Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Blood ; 140(4): 388-400, 2022 07 28.
Article in English | MEDLINE | ID: mdl-35576527

ABSTRACT

The current standard of care for moderate to severe ischemic stroke is thrombolytic therapy with tissue plasminogen activator (tPA). Treatment with tPA can significantly improve neurologic outcomes; however, thrombolytic therapy is associated with an increased risk of intracerebral hemorrhage (ICH). The risk of hemorrhage significantly limits the use of thrombolytic therapy, and identifying pathways induced by tPA that increase this risk could provide new therapeutic options to extend thrombolytic therapy to a wider patient population. Here, we investigate the role of protein kinase Cß (PKCß) phosphorylation of the tight junction protein occludin during ischemic stroke and its role in cerebrovascular permeability. We show that activation of this pathway by tPA is associated with an increased risk of ICH. Middle cerebral artery occlusion (MCAO) increased phosphorylation of occludin serine 490 (S490) in the ischemic penumbra in a tPA-dependent manner, as tPA-/- mice were significantly protected from MCAO-induced occludin phosphorylation. Intraventricular injection of tPA in the absence of ischemia was sufficient to induce occludin phosphorylation and vascular permeability in a PKCß-dependent manner. Blocking occludin phosphorylation, either by targeted expression of a non-phosphorylatable form of occludin (S490A) or by pharmacologic inhibition of PKCß, reduced MCAO-induced permeability and improved functional outcome. Furthermore, inhibiting PKCß after MCAO prevented ICH associated with delayed thrombolysis. These results show that PKCß phosphorylation of occludin is a downstream mediator of tPA-induced cerebrovascular permeability and suggest that PKCß inhibitors could improve stroke outcome and prevent ICH associated with delayed thrombolysis, potentially extending the window for thrombolytic therapy in stroke.


Subject(s)
Ischemic Stroke , Stroke , Animals , Cerebral Hemorrhage/drug therapy , Cerebral Hemorrhage/etiology , Fibrinolytic Agents/therapeutic use , Humans , Infarction, Middle Cerebral Artery/drug therapy , Mice , Occludin/genetics , Occludin/metabolism , Phosphorylation , Stroke/complications , Stroke/etiology , Thrombolytic Therapy/adverse effects , Thrombolytic Therapy/methods , Tissue Plasminogen Activator/metabolism
2.
EMBO Rep ; 21(7): e49343, 2020 07 03.
Article in English | MEDLINE | ID: mdl-32449307

ABSTRACT

Regulation of endothelial nutrient transport is poorly understood. Vascular endothelial growth factor B (VEGF-B) signaling in endothelial cells promotes uptake and transcytosis of fatty acids from the bloodstream to the underlying tissue, advancing pathological lipid accumulation and lipotoxicity in diabetic complications. Here, we demonstrate that VEGF-B limits endothelial glucose transport independent of fatty acid uptake. Specifically, VEGF-B signaling impairs recycling of low-density lipoprotein receptor (LDLR) to the plasma membrane, leading to reduced cholesterol uptake and membrane cholesterol loading. Reduced cholesterol levels in the membrane leads to a decrease in glucose transporter 1 (GLUT1)-dependent endothelial glucose uptake. Inhibiting VEGF-B in vivo reconstitutes membrane cholesterol levels and restores glucose uptake, which is of particular relevance for conditions involving insulin resistance and diabetic complications. In summary, our study reveals a mechanism whereby VEGF-B regulates endothelial nutrient uptake and highlights the impact of membrane cholesterol for regulation of endothelial glucose transport.


Subject(s)
Glucose , Vascular Endothelial Growth Factor B , Cholesterol , Endothelial Cells/metabolism , Transcytosis , Vascular Endothelial Growth Factor B/metabolism
3.
Proc Natl Acad Sci U S A ; 114(9): E1678-E1687, 2017 02 28.
Article in English | MEDLINE | ID: mdl-28196884

ABSTRACT

Vitamin D exerts multiple immunomodulatory functions and has been implicated in the etiology and treatment of several autoimmune diseases, including multiple sclerosis (MS). We have previously reported that in juvenile/adolescent rats, vitamin D supplementation protects from experimental autoimmune encephalomyelitis (EAE), a model of MS. Here we demonstrate that this protective effect associates with decreased proliferation of CD4+ T cells and lower frequency of pathogenic T helper (Th) 17 cells. Using transcriptome, methylome, and pathway analyses in CD4+ T cells, we show that vitamin D affects multiple signaling and metabolic pathways critical for T-cell activation and differentiation into Th1 and Th17 subsets in vivo. Namely, Jak/Stat, Erk/Mapk, and Pi3K/Akt/mTor signaling pathway genes were down-regulated upon vitamin D supplementation. The protective effect associated with epigenetic mechanisms, such as (i) changed levels of enzymes involved in establishment and maintenance of epigenetic marks, i.e., DNA methylation and histone modifications; (ii) genome-wide reduction of DNA methylation, and (iii) up-regulation of noncoding RNAs, including microRNAs, with concomitant down-regulation of their protein-coding target RNAs involved in T-cell activation and differentiation. We further demonstrate that treatment of myelin-specific T cells with vitamin D reduces frequency of Th1 and Th17 cells, down-regulates genes in key signaling pathways and epigenetic machinery, and impairs their ability to transfer EAE. Finally, orthologs of nearly 50% of candidate MS risk genes and 40% of signature genes of myelin-reactive T cells in MS changed their expression in vivo in EAE upon supplementation, supporting the hypothesis that vitamin D may modulate risk for developing MS.


Subject(s)
CD4-Positive T-Lymphocytes/drug effects , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Vitamin D/pharmacology , Animals , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Down-Regulation/drug effects , Epigenesis, Genetic/drug effects , Genomics/methods , Lymphocyte Activation/drug effects , Multiple Sclerosis/drug therapy , Rats , Signal Transduction/genetics , Signal Transduction/immunology , Th1 Cells/drug effects , Th17 Cells/drug effects , Up-Regulation/drug effects
4.
Cell Tissue Res ; 365(1): 51-63, 2016 07.
Article in English | MEDLINE | ID: mdl-26928042

ABSTRACT

Metabolic diseases, such as obesity and diabetes, are a serious burden for the health system. Vascular endothelial growth factor (VEGF)-B has been shown to regulate tissue uptake and accumulation of fatty acids and is thus involved in these metabolic diseases. However, the cell-type-specific expression pattern of Vegfb and its receptor (VEGFR1, gene Flt1) remains unclear. We explore the expression of Vegfb and Flt1 in the murine heart, lung and kidney by utilizing ß-galactosidase knock-in mouse models and combining the analysis of reporter gene expression and immunofluorescence microscopy. Furthermore, Flt1 heterozygous mice were analyzed with regard to muscular fatty acid accumulation and peripheral insulin sensitivity. Throughout the heart, Vegfb expression was found in cardiomyocytes with a postnatal ventricular shift corresponding to known changes in energy requirements. Vegfb expression was also found in the pulmonary myocardium of the lung and in renal epithelial cells of the thick ascending limb of Henle's loop, the connecting tubule and the collecting duct. In all analyzed organs, VEGFR1 expression was restricted to endothelial cells. We also show that reduced expression of VEGFR1 resulted in decreased cardiac fatty acid accumulation and increased peripheral insulin sensitivity, possibly as a result of attenuated VEGF-B/VEGFR1 signaling. Our data therefore support a tightly controlled, paracrine signaling mechanism of VEGF-B to VEGFR1. The identified cell-specific expression pattern of Vegfb and Flt1 might form the basis for the development of cell-type-targeted research models and contributes to the understanding of the physiological and pathological role of VEGF-B/VEGFR1 signaling.


Subject(s)
Heart/physiology , Kidney/metabolism , Lung/metabolism , Vascular Endothelial Growth Factor B/metabolism , Vascular Endothelial Growth Factor Receptor-1/metabolism , Animals , Epithelial Cells/metabolism , Heterozygote , Kidney/cytology , Lung/blood supply , Mice, Inbred C57BL , Models, Biological , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Phenotype , Pulmonary Veins/cytology , Pulmonary Veins/metabolism
5.
Acta Neuropathol ; 131(3): 453-64, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26687981

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with unknown origins. Neurodegeneration in ALS mouse models occurs together with signs of disrupted blood-spinal cord barrier (BSCB) and regressed capillary network, but the molecular pathways contributing to these vascular pathologies remain unknown. We show that motor neurons of human sporadic ALS patients (n = 12) have increased gene expression of PDGFC and its activator PLAT and presymptomatic activation of the PDGF-CC pathway in SOD1 (G93A) mice leads to BSCB dysfunction. Decrease of Pdgfc expression in SOD1 (G93A) mice restored vascular barrier properties, reduced motor neuron loss and delayed symptom onset by up to 3 weeks. Similarly, lower expression levels of PDGFC or PLAT in motor neurons of sporadic ALS patients were correlated with older age at disease onset. PDGF-CC inhibition and restoration of BSCB integrity did not prevent capillary regression at disease end stage. Lower vessel density was found in spinal cords of sporadic ALS patients and the degree of regression in SOD1 (G93A) mice correlated with more aggressive progression after onset regardless of BSCB status. We conclude that PDGF-CC-induced BSCB dysfunction can contribute to timing of ALS onset, allow insight into disease origins and development of targeted novel therapies.


Subject(s)
Amyotrophic Lateral Sclerosis/pathology , Blood-Brain Barrier/pathology , Lymphokines/metabolism , Nerve Degeneration/pathology , Platelet-Derived Growth Factor/metabolism , Spinal Cord/pathology , Amyotrophic Lateral Sclerosis/metabolism , Animals , Blood-Brain Barrier/metabolism , Blotting, Western , Disease Models, Animal , Fluorescent Antibody Technique , Humans , Laser Capture Microdissection , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Motor Neurons/metabolism , Motor Neurons/pathology , Nerve Degeneration/metabolism , Spinal Cord/metabolism
6.
Nat Commun ; 15(1): 383, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38195627

ABSTRACT

Microglia harness an unutilized health-promoting potential in age-related neurodegenerative and neuroinflammatory diseases, conditions like progressive multiple sclerosis (MS). Our research unveils an microglia population emerging in the cortical brain regions of aging mice, marked by ERK1/2, Akt, and AMPK phosphorylation patterns and a transcriptome indicative of activated autophagy - a process critical for cellular adaptability. By deleting the core autophagy gene Ulk1 in microglia, we reduce this population in the central nervous system of aged mice. Notably, this population is found dependent on IL-34, rather than CSF1, although both are ligands for CSF1R. When aging mice are exposed to autoimmune neuroinflammation, the loss of autophagy-dependent microglia leads to neural and glial cell death and increased mortality. Conversely, microglial expansion mediated by IL-34 exhibits a protective effect. These findings shed light on an autophagy-dependent neuroprotective microglia population as a potential target for treating age-related neuroinflammatory conditions, including progressive MS.


Subject(s)
Central Nervous System , Microglia , Animals , Mice , Neuroglia , Autophagy/genetics , Interleukins
7.
Front Public Health ; 10: 827645, 2022.
Article in English | MEDLINE | ID: mdl-35296042

ABSTRACT

Approximately 10% of all COVID patients develop long COVID symptoms, which may persist from 1 month up to longer than 1 year. Long COVID may affect any organ/system and manifest in a broad range of symptoms such as shortness of breath, post-exercise malaise, cognitive decline, chronic fatigue, gastrointestinal disorders, musculoskeletal pain and deterioration of mental health. In this context, health institutions struggle with resources to keep up with the prolonged rehabilitation for the increasing number of individuals affected by long COVID. Tai Chi is a multicomponent rehabilitation approach comprising correct breathing technique, balance and neuromuscular training as well as stress- and emotional management. In addition, practicing Tai Chi elicits the relaxation response and balances the autonomic nervous system thus regulating respiration, heart rate, blood pressure and vitality in general. Moreover, Tai Chi has been shown to increase lung capacity, improve cognitive status and mental health, and thereby even the quality of life in diseases such as chronic obstructive pulmonary disease (COPD). Hence, we advocate Tai Chi as potent and suitable rehabilitation tool for post-COVID-19-affected individuals.


Subject(s)
COVID-19 , Tai Ji , COVID-19/complications , Exercise , Humans , Quality of Life , Post-Acute COVID-19 Syndrome
8.
Sci Adv ; 8(17): eabn1823, 2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35476434

ABSTRACT

Multiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS), in which pathological T cells, likely autoimmune, play a key role. Despite its central importance, the autoantigen repertoire remains largely uncharacterized. Using a novel in vitro antigen delivery method combined with the Human Protein Atlas library, we screened for T cell autoreactivity against 63 CNS-expressed proteins. We identified four previously unreported autoantigens in MS: fatty acid-binding protein 7, prokineticin-2, reticulon-3, and synaptosomal-associated protein 91, which were verified to induce interferon-γ responses in MS in two cohorts. Autoreactive profiles were heterogeneous, and reactivity to several autoantigens was MS-selective. Autoreactive T cells were predominantly CD4+ and human leukocyte antigen-DR restricted. Mouse immunization induced antigen-specific responses and CNS leukocyte infiltration. This represents one of the largest systematic efforts to date in the search for MS autoantigens, demonstrates the heterogeneity of autoreactive profiles, and highlights promising targets for future diagnostic tools and immunomodulatory therapies in MS.

9.
J Vis Exp ; (175)2021 09 21.
Article in English | MEDLINE | ID: mdl-34633360

ABSTRACT

Multiple sclerosis (MS) is the most common immune-mediated disease of the central nervous system (CNS) and progressively leads to physical disability and death, caused by white matter lesions in the spinal cord and cerebellum, as well as by demyelination in grey matter. Whilst conventional models of experimental allergic encephalomyelitis are suitable for the investigation of the cell-mediated inflammation in the spinal and cerebellar white matter, they fail to address grey matter pathologies. Here, we present the experimental protocol for a novel rat model of cortical demyelination allowing the investigation of the pathological and molecular mechanisms leading to cortical lesions. The demyelination is induced by an immunization with low-dose myelin oligodendrocyte glycoprotein (MOG) in an incomplete Freund's adjuvant followed by a catheter-mediated intracerebral delivery of pro-inflammatory cytokines. The catheter, moreover, enables multiple rounds of demyelination without causing injection-induced trauma, as well as the intracerebral delivery of potential therapeutic drugs undergoing a preclinical investigation. The method is also ethically favorable as animal pain and distress or disability are controlled and relatively minimal. The expected timeframe for the implementation of the entire protocol is around 8 - 10 weeks.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Animals , Cerebral Cortex/metabolism , Cytokines/metabolism , Encephalomyelitis, Autoimmune, Experimental/chemically induced , Myelin-Oligodendrocyte Glycoprotein , Rats
10.
Sci Immunol ; 5(52)2020 10 16.
Article in English | MEDLINE | ID: mdl-33067381

ABSTRACT

Multiple sclerosis (MS) is a leading cause of incurable progressive disability in young adults caused by inflammation and neurodegeneration in the central nervous system (CNS). The capacity of microglia to clear tissue debris is essential for maintaining and restoring CNS homeostasis. This capacity diminishes with age, and age strongly associates with MS disease progression, although the underlying mechanisms are still largely elusive. Here, we demonstrate that the recovery from CNS inflammation in a murine model of MS is dependent on the ability of microglia to clear tissue debris. Microglia-specific deletion of the autophagy regulator Atg7, but not the canonical macroautophagy protein Ulk1, led to increased intracellular accumulation of phagocytosed myelin and progressive MS-like disease. This impairment correlated with a microglial phenotype previously associated with neurodegenerative pathologies. Moreover, Atg7-deficient microglia showed notable transcriptional and functional similarities to microglia from aged wild-type mice that were also unable to clear myelin and recover from disease. In contrast, induction of autophagy in aged mice using the disaccharide trehalose found in plants and fungi led to functional myelin clearance and disease remission. Our results demonstrate that a noncanonical form of autophagy in microglia is responsible for myelin degradation and clearance leading to recovery from MS-like disease and that boosting this process has a therapeutic potential for age-related neuroinflammatory conditions.


Subject(s)
Autophagy-Related Protein 7/deficiency , Encephalomyelitis, Autoimmune, Experimental/immunology , Microglia/immunology , Multiple Sclerosis/immunology , Phagocytosis/immunology , Animals , Autophagy/immunology , Autophagy-Related Protein 7/genetics , Autophagy-Related Protein-1 Homolog/deficiency , Autophagy-Related Protein-1 Homolog/genetics , Brain/cytology , Brain/immunology , Brain/pathology , Cells, Cultured , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Humans , Male , Mice , Mice, Knockout , Microglia/metabolism , Multiple Sclerosis/pathology , Myelin Sheath/metabolism , Primary Cell Culture , Spinal Cord/cytology , Spinal Cord/immunology , Spinal Cord/pathology
11.
Front Neurol ; 11: 600401, 2020.
Article in English | MEDLINE | ID: mdl-33304315

ABSTRACT

An increasing body of evidence associates low vitamin D levels with increased risk of multiple sclerosis (MS), suggesting the possibility of a gene-environment interaction for this environmental factor in MS pathogenesis. Moreover, it has been shown that vitamin D downregulates major histocompatibility complex (MHC) class II expression in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. We here report about the impact of a dietary vitamin D supplementation on EAE in the rat strains having functionally relevant allelic variations in the CIITA (Mhc2ta) gene, a master regulator of MHC class II expression. Full length myelin oligodendrocyte glycoprotein (MOG)-EAE was induced in DA.PVGav1-Vra4 congenic rats harboring the Vra4 locus from PVG strain in the EAE- susceptible DA background, and compared to the parental strains. The congenic rats fed with either vitamin D supplemented, deprived or regular diet developed an intermediate clinical EAE phenotype, in contrast to DA and PVG strains. Immunopathological studies revealed vitamin D dose-dependent effect on demyelination and inflammatory infiltration of the central nervous system (CNS), expression of MHC class II and CIITA, as well as downregulation of a range of pro-inflammatory genes. Taken together, our findings demonstrate an impact of vitamin D on the target tissue pathology and peripheral immune response during EAE in DA.PVGav1-Vra4 congenic strain. Thereby, our data provide evidence of a modulatory effect of vitamin D in context of genetic variances in the Vra4 locus/Mhc2ta gene in MS-like neuroinflammation, with potential relevance for the human demyelinating disease.

12.
Sci Rep ; 10(1): 22383, 2020 12 24.
Article in English | MEDLINE | ID: mdl-33361796

ABSTRACT

Disruption of blood-brain barrier (BBB) integrity is a feature of various neurological disorders. Here we found that the BBB is differently affected during the preclinical, progression and remission phase of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). We have identified an upregulation of pro-inflammatory and pro-angiogenic factors in the BBB transcriptome and down-regulation of endothelial tight junction members coinciding with elevated BBB leakage specifically during the progression phase. These changes were antagonized by blocking PDGFRα signaling with the small tyrosine kinase inhibitor imatinib. Moreover, targeting the PDGFRα ligand PDGF-CC using a neutralizing antibody, facilitated recovery of BBB integrity and improvement of EAE symptoms. Intracerebroventricular injection of PDGF-CC induced upregulation, whereas blocking PDGF-CC during EAE led to downregulation of Tnfa and Il1a at the BBB. Our findings suggest that blocking PDGF-CC counteracts fundamental aspects of endothelial cell activation and disruption of the BBB by decreasing Tnfa and Il1a expression. We also demonstrate that both PDGF-CC and its receptor PDGFRα were upregulated in MS lesions indicating that blocking PDGF-CC may be considered a novel treatment for MS.


Subject(s)
Antibodies, Neutralizing/pharmacology , Blood-Brain Barrier/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Lymphokines/antagonists & inhibitors , Multiple Sclerosis/immunology , Platelet-Derived Growth Factor/antagonists & inhibitors , Signal Transduction/drug effects , Animals , Blood-Brain Barrier/pathology , Down-Regulation/drug effects , Down-Regulation/immunology , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/pathology , Inflammation/drug therapy , Inflammation/genetics , Inflammation/immunology , Inflammation/pathology , Interleukin-1alpha/genetics , Interleukin-1alpha/immunology , Lymphokines/genetics , Lymphokines/immunology , Mice , Mice, Transgenic , Multiple Sclerosis/drug therapy , Multiple Sclerosis/genetics , Multiple Sclerosis/pathology , Platelet-Derived Growth Factor/genetics , Platelet-Derived Growth Factor/immunology , Signal Transduction/genetics , Signal Transduction/immunology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology
13.
J Neurosci ; 28(30): 7555-62, 2008 Jul 23.
Article in English | MEDLINE | ID: mdl-18650333

ABSTRACT

The dendritic localization of mRNAs and their subsequent translation at stimulated synapses contributes to the experience-dependent remodeling of synapses and thereby to the establishment of long-term memory. Localized mRNAs are transported in a translationally silent manner to distal dendrites in specific ribonucleoprotein particles (RNPs), termed transport RNPs. A recent study suggested that processing bodies (P-bodies), which have recently been identified as sites of RNA degradation and translational control in eukaryotic cells, may participate in the translational control of dendritically localized mRNAs in Drosophila neurons. This study raised the interesting question of whether dendritic transport RNPs are distinct from P-bodies or whether those structures share significant overlap in their molecular composition in mammalian neurons. Here, we show that P-body and transport RNP markers do not colocalize and are not transported together in the same particles in dendrites of mammalian neurons. Detailed time-lapse videomicroscopy analyses reveal, however, that both P-bodies and transport RNPs can interact in a dynamic manner via docking. Docking is a frequent event involving as much as 50% of all dendritic P-bodies. Chemically induced neuronal activity results in a 60% decrease in the number of P-bodies in dendrites, suggesting that P-bodies disassemble after synaptic stimulation. Our data lend support to the exciting hypothesis that dendritically localized mRNAs might be stored in P-bodies and be released and possibly translated when synapses become activated.


Subject(s)
Dendrites/metabolism , Hippocampus/cytology , Neurons/cytology , RNA-Binding Proteins/metabolism , Ribonucleoproteins/metabolism , Animals , Biological Transport/physiology , Brain-Derived Neurotrophic Factor/pharmacology , Cells, Cultured , Embryo, Mammalian , Excitatory Amino Acid Agents/pharmacology , Glutamic Acid/pharmacology , Green Fluorescent Proteins/metabolism , Hydrogen Peroxide/pharmacology , Indoles , Microscopy, Confocal/methods , Microscopy, Video/methods , Rats , Transfection/methods
14.
J Neurosci Res ; 87(1): 289-300, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18756516

ABSTRACT

The transfection of expression constructs encoding a variety of transgenes is a widely used method to study gene function in cultured cells. Especially when the efficiency of the knock-down of target proteins via small interfering RNAs (siRNAs) is to be determined by quantitative Western blotting, large proportions of untransfected cells compromise the analysis. Achieving high transfection efficiencies in postmitotic cells, such as neurons, poses a particular problem in that these cells cannot be selected for the expression of the transgene following transfection. It is therefore important to develop protocols that allow for the highly efficient transfection of these cells. In the present study, we identify three important parameters that prove especially useful for chronically difficult to transfect short hairpin RNA (shRNA)-encoding plasmids: the amount and quality of the plasmid DNA used and the use of new nucleofection programs. Combining those changes increases the rate of transfected cells from less than 5% to up to approximately 80%. Importantly, these high transfection efficiencies can be obtained while maintaining good cell viability and normal cellular development. Taken together, these improvements allow for a detailed biochemical and phenotypical analysis of neurons that have been nucleoporated with a wide variety of shRNAs.


Subject(s)
Genetic Techniques , Hippocampus/cytology , Neurons/physiology , Plasmids/genetics , RNA/genetics , Transfection/methods , Animals , Cells, Cultured , Embryo, Mammalian , Green Fluorescent Proteins/genetics , RNA/chemistry , RNA Interference/physiology , Rats
15.
Am J Pathol ; 173(6): 1669-81, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18974305

ABSTRACT

The prototypic migratory trail of tissue-resident dendritic cells (DCs) is via lymphatic drainage. Since the central nervous system (CNS) lacks classical lymphatic vessels, and antigens and cells injected into both the CNS and cerebrospinal fluid have been found in deep cervical lymph nodes, it was thought that CNS-derived DCs exclusively used the cerebrospinal fluid pathway to exit from tissues. It has become evident, however, that DCs found in peripheral organs can also leave tissues via the blood stream. To study whether DCs derived from microglia and bone marrow can also use this route of emigration from the CNS, we performed a series of experiments in which we injected genetically labeled DCs into the striata of rats. We show here that these cells migrated from the injection site to the perivascular space, integrated into the endothelial lining of the CNS vasculature, and were then present in the lumen of CNS blood vessels days after the injection. Moreover, we also found these cells in both mesenteric lymph nodes and spleens. Hence, microglia- and bone marrow-derived DCs can leave the CNS via the blood stream.


Subject(s)
Bone Marrow Cells/physiology , Cell Movement/physiology , Central Nervous System/anatomy & histology , Dendritic Cells/physiology , Microglia/physiology , Animals , Biomarkers/metabolism , Bone Marrow Cells/cytology , Cell Differentiation/physiology , Cell Lineage , Cells, Cultured , Central Nervous System/physiology , Dendritic Cells/cytology , Injections , Lymph Nodes/cytology , Microglia/cytology , Oligonucleotide Array Sequence Analysis , Radiation Chimera , Rats , Rats, Inbred Lew , Rats, Sprague-Dawley , Rats, Transgenic , Spleen/cytology , T-Lymphocytes/cytology , T-Lymphocytes/physiology
16.
RNA Biol ; 5(4): 244-8, 2008.
Article in English | MEDLINE | ID: mdl-19182533

ABSTRACT

Processing bodies (P-bodies) have recently come to the fore as important cellular sites of mRNA degradation and translational silencing. Despite these central functions in the control of gene expression, the roles of P-bodies have only been characterized in a limited number of cell types and physiological contexts. Neurons are highly plastic cells that undergo dynamic changes as new connections are made or existing ones modified. This neuronal plasticity relies, in part, on the local synthesis of proteins from localized mRNAs. A strict control of the translation and turnover of these localized mRNAs, both in terms of which proteins are synthesized and when and where they are produced, is a key prerequisite for this process to be synapse-specific. Despite recent advances, the molecular mechanisms mediating this control remain largely elusive. The discovery of P-bodies in neuronal dendrites near synapses and their response to stimuli involved in neuronal plasticity raises the interesting hypothesis that P-bodies might be a component of the cellular machinery that controls neuronal plasticity and thereby processes such as learning and memory.


Subject(s)
Cytoplasmic Granules/metabolism , Neurons/metabolism , Animals , Humans , Protein Biosynthesis , RNA Transport , Ribonucleoproteins/metabolism
18.
PLoS One ; 13(7): e0200649, 2018.
Article in English | MEDLINE | ID: mdl-30021009

ABSTRACT

Platelet-derived growth factor CC (PDGF-CC) is important during foetal development but also in pathogenesis of neurologic diseases, cancer and fibrosis. We have previously demonstrated that blocking the PDGF-CC/PDGF receptor alpha (PDGFRα) axis resulted in reduction of stroke volume and cerebrovascular permeability after experimentally induced stroke. Recently, we could translate these findings into the clinic showing that imatinib, a small tyrosine kinase inhibitor targeting PDGF receptors, can significantly improve neurological outcome after ischemic stroke in human. Herein we report preclinical toxicological analyses of our newly generated monoclonal anti-human PDGF-CC antibody 6B3 (mAb 6B3) in PDGF-CC humanized mice. Beside histological organ assessment, we also analysed serum, urine, haematological parameters and the general health status of the treated mice. We could not find any indications that mAb 6B3 is toxic or has other significant side effects neither in short, nor in long treatment regimens. Our results indicate that mAb 6B3 can be further developed for clinical use. This opens up the possibility to assess the therapeutic potential of blocking PDGF-CC in diverse pathological conditions such as neurologic diseases, cancer and fibrosis.


Subject(s)
Antibodies, Monoclonal, Murine-Derived/pharmacology , Antibodies, Neutralizing/pharmacology , Lymphokines/antagonists & inhibitors , Platelet-Derived Growth Factor/antagonists & inhibitors , Animals , Antibodies, Monoclonal, Murine-Derived/adverse effects , Antibodies, Monoclonal, Murine-Derived/immunology , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/immunology , Drug Evaluation, Preclinical , Humans , Lymphokines/immunology , Mice , Mice, Transgenic , Platelet-Derived Growth Factor/immunology
19.
PLoS One ; 13(7): e0201089, 2018.
Article in English | MEDLINE | ID: mdl-30052660

ABSTRACT

PDGF-CC is a member of the platelet-derived growth factor (PDGF) family that stimulates PDGFRα phosphorylation and thereby activates intracellular signalling events essential for development but also in cancer, fibrosis and neuropathologies involving blood-brain barrier (BBB) disruption. In order to elucidate the biological and pathological role(s) of PDGF-CC signalling, we have generated high affinity neutralizing monoclonal antibodies (mAbs) recognizing human PDGF-CC. We determined the complementarity determining regions (CDRs) of the selected clones, and mapped the binding epitope for clone 6B3. Using the monoclonal 6B3, we determined the expression pattern for PDGF-CC in different human primary tumours and control tissues, and explored its ability to neutralize PDGF-CC-induced phosphorylation of PDGFRα. In addition, we showed that PDGF-CC induced disruption of the blood-retinal barrier (BRB) was significantly reduced upon intraperitoneal administration of a chimeric anti-PDGF-CC antibody. In summary, we report on high affinity monoclonal antibodies against PDGF-CC that have therapeutic efficacy in vivo.


Subject(s)
Antibodies, Monoclonal/immunology , Lymphokines/antagonists & inhibitors , Lymphokines/immunology , Platelet-Derived Growth Factor/antagonists & inhibitors , Platelet-Derived Growth Factor/immunology , Receptor, Platelet-Derived Growth Factor alpha/metabolism , A549 Cells , Animals , Blood-Retinal Barrier/drug effects , Blood-Retinal Barrier/metabolism , Blood-Retinal Barrier/pathology , Capillary Permeability , Gene Expression/drug effects , Humans , Immunohistochemistry , Mice, Inbred C57BL , Mice, Transgenic , Neoplasms/metabolism , Neoplasms/pathology , Recombinant Proteins/immunology , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL