Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Chirality ; 36(1): e23628, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37926465

ABSTRACT

The chiral media is crucial to the chiral recognition and separation of enantiomers. In this study, we report the preparation of novel chiral carbon nanoparticles (CCNPs) via surface passivation using glucose as the carbon source and S-(-)-α-methylbenzylamine as the chiral ligand. The structures of the obtained CCNPs are characterized via FT-IR, Raman spectroscopy, DLS, XPS, XRD, TEM, and zeta potential analysis. These CCNPs could be employed as the chiral adsorbent and used for the enantioselective adsorption of the ibuprofen enantiomers. The results demonstrated that the CCNPs could selectively adsorb R-enantiomer from ibuprofen racemate solution and give an enantiomeric excess (e.e.) of about 50% under an optimal adsorption condition. Moreover, the regeneration efficiency of the CCNPs remained above e.e. of 43% after the fifth cycle. The present work confirmed that the prepared CCNPs show great potential in the enantioselective separation of ibuprofen racemate.


Subject(s)
Ibuprofen , Nanoparticles , Stereoisomerism , Adsorption , Spectroscopy, Fourier Transform Infrared , Carbon
2.
Mol Ecol Resour ; 21(6): 1966-1982, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33609314

ABSTRACT

Sex determination systems in plants can involve either female or male heterogamety (ZW or XY, respectively). Here we used Illumina short reads, Oxford Nanopore Technologies (ONT) long reads and Hi-C reads to assemble the first chromosome-scale genome of a female willow tree (Salix dunnii), and to predict genes using transcriptome sequences and available databases. The final genome sequence of 328 Mb in total was assembled in 29 scaffolds, and includes 31,501 predicted genes. Analyses of short-read sequence data that included female and male plants suggested a male heterogametic sex-determining factor on chromosome 7, implying that, unlike the female heterogamety of most species in the genus Salix, male heterogamety evolved in the subgenus Salix. The S. dunnii sex-linked region occupies about 3.21 Mb of chromosome 7 in females (representing its position in the X chromosome), probably within a pericentromeric region. Our data suggest that this region is enriched for transposable element insertions, and about one-third of its 124 protein-coding genes were gained via duplications from other genome regions. We detect purifying selection on the genes that were ancestrally present in the region, though some have been lost. Transcriptome data from female and male individuals show more male- than female-biased genes in catkin and leaf tissues, and indicate enrichment for male-biased genes in the pseudo-autosomal regions. Our study provides valuable genomic resources for further studies of sex-determining regions in the family Salicaceae, and sex chromosome evolution.


Subject(s)
Genome, Plant , Salix , Chromosomes, Plant/genetics , Genomics , Salix/genetics , Sex Chromosomes/genetics
SELECTION OF CITATIONS
SEARCH DETAIL