significantly increased species identification to 71.1% without increasing misidentifications. In a subsequent prospective study, 200 consecutive clinical mold isolates were identified by the MALDI Biotyper and our conventional identification algorithm. Discrepancies were resolved by ribosomal DNA (rDNA) internal transcribed spacer region sequence analysis. For the MALDI Biotyper, genus and species identification rates were 83.5% and 79.0%, respectively, when using a species cutoff of 1.7. Not identified were 16.5% of the isolates. Concordant genus and species assignments of MALDI-TOF MS and the conventional identification algorithm were observed for 98.2% and 64.2% of the isolates, respectively. Four erroneous species assignments were observed using the MALDI Biotyper. The MALDI Biotyper seems highly reliable for the identification of molds when using the Filamentous Fungi Library 1.0 and a species cutoff of 1.7. However, expansion of the database is required to reduce the number of nonidentified isolates.


Subject(s)
Clinical Laboratory Techniques/methods , Fungi/classification , Fungi/isolation & purification , Mycoses/diagnosis , Mycoses/microbiology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/instrumentation , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Humans , Sensitivity and Specificity
15.
J Clin Microbiol ; 52(2): 467-74, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24478475

ABSTRACT

Small-colony variants (SCVs) of bacteria are associated with recurrent and persistent infections. We describe for the first time SCVs of Streptococcus tigurinus in a patient with a prosthetic joint infection. S. tigurinus is a novel pathogen of the Streptococcus mitis group and causes invasive infections. We sought to characterize S. tigurinus SCVs using experimental methods and find possible genetic explanations for their phenotypes. The S. tigurinus SCVs were compared with the wild-type (WT) isolate using phenotypic methods, including growth under different conditions, autolysis, and visualization of the cell ultrastructure by use of transmission electron microscopy (TEM). Furthermore, comparative genome analyses were performed. The S. tigurinus SCVs displayed reduced growth compared to the WT and showed either a very stable or a fluctuating SCV phenotype. TEM analyses revealed major alterations in cell separation and morphological abnormalities, which were partially explained by impaired autolytic behavior. Intriguingly, the SCVs were more resistant to induced autolysis. Whole-genome sequencing revealed mutations in the genes involved in general cell metabolism, cell division, stringent response, and virulence. Clinically, the patient recovered after a 2-stage exchange of the prosthesis. Comparative whole-genome sequencing in clinical strains is a useful tool for identifying novel genetic signatures leading to the most persistent bacterial forms. The detection of viridans streptococcal SCVs is challenging in a clinical laboratory due to the small colony size. Thus, it is of major clinical importance for microbiologists and clinicians to be aware of viridans streptococcal SCVs, such as those of S. tigurinus, which lead to difficult-to-treat infections.


Subject(s)
Arthritis/microbiology , Genome, Bacterial , Mutation , Prosthesis-Related Infections/microbiology , Streptococcal Infections/microbiology , Streptococcus/growth & development , Streptococcus/genetics , Aged, 80 and over , DNA Mutational Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Female , Humans , Microscopy, Electron, Transmission , Molecular Sequence Data , Sequence Analysis, DNA , Streptococcus/isolation & purification , Streptococcus/ultrastructure
16.
BMC Microbiol ; 14: 231, 2014 Aug 24.
Article in English | MEDLINE | ID: mdl-25170686

ABSTRACT

BACKGROUND: Many bacteria causing systemic invasive infections originate from the oral cavity by entering the bloodstream. Recently, a novel pathogenic bacterium, Streptococcus tigurinus, was identified as causative agent of infective endocarditis, spondylodiscitis and meningitis. In this study, we sought to determine the prevalence of S. tigurinus in the human oral microbial flora and analyzed its association with periodontal disease or health. RESULTS: We developed a diagnostic highly sensitive and specific real-time TaqMan PCR assay for detection of S. tigurinus in clinical samples, based on the 16S rRNA gene. We analyzed saliva samples and subgingival plaque samples of a periodontally healthy control group (n = 26) and a periodontitis group (n = 25). Overall, S. tigurinus was detected in 27 (53%) out of 51 patients. There is no significant difference of the frequency of S. tigurinus detection by RT-PCR in the saliva and dental plaque samples in the two groups: in the control group, 14 (54%) out of 26 individuals had S. tigurinus either in the saliva samples and/or in the plaque samples; and in the periodontitis group, 13 (52%) out of 25 patients had S. tigurinus in the mouth samples, respectively (P = 0.895). The consumption of nicotine was no determining factor. CONCLUSION: Although S. tigurinus was a frequently detected species of the human oral microbial flora, it was not associated with periodontal disease. Further investigations are required to determine whether S. tigurinus is a commensal or an opportunistic oral pathogen with a potential for development of invasive infections.


Subject(s)
Microbiota , Mouth/microbiology , Real-Time Polymerase Chain Reaction , Streptococcus/isolation & purification , Adolescent , Adult , Aged , Aged, 80 and over , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Female , Humans , Male , Middle Aged , Molecular Sequence Data , Periodontal Diseases/microbiology , Prospective Studies , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Streptococcus/classification , Streptococcus/genetics , Young Adult
17.
Int J Med Microbiol ; 303(8): 498-504, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23856340

ABSTRACT

Streptococcus tigurinus is responsible for systemic infections in humans including infective endocarditis. We investigated whether the invasive trait of S. tigurinus in humans correlated with an increased ability to induce IE in rats. Rats with catheter-induced aortic vegetations were inoculated with 104 CFU/ml of either of four S. tigurinus strains AZ_3a(T), AZ_4a, AZ_8 and AZ_14, isolated from patients with infective endocarditis or with the well known IE pathogen Streptococcus gordonii (Challis). Aortic infection was assessed after 24 h. S. tigurinus AZ_3a(T), AZ_4a and AZ_14 produced endocarditis in ≥80% of rats whereas S. gordonii produced endocarditis in only 33% of animals (P<0.05). S. tigurinus AZ_8 caused vegetation infection in 56% of the animals. The capacity of S. tigurinus to induce aortic infection was not related to their ability to bind extracellular matrix proteins (fibrinogen, fibronectin or collagen) or to trigger platelet aggregation. However, all S. tigurinus isolates showed an enhanced resistance to phagocytosis by macrophages and two of them had an increased ability to enter endothelial cells, key attributes of invasive streptococcal species.


Subject(s)
Disease Models, Animal , Endocarditis, Bacterial/microbiology , Endocarditis, Bacterial/pathology , Streptococcal Infections/microbiology , Streptococcal Infections/pathology , Streptococcus/pathogenicity , Animals , Aorta/microbiology , Aorta/pathology , Endothelial Cells/microbiology , Macrophages/immunology , Macrophages/microbiology , Phagocytosis , Rats , Streptococcus/immunology
18.
BMC Microbiol ; 13: 162, 2013 Jul 16.
Article in English | MEDLINE | ID: mdl-23855986

ABSTRACT

BACKGROUND: Accurate identification of fastidious Gram-negative rods (GNR) by conventional phenotypic characteristics is a challenge for diagnostic microbiology. The aim of this study was to evaluate the use of molecular methods, e.g., 16S rRNA gene sequence analysis for identification of fastidious GNR in the clinical microbiology laboratory. RESULTS: A total of 158 clinical isolates covering 20 genera and 50 species isolated from 1993 to 2010 were analyzed by comparing biochemical and 16S rRNA gene sequence analysis based identification. 16S rRNA gene homology analysis identified 148/158 (94%) of the isolates to species level, 9/158 (5%) to genus and 1/158 (1%) to family level. Compared to 16S rRNA gene sequencing as reference method, phenotypic identification correctly identified 64/158 (40%) isolates to species level, mainly Aggregatibacter aphrophilus, Cardiobacterium hominis, Eikenella corrodens, Pasteurella multocida, and 21/158 (13%) isolates correctly to genus level, notably Capnocytophaga sp.; 73/158 (47%) of the isolates were not identified or misidentified. CONCLUSIONS: We herein propose an efficient strategy for accurate identification of fastidious GNR in the clinical microbiology laboratory by integrating both conventional phenotypic methods and 16S rRNA gene sequence analysis. We conclude that 16S rRNA gene sequencing is an effective means for identification of fastidious GNR, which are not readily identified by conventional phenotypic methods.


Subject(s)
Bacteriological Techniques/methods , Gram-Negative Bacteria/classification , Gram-Negative Bacteria/isolation & purification , Molecular Diagnostic Techniques/methods , Gram-Negative Bacteria/genetics , Gram-Negative Bacteria/physiology , Humans , Molecular Sequence Data , RNA, Ribosomal, 16S/genetics , Sensitivity and Specificity , Sequence Analysis, DNA
19.
Diagnostics (Basel) ; 13(18)2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37761277

ABSTRACT

IVDR regulation represents a major challenge for diagnostic microbiology laboratories. IVDR complicates a broad range of aspects and poses a risk given the high diversity of pathogens (including rare but highly virulent microbes) and the large variety of samples submitted for analysis. The regular emergence of new pathogens (including Echovirus E-11, Adenovirus 41, Monkeypox virus, Alongshan virus, and Enterovirus D68, as recent examples in Europe in the post SARS-CoV-2 era) is another factor that makes IVDR regulation risky, because its detrimental effect on production of in-house tests will negatively impact knowledge and expertise in the development of new diagnostic tests. Moreover, such regulations negatively impact the availability of diagnostic tests, especially for neglected pathogens, and has a detrimental effect on the overall costs of the tests. The increased regulatory burden of IVDR may thereby pose an important risk for public health. Taken together, it will have a negative impact on the financial balance of diagnostic microbiology laboratories (especially small ones). The already-high standards of quality management of all ISO-accredited and Swissmedic-authorized laboratories render IVDR law of little value, at least in Switzerland, while tremendously increasing the regulatory burden and associated costs. Eventually, patients will need to pay for diagnostic assays outside of the framework of their insurance in order to obtain a proper diagnostic assessment, which may result in social inequity. Thus, based on the risk assessment outlined above, the coordinated commission for clinical microbiology proposes adjusting the IvDO ordinance by (i) introducing an obligation to be ISO 15189 accredited and (ii) not implementing the IvDO 2028 milestone.

20.
J Clin Microbiol ; 50(9): 2969-73, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22760039

ABSTRACT

We recently described the novel species Streptococcus tigurinus sp. nov. belonging to the Streptococcus mitis group. The type strain AZ_3a(T) of S. tigurinus was originally isolated from a patient with infective endocarditis. According to its phenotypic and molecular characteristics, S. tigurinus is most closely related to Streptococcus mitis, Streptococcus pneumoniae, Streptococcus pseudopneumoniae, Streptococcus oralis, and Streptococcus infantis. Accurate identification of S. tigurinus is facilitated by 16S rRNA gene analysis. We retrospectively analyzed our 16S rRNA gene molecular database, which contains sequences of all clinical samples obtained in our institute since 2003. We detected 17 16S rRNA gene sequences which were assigned to S. tigurinus, including sequences from the 3 S. tigurinus strains described previously. S. tigurinus originated from normally sterile body sites, such as blood, cerebrospinal fluid, or heart valves, of 14 patients and was initially detected by culture or broad-range 16S rRNA gene PCR, followed by sequencing. The 14 patients had serious invasive infections, i.e., infective endocarditis (n = 6), spondylodiscitis (n = 3), bacteremia (n = 2), meningitis (n = 1), prosthetic joint infection (n = 1), and thoracic empyema (n = 1). To evaluate the presence of Streptococcus tigurinus in the endogenous oral microbial flora, we screened saliva specimens of 31 volunteers. After selective growth, alpha-hemolytic growing colonies were analyzed by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and subsequent molecular methods. S. tigurinus was not identified among 608 strains analyzed. These data indicate that S. tigurinus is not widely distributed in the oral cavity. In conclusion, S. tigurinus is a novel agent of invasive infections, particularly infective endocarditis.


Subject(s)
Streptococcal Infections/microbiology , Streptococcus/classification , Streptococcus/isolation & purification , Adult , Aged , Blood/microbiology , Cerebrospinal Fluid/microbiology , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Female , Heart Valves/microbiology , Humans , Male , Middle Aged , Molecular Sequence Data , RNA, Ribosomal, 16S/genetics , Retrospective Studies , Sequence Analysis, DNA , Streptococcus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL