Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 139
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
Annu Rev Microbiol ; 76: 597-618, 2022 09 08.
Article in English | MEDLINE | ID: mdl-35671534

ABSTRACT

Heterocyst differentiation that occurs in some filamentous cyanobacteria, such as Anabaena sp. PCC 7120, provides a unique model for prokaryotic developmental biology. Heterocyst cells are formed in response to combined-nitrogen deprivation and possess a microoxic environment suitable for nitrogen fixation following extensive morphological and physiological reorganization. A filament of Anabaena is a true multicellular organism, as nitrogen and carbon sources are exchanged among different cells and cell types through septal junctions to ensure filament growth. Because heterocysts are terminally differentiated cells and unable to divide, their activity is an altruistic behavior dedicated to providing fixed nitrogen for neighboring vegetative cells. Heterocyst development is also a process of one-dimensional pattern formation, as heterocysts are semiregularly intercalated among vegetative cells. Morphogens form gradients along the filament and interact with each other in a fashion that fits well into the Turing model, a mathematical framework to explain biological pattern formation.


Subject(s)
Anabaena , Cyanobacteria , Anabaena/metabolism , Bacterial Proteins/metabolism , Cyanobacteria/metabolism , Gene Expression Regulation, Bacterial , Nitrogen/metabolism , Nitrogen Fixation
2.
Proc Natl Acad Sci U S A ; 121(17): e2314201121, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38635631

ABSTRACT

To effectively protect the host from viral infection while avoiding excessive immunopathology, the innate immune response must be tightly controlled. However, the precise regulation of antiviral innate immunity and the underlying mechanisms remain unclear. Here, we find that sirtuin3 (SIRT3) interacts with mitochondrial antiviral signaling protein (MAVS) to catalyze MAVS deacetylation at lysine residue 7 (K7), which promotes MAVS aggregation, as well as TANK-binding kinase I and IRF3 phosphorylation, resulting in increased MAVS activation and enhanced type I interferon signaling. Consistent with these findings, loss of Sirt3 in mice and zebrafish renders them more susceptible to viral infection compared to their wild-type (WT) siblings. However, Sirt3 and Sirt5 double-deficient mice exhibit the same viral susceptibility as their WT littermates, suggesting that loss of Sirt5 in Sirt3-deficient mice may counteract the increased viral susceptibility displayed in Sirt3-deficient mice. Thus, we not only demonstrate that SIRT3 positively regulates antiviral immunity in vitro and in vivo, likely via MAVS, but also uncover a previously unrecognized mechanism by which SIRT3 acts as an accelerator and SIRT5 as a brake to orchestrate antiviral innate immunity.


Subject(s)
Sirtuin 3 , Sirtuins , Virus Diseases , Animals , Mice , Adaptor Proteins, Signal Transducing/genetics , Immunity, Innate , Lysine , Sirtuin 3/genetics , Sirtuins/genetics , Zebrafish , Zebrafish Proteins
3.
Proc Natl Acad Sci U S A ; 120(13): e2221874120, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36947515

ABSTRACT

Cyclic-di-GMP (c-di-GMP) is a ubiquitous bacterial signaling molecule. It is also a critical player in the regulation of cell size and cell behaviors such as cell aggregation and phototaxis in cyanobacteria, which constitute an important group of prokaryotes for their roles in the ecology and evolution of the Earth. However, c-di-GMP receptors have never been revealed in cyanobacteria. Here, we report the identification of a c-di-GMP receptor, CdgR, from the filamentous cyanobacterium Anabaena PCC 7120. Crystal structural analysis and genetic studies demonstrate that CdgR binds c-di-GMP at the dimer interface and this binding is required for the control of cell size in a c-di-GMP-dependent manner. Different functions of CdgR, in ligand binding and signal transmission, could be separated genetically, allowing us to dissect its molecular signaling functions. The presence of the apo-form of CdgR triggers cell size reduction, consistent with the similar effects observed with a decrease of c-di-GMP levels in cells. Furthermore, we found that CdgR exerts its function by interacting with a global transcription factor DevH, and this interaction was inhibited by c-di-GMP. The lethal effect triggered by conditional depletion of DevH or by the production of several point-mutant proteins of CdgR in cells indicates that this signaling pathway plays critical functions in Anabaena. Our studies revealed a mechanism of c-di-GMP signaling in the control of cell size, an important and complex trait for bacteria. CdgR is highly conserved in cyanobacteria, which will greatly expand our understanding of the roles of c-di-GMP signaling in these organisms.


Subject(s)
Cyanobacteria , Signal Transduction , Cyanobacteria/metabolism , Cyclic GMP/metabolism , Gene Expression Regulation , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial
4.
J Biol Chem ; 300(3): 105694, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38301890

ABSTRACT

Bacteriocins, which have narrow-spectrum activity and limited adverse effects, are promising alternatives to antibiotics. In this study, we identified klebicin E (KlebE), a small bacteriocin derived from Klebsiella pneumoniae. KlebE exhibited strong efficacy against multidrug-resistant K. pneumoniae isolates and conferred a significant growth advantage to the producing strain during intraspecies competition. A giant unilamellar vesicle leakage assay demonstrated the unique membrane permeabilization effect of KlebE, suggesting that it is a pore-forming toxin. In addition to a C-terminal toxic domain, KlebE also has a disordered N-terminal domain and a globular central domain. Pulldown assays and soft agar overlay experiments revealed the essential role of the outer membrane porin OmpC and the Ton system in KlebE recognition and cytotoxicity. Strong binding between KlebE and both OmpC and TonB was observed. The TonB-box, a crucial component of the toxin-TonB interaction, was identified as the 7-amino acid sequence (E3ETLTVV9) located in the N-terminal region. Further studies showed that a region near the bottom of the central domain of KlebE plays a primary role in recognizing OmpC, with eight residues surrounding this region identified as essential for KlebE toxicity. Finally, based on the discrepancies in OmpC sequences between the KlebE-resistant and sensitive strains, it was found that the 91st residue of OmpC, an aspartic acid residue, is a key determinant of KlebE toxicity. The identification and characterization of this toxin will facilitate the development of bacteriocin-based therapies targeting multidrug-resistant K. pneumoniae infections.


Subject(s)
Bacteriocins , Klebsiella pneumoniae , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Bacteriocins/genetics , Bacteriocins/metabolism , Bacteriocins/pharmacology , Bacteriocins/toxicity , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/metabolism , Porins/genetics , Porins/metabolism , Cell Membrane Permeability/drug effects , Cell Membrane Permeability/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Protein Domains , Drug Resistance, Multiple, Bacterial/drug effects
5.
Proc Natl Acad Sci U S A ; 119(36): e2207963119, 2022 09 06.
Article in English | MEDLINE | ID: mdl-36037363

ABSTRACT

The filamentous, multicellular cyanobacterium Anabaena sp. PCC 7120 (Anabaena) is a prokaryotic model for the study of cell differentiation and cell-cell interactions. Upon combined-nitrogen deprivation, Anabaena forms a particular cell type, heterocyst, for aerobic nitrogen fixation. Heterocysts are semiregularly spaced among vegetative cells. Heterocyst differentiation is coupled to cell division, but the underlying mechanism remains unclear. This mechanism could be mediated by the putative protease HetF, which is a divisome component and is necessary for heterocyst differentiation. In this study, by suppressor screening, we identified PatU3, as a negative regulator acting downstream of HetF for cell division and heterocyst development. The inactivation of patU3 restored the capacity of cell division and heterocyst differentiation in the ΔhetF mutant, and overexpression of patU3 inhibited both processes in the wild-type background. We demonstrated that PatU3 was a specific substrate of the protease activity of HetF. Consequently, PatU3 accumulated in the hetF-deficient mutant, which was responsible for the resultant mutant phenotype. The cleavage site of PatU3 by HetF was mapped after the Arg117 residue, whose mutation made PatU3 resistant to HetF processing, and mimicked the effect of hetF deletion. Our results provided evidence that HetF regulated cell division and heterocyst differentiation by controlling the inhibitory effects of PatU3. This proteolytic pathway constituted a mechanism for the coordination between cell division and differentiation in a prokaryotic model used for studies on developmental biology and multicellularity.


Subject(s)
Anabaena , Bacterial Proteins , Cell Division , Proteolysis , Anabaena/cytology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial
6.
Cancer Cell Int ; 24(1): 197, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834986

ABSTRACT

BACKGROUND: Syntaxin6 (STX6) is a SNARE (Soluble N-ethylmaleimide-sensitive factor attachment protein receptors) protein complex located in the trans-Golgi network and endosomes, which is closely associated with a variety of intracellular membrane transport events. STX6 has been shown to be overexpressed in a variety of human malignant tumors such as esophageal, colorectal, and renal cell carcinomas, and participates in tumorigenesis and development. METHODS: Based on clinical public database and clinical liver samples analysis, the expression of STX6 in hepatocellular carcinoma (HCC) tissues was investigated. The effects of STX6 on proliferation, migration and invasion of HCC cell in vitro and in vivo were evaluated through gain- and loss-of-function studies. We further performed RNA-seq analysis and protein interactome analysis, to further decifer the detailed mechanisms of STX6 in the regulation of the JAK-STAT pathway in HCC. RESULTS: STX6 expression was upregulated in HCC tissues and its expression was highly correlated with the high histological grade of the tumor. STX6 promoted HCC cell proliferation, migration and invasion both in vitro and in vivo. Mechanistically, STX6 mediated tumor progression depending on promoting the activation of JAK-STAT signaling pathway. Receptor for activated protein kinase C (RACK1) as an essential adaptor protein mediating STX6 regulation of JAK-STAT pathway. Specifically, STX6 interacted with RACK1 and then recruited signal transducer and activator of transcription 3 (STAT3) to form a protein-binding complex and activates STAT3 transcriptional activity. CONCLUSIONS: This study provided a novel concept that STX6 exerted oncogenic effects by activating the STAT3 signaling pathway, and STX6 might be a promising therapeutic target for HCC.

7.
Exp Cell Res ; 430(2): 113734, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37532123

ABSTRACT

Cerebral palsy (CP) is a movement and posture disorder that affects over 50 million people worldwide. Human umbilical cord-derived mesenchymal stem cell (hUC-MSC) transplantation has emerged as an attractive therapeutic strategy for CP. The administration route appears to be crucial for hUC-MSC to provide adequate neuroprotection. Wistar rats were given hypoxia-ischemia to make the CP model on postnatal day 5. On postnatal day 21, DiR-labeled hUC-MSC were transplanted into the CP rats by intravenous, intrathecal, and lateral ventricle for cell tracking. Uninfused CP rats served as the negative control. The motor behavioral and pathological alteration was analyzed 11, 25, and 39 days after transplantation to assess motor function, immune inflammation, neurotrophy, and endogenous repair. In vivo imaging tracking techniques revealed that intravenous infusion resulted in fewer transplanted cells in the target brain than intrathecal and lateral ventricle infusion (p<0.05). Three different routes of hUC-MSC infusion improved the motor function of CP rats (p<0.05). At 11 days post-infusion, intrathecal infusion outperformed intravenous with a significant neurotrophic and oligodendrocyte maturation effect (p<0.05). Intrathecal infusion equaled lateral ventricle infusion after 25 days. At 39 days post-infusion, lateral ventricle infusion exceeded intravenous and intrathecal infusion with a significant immunosuppressive effect (p<0.05). Considering the improved effect and less trauma shown early in the intrathecal infusion, repeated intrathecal administration may ultimately lead to the greatest benefit.


Subject(s)
Cerebral Palsy , Mesenchymal Stem Cell Transplantation , Rats , Animals , Humans , Mesenchymal Stem Cell Transplantation/methods , Rats, Wistar , Cerebral Palsy/therapy , Cell Tracking , Ischemia , Umbilical Cord
8.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Article in English | MEDLINE | ID: mdl-33727422

ABSTRACT

Cyanobacteriochromes (CBCRs) are small, linear tetrapyrrole (bilin)-binding photoreceptors in the phytochrome superfamily that regulate diverse light-mediated adaptive processes in cyanobacteria. More spectrally diverse than canonical red/far-red-sensing phytochromes, CBCRs were thought to be restricted to sensing visible and near UV light until recently when several subfamilies with far-red-sensing representatives (frCBCRs) were discovered. Two of these frCBCRs subfamilies have been shown to incorporate bilin precursors with larger pi-conjugated chromophores, while the third frCBCR subfamily uses the same phycocyanobilin precursor found in the bulk of the known CBCRs. To elucidate the molecular basis of far-red light perception by this third frCBCR subfamily, we determined the crystal structure of the far-red-absorbing dark state of one such frCBCR Anacy_2551g3 from Anabaena cylindrica PCC 7122 which exhibits a reversible far-red/orange photocycle. Determined by room temperature serial crystallography and cryocrystallography, the refined 2.7-Å structure reveals an unusual all-Z,syn configuration of the phycocyanobilin (PCB) chromophore that is considerably less extended than those of previously characterized red-light sensors in the phytochrome superfamily. Based on structural and spectroscopic comparisons with other bilin-binding proteins together with site-directed mutagenesis data, our studies reveal protein-chromophore interactions that are critical for the atypical bathochromic shift. Based on these analyses, we propose that far-red absorption in Anacy_2551g3 is the result of the additive effect of two distinct red-shift mechanisms involving cationic bilin lactim tautomers stabilized by a constrained all-Z,syn conformation and specific interactions with a highly conserved anionic residue.


Subject(s)
Bile Pigments/chemistry , Bile Pigments/metabolism , Cyanobacteria/physiology , Models, Molecular , Phytochrome/chemistry , Phytochrome/metabolism , Protein Conformation , Light , Optogenetics , Structure-Activity Relationship , Ultraviolet Rays
9.
BMC Oral Health ; 24(1): 459, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627729

ABSTRACT

BACKGROUND: Dental caries in young children is a difficult global oral health problem. In the last decade, China has put a great deal of effort into reducing the prevalence of dental caries. This study, which is part of the China Population Chronic Disease and Nutrition Surveillance 2021, aimed to investigate the prevalence of dental caries among children aged 5 in Shanghai, China, and its associated factors. METHODS: A total of 1281 children aged 5 years from 6 districts in Shanghai were selected by a stratified sampling method. The survey consisted of an oral health questionnaire and an oral health examination. The questionnaire included questions on oral health knowledge, attitudes, and behaviours. The oral health examination used WHO standards. After screening, the data were input and analysed. Chi-square tests and logistic regression analyses were used to study the relevant factors affecting dental caries. RESULTS: The prevalence of dental caries among 1281 children was 51.0%, the dmft index score was 2.46, the Significant Caries Index (SiC) score was 6.39, and the SiC10 score was 10.35. Dental caries experience was related to the frequency of sweet drink consumption, the age of starting tooth brushing, eating habits after brushing, whether the children had received an oral examination provided by the government (p < 0.05), and the mother's education level but was not related to sex, the use of fluoride toothpaste, the frequency of brushing, whether the parents assisted brushing, or the frequency of flossing (p > 0.05). Logistic regression analysis showed that the region of residence, eating after brushing and the age of starting brushing were associated with dental caries. CONCLUSIONS: Dental caries remained prevalent among 5-year-old children in Shanghai, China. Prevention strategies that target the associated factors including region of residence, eating after brushing, and the age of starting brushing should be considered.


Subject(s)
Dental Caries , Humans , Child, Preschool , Dental Caries/epidemiology , Dental Caries/prevention & control , China/epidemiology , DMF Index , Cross-Sectional Studies , Oral Health , Prevalence
10.
Hepatology ; 76(3): 612-629, 2022 09.
Article in English | MEDLINE | ID: mdl-34767673

ABSTRACT

BACKGROUND AND AIMS: HCC is one of the main types of primary liver cancer, with high morbidity and mortality and poor treatment effect. Tripartite motif-containing protein 11 (TRIM11) has been shown to promote tumor formation in lung cancer, breast cancer, gastric cancer, and so on. However, the specific function and mechanism of TRIM11 in HCC remain open for study. APPROACH AND RESULTS: Through clinical analysis, we found that the expression of TRIM11 was up-regulated in HCC tissues and was associated with high tumor node metastasis (TNM) stages, advanced histological grade, and poor patient survival. Then, by gain- and loss-of-function investigations, we demonstrated that TRIM11 promoted cell proliferation, migration, and invasion in vitro and tumor growth in vivo. Mechanistically, RNA sequencing and mass spectrometry analysis showed that TRIM11 interacted with pleckstrin homology domain leucine-rich repeats protein phosphatase 1 (PHLPP1) and promoted K48-linked ubiquitination degradation of PHLPP1 and thus promoted activation of the protein kinase B (AKT) signaling pathway. Moreover, overexpression of PHLPP1 blocked the promotional effect of TRIM11 on HCC function. CONCLUSIONS: Our study confirmed that TRIM11 plays an oncogenic role in HCC through the PHLPP1/AKT signaling pathway, suggesting that targeting TRIM11 may be a promising target for the treatment of HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Carcinogenesis/genetics , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Humans , Leucine , Liver Neoplasms/pathology , Pleckstrin Homology Domains , Proteasome Endopeptidase Complex/metabolism , Protein Phosphatase 1/genetics , Proto-Oncogene Proteins c-akt/metabolism , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism , Ubiquitin , Ubiquitin-Protein Ligases/metabolism
11.
Cell Mol Biol Lett ; 28(1): 47, 2023 May 31.
Article in English | MEDLINE | ID: mdl-37259060

ABSTRACT

BACKGROUND: Resistance to immune checkpoint inhibitor (ICI) therapy narrows the efficacy of cancer immunotherapy. Although 4-1BB is a promising drug target as a costimulatory molecule of immune cells, no 4-1BB agonist has been given clinical approval because of severe liver toxicity or limited efficacy. Therefore, a safe and efficient immunostimulatory molecule is urgently needed for cancer immunotherapy. METHODS: HK010 was generated by antibody engineering, and the Fab/antigen complex structure was analyzed using crystallography. The affinity and activity of HK010 were detected by multiple in vitro bioassays, including enzyme-linked immunosorbent assay (ELISA), surface plasmon resonance (SPR), flow cytometry, and luciferase-reporter assays. Humanized mice bearing human PD-L1-expressing MC38 (MC38/hPDL1) or CT26 (CT26/hPDL1) tumor transplants were established to assess the in vivo antitumor activity of HK010. The pharmacokinetics (PK) and toxicity of HK010 were evaluated in cynomolgus monkeys. RESULTS: HK010 was generated as an Fc-muted immunoglobulin (Ig)G4 PD-L1x4-1BB bispecific antibody (BsAb) with a distinguished Fab/antigen complex structure, and maintained a high affinity for human PD-L1 (KD: 2.27 nM) and low affinity for human 4-1BB (KD: 493 nM) to achieve potent PD-1/PD-L1 blockade and appropriate 4-1BB agonism. HK010 exhibited synergistic antitumor activity by blocking the PD-1/PD-L1 signaling pathway and stimulating the 4-1BB signaling pathway simultaneously, and being strictly dependent on the PD-L1 receptor in vitro and in vivo. In particular, when the dose was decreased to 0.3 mg/kg, HK010 still showed a strong antitumor effect in a humanized mouse model bearing MC38/hPDL1 tumors. Strikingly, HK010 treatment enhanced antitumor immunity and induced durable antigen-specific immune memory to prevent rechallenged tumor growth by recruiting CD8+ T cells and other lymphocytes into tumor tissue and activating tumor-infiltrating lymphocytes. Moreover, HK010 not only did not induce nonspecific production of proinflammatory cytokines but was also observed to be well tolerated in cynomolgus monkeys in 5 week repeated-dose (5, 15, or 50 mg/kg) and single-dose (75 or 150 mg/kg) toxicity studies. CONCLUSION: We generated an Fc-muted anti-PD-L1x4-1BB BsAb, HK010, with a distinguished structural interaction with PD-L1 and 4-1BB that exhibits a synergistic antitumor effect by blocking the PD-1/PD-L1 signaling pathway and stimulating the 4-1BB signaling pathway simultaneously. It is strictly dependent on the PD-L1 receptor with no systemic toxicity, which may offer a new option for cancer immunotherapy.


Subject(s)
Antibodies, Bispecific , Colorectal Neoplasms , Programmed Cell Death 1 Receptor , Animals , Humans , Mice , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Immunotherapy , Macaca fascicularis , Antibodies, Bispecific/pharmacology
12.
Metab Brain Dis ; 38(8): 2751-2763, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37857792

ABSTRACT

Stroke is the second leading cause of death globally. Cognitive dysfunction is a common complication of stroke, which seriously affects the patient's quality of life. Previous studies have shown that the expression of hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channel is closely related to ischemia-reperfusion (IR) injury and subsequent cognitive impairment. We also found that ZD7288, a specific inhibitor of the HCN channel, attenuated IR injury during short-term reperfusion. Since apoptosis can induce cell necrosis and aggravate cognitive impairment after IR, the purpose of this study is to define whether ZD7288 could improve cognitive impairment after prolonged cerebral reperfusion in rats by regulating apoptotic pathways. Our data indicated that ZD7288 can ameliorate spatial cognitive behavior and synaptic plasticity, protect the morphology of hippocampal neurons, and alleviate hippocampal apoptotic cells in IR rats. This effect may be related to down-regulating the expressions of pro-apoptotic proteins such as AIF, p53, Bax, and Caspase-3, and increasing the ratio of Bcl-2/Bax. Taken together, it suggested that inhibition of the HCN channel improves cognitive impairment after IR correlated with its regulation of apoptotic pathways.


Subject(s)
Brain Ischemia , Cyclic Nucleotide-Gated Cation Channels , Rats , Humans , Animals , Cyclic Nucleotide-Gated Cation Channels/metabolism , bcl-2-Associated X Protein/metabolism , Quality of Life , Brain Ischemia/complications , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Cerebral Infarction , Reperfusion
13.
Proc Natl Acad Sci U S A ; 117(28): 16356-16362, 2020 07 14.
Article in English | MEDLINE | ID: mdl-32591422

ABSTRACT

Phytochromes are a diverse family of bilin-binding photoreceptors that regulate a wide range of physiological processes. Their photochemical properties make them attractive for applications in optogenetics and superresolution microscopy. Phytochromes undergo reversible photoconversion triggered by the Z ⇄ E photoisomerization about the double bond in the bilin chromophore. However, it is not fully understood at the molecular level how the protein framework facilitates the complex photoisomerization dynamics. We have studied a single-domain bilin-binding photoreceptor All2699g1 (Nostoc sp. PCC 7120) that exhibits photoconversion between the red light-absorbing (Pr) and far red-absorbing (Pfr) states just like canonical phytochromes. We present the crystal structure and examine the photoisomerization mechanism of the Pr form as well as the formation of the primary photoproduct Lumi-R using time-resolved spectroscopy and hybrid quantum mechanics/molecular mechanics simulations. We show that the unusually long excited state lifetime (broad lifetime distribution centered at ∼300 picoseconds) is due to the interactions between the isomerizing pyrrole ring D and an adjacent conserved Tyr142. The decay kinetics shows a strongly distributed character which is imposed by the nonexponential protein dynamics. Our findings offer a mechanistic insight into how the quantum efficiency of the bilin photoisomerization is tuned by the protein environment, thereby providing a structural framework for engineering bilin-based optical agents for imaging and optogenetics applications.


Subject(s)
Phytochrome/chemistry , Phytochrome/metabolism , Bile Pigments/chemistry , Bile Pigments/metabolism , Crystallography, X-Ray , Isomerism , Kinetics , Models, Molecular , Nostoc/metabolism , Photochemical Processes , Photoreceptors, Microbial/chemistry , Photoreceptors, Microbial/metabolism , Protein Conformation , Spectrum Analysis , Structure-Activity Relationship
14.
BMC Oral Health ; 23(1): 590, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37620836

ABSTRACT

BACKGROUND: The main purpose of the study was to investigate the prevalence and related risk factors of malocclusion in permanent dentition among adolescents in Shanghai, and provide basic data for government's preventive strategies and intervention plans. METHODS: 1799 adolescents aged 11-15 years old from 18 middle schools in 6 districts of Shanghai were recruited to investigate oral health status and related risk factors using cluster random sampling method in 2021. Malocclusion and caries were examined by on-site inspection. The investigation criteria referred to Bjoerk and the recommendation of the WHO. The malocclusion inspection items included molars relationship, canine relationship, overbite, overjet, midline displacement, anterior crossbite, posterior crossbite, scissors bite, crowding and spacing. The subjects were asked to fill in a questionnaire including parents' education level, oral health behaviors and dietary habits. The chi-square test and logistic regression analysis were used to analyze the relationship between malocclusion and risk factors. RESULTS: 1799 adolescents were included in the study and the prevalence of malocclusion in adolescents in Shanghai was 83.5%, and the proportion of molar relationship class I, class II, and class III was 48.9%, 14.7%, and 19.0%, respectively. The most common occlusal characteristic of malocclusion was anterior crowding, followed by midline irregularities and deep overbite, with prevalence rates of 44.8%, 39.0% and 38.6%, respectively. The prevalence rate of adolescents with caries was 34.3%. Those who had dental caries and preferred soft food were more likely to have abnormal occlusal characteristics (p < 0.05). CONCLUSION: The prevalence of malocclusion in adolescents in Shanghai is high, so it is of great significance to strengthen oral health education, allocate proper preventive strategies and carry out the early correction if necessary.


Subject(s)
Dental Caries , Malocclusion , Overbite , Humans , Dental Caries/epidemiology , Prevalence , China/epidemiology , Malocclusion/epidemiology
15.
J Transl Med ; 20(1): 415, 2022 09 08.
Article in English | MEDLINE | ID: mdl-36076251

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is one of the most common malignancies and the patient survival rate remains unacceptably low. The anti-programmed cell death-1 (PD-1)/programmed cell death ligand 1 (PD-L1) antibody-based immune checkpoint inhibitors have been added to CRC treatment regimens, however, only a fraction of patients benefits. As an important co-stimulatory molecule, 4-1BB/CD137 is mainly expressed on the surface of immune cells including T and natural killer (NK) cells. Several agonistic molecules targeting 4-1BB have been clinically unsuccessful due to systemic toxicity or weak antitumor effects. We generated a humanized anti-4-1BB IgG4 antibody, HuB6, directed against a unique epitope and hypothesized that it would promote antitumor immunity with high safety. METHODS: The antigen binding specificity, affinity and activity of HuB6 were determined by enzyme-linked immunosorbent assay (ELISA), surface plasmon resonance (SPR), biolayer interferometry (BLI) and flow cytometry. The antitumor effects were evaluated in humanized mice bearing syngeneic tumors, and possible toxicity was evaluated in humanized mice and cynomolgus monkeys. RESULTS: HuB6 showed high specificity and affinity for a binding epitope distinct from those of other known 4-1BB agonists, including utomilumab and urelumab, and induced CD8 + T, CD4 + T and NK cell stimulation dependent on Fcγ receptor (FcγR) crosslinking. HuB6 inhibited CRC tumor growth in a dose-dependent manner, and the antitumor effect was similar with urelumab and utomilumab in humanized mouse models of syngeneic CRC. Furthermore, HuB6 combined with an anti-PD-L1 antibody significantly inhibited CRC growth in vivo. Additionally, HuB6 induced antitumor immune memory in tumor model mice rechallenged with 4 × 106 tumor cells. Toxicology data for humanized 4-1BB mice and cynomolgus monkeys showed that HuB6 could be tolerated up to a 180 mg/kg dose without systemic toxicity. CONCLUSIONS: This study demonstrated that HuB6 should be a suitable candidate for further clinical development and a potential agent for CRC immunotherapy.


Subject(s)
Colorectal Neoplasms , Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology , Animals , Colorectal Neoplasms/drug therapy , Epitopes , Immunotherapy , Macaca fascicularis , Mice , Receptors, IgG
16.
Proc Natl Acad Sci U S A ; 116(40): 19973-19982, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31527275

ABSTRACT

Signal detection and integration by sensory proteins constitute the critical molecular events as living organisms respond to changes in a complex environment. Many sensory proteins adopt a modular architecture that integrates the perception of distinct chemical or physical signals and the generation of a biological response in the same protein molecule. Currently, how signal perception and integration are achieved in such a modular, often dimeric, framework remains elusive. Here, we report a dynamic crystallography study on the tandem sensor domains of a dual-sensor histidine kinase PPHK (phosphorylation-responsive photosensitive histidine kinase) that operates a molecular logic OR, by which the output kinase activity is modulated by a phosphorylation signal and a light signal. A joint analysis of ∼170 crystallographic datasets probing different signaling states shows remarkable dimer asymmetry as PPHK responds to the input signals and transitions from one state to the other. Supported by mutational data and structural analysis, these direct observations reveal the working mechanics of the molecular logic OR in PPHK, where the light-induced bending of a long signaling helix at the dimer interface is counteracted by the ligand-induced structural changes from a different sensor domain. We propose that the logic OR of PPHK, together with an upstream photoreceptor, implements a "long-pass" red light response distinct from those accomplished by classical phytochromes.


Subject(s)
Cyanobacteria/enzymology , Histidine Kinase/chemistry , Signal Transduction , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Computational Biology , Computer Simulation , Crystallization , Crystallography, X-Ray , Cyanobacteria/genetics , DNA Mutational Analysis , Ligands , Light , Logic , Models, Molecular , Motion , Mutation , Phosphorylation , Phytochrome/chemistry , Phytochrome/genetics , Protein Binding , Protein Conformation , Protein Multimerization
17.
Exp Lung Res ; 47(6): 289-299, 2021.
Article in English | MEDLINE | ID: mdl-34096812

ABSTRACT

PURPOSE: Asthma is associated with a T helper (Th)17/regulatory T (Treg) cells immune imbalance where the Notch signaling pathway contributes vitally. This study aimed to explore the role of Notch ligands Jagged1 and Delta4 in the Th17/Treg immune imbalance of chronic asthmatic mice. METHODS: The experimental animals were randomly assigned to the Saline, ovalbumin (OVA), and OVA + γ-secretase inhibitor (GSI) groups. A mouse model of chronic asthma was induced by OVA sensitization and challenge. GSI was injected intraperitoneally before the OVA challenge in the OVA + GSI group. Lung function, lung histopathology and immunohistochemistry to assess airway inflammation, enzyme-linked immunosorbent assay to measure cytokines levels, flow cytometry to measure the proportions of Th17 (Th17%) and Treg% in CD4+T cells, quantitative real-time polymerase chain reaction and western blot to measure mRNA and protein levels of Jagged1 and Delta4 in lung tissue, and correlation analysis were performed. RESULTS: Lung function and histopathology and IL-4, IL-13, and IFN-γ levels in the bronchoalveolar lavage fluid (BALF) of chronic asthmatic mice showed characteristic changes of asthma. The Th17%, Th17/Treg ratio, BALF and serum IL-17 levels, and IL-17/IL-10 ratio increased significantly in the OVA group, while the Treg% and IL-10 level significantly decreased. mRNA and protein expression levels of Jagged1 and Delta4 increased significantly. GSI could reduce the Th17%, Th17/Treg ratio, IL-17, IL-17/IL-10 ratio, and Jagged1 expression in chronic asthmatic mice. The mRNA and protein levels of Jagged1 and Delta4 were positively correlated with the Th17/Treg ratio in the OVA group, while only those of Jagged1 were positively correlated with the Th17/Treg ratio in the OVA + GSI group. CONCLUSIONS: In chronic asthmatic mice, the Th17/Treg ratio increased, and the Notch ligands Jagged1 and Delta4 were overactive and positively regulated the Th17/Treg imbalance. GSI partially inhibited Jagged1 and relieved the Th17/Treg imbalance.


Subject(s)
Asthma , T-Lymphocytes, Regulatory , Animals , Bronchoalveolar Lavage Fluid , Disease Models, Animal , Ligands , Lung , Mice , Mice, Inbred BALB C , Ovalbumin , Th17 Cells
18.
J Clin Lab Anal ; 35(12): e23966, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34709671

ABSTRACT

BACKGROUND: Serum small dense low-density lipoprotein cholesterol (sdLDL-C) and lipoprotein(a) [Lp(a)] levels are related to coronary disease, but their specific associations with coronary arteriostenosis in Takayasu arteritis (TA) have not been ascertained. This study explored the correlations between serum sdLDL-C and Lp(a) levels and coronary arteriostenosis in TA patients as well as the degree of artery stenosis. METHODS: This retrospective study included 190 TA patients and 154 healthy subjects. TA patients were divided into three categories based on the degree of coronary stenosis: Group I, stenosis >50%; Group II, stenosis 1%-50%; and Group III, stenosis 0%. Independent risk factors for coronary arteriostenosis in TA were identified by logistic regression, followed by receiver operating characteristic curve analysis to determine the specificity and sensitivity of risk factors and Youden's Index score calculation to determine the cutoff points. RESULTS: Takayasu arteritis patients had significantly higher serum levels of sdLDL-C and Lp(a) than healthy controls (p < 0.0001). The total cholesterol, triglyceride, LDL-C, sdLDL-C, and Lp(a) levels and the sdLDL-C/LDL-C ratio in Group I were significantly higher than those in Groups II and III (p < 0.05). An elevated serum sdLDL-C level elevated the risk of coronary arteriostenosis by 5-fold (cutoff value, 0.605 mmol/l). An increased serum Lp(a) level increased the risk of coronary arteriostenosis by 3.9-fold (cutoff value, 0.045 g/l). An elevated sdLDL-C/LDL-C ratio increased the risk of coronary arteriostenosis by 2.1-fold (cutoff value, 0.258). CONCLUSIONS: Serum sdLDL-C and Lp(a) levels and sdLDL-C/LDL-C ratio may be used as diagnostic factors for coronary arteriostenosis in TA patients.


Subject(s)
Biomarkers/blood , Cholesterol, LDL/blood , Coronary Disease/etiology , Lipoprotein(a)/blood , Takayasu Arteritis/complications , Adult , Arterial Occlusive Diseases/etiology , Case-Control Studies , Female , Humans , Logistic Models , Male , Middle Aged , Risk Factors , Takayasu Arteritis/blood
19.
Langmuir ; 36(47): 14306-14317, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33206528

ABSTRACT

Crystal size and morphology of zeolitic imidazolate frameworks (ZIFs) can be generally controlled based on the classical theory of nucleation and growth. Herein, we have developed an alternative method to adjust the nucleation and growth kinetics of microporous ZIF-8 nanocrystals mediated by continuous CO2 gas bubbling. In particular, CO2 bubbling led to the dissolution of ZIF-8 slurry, while the evacuation of CO2 bubbling resulted in the formation of new ZIF-8 nanoparticles with a considerably smaller size. A plausible mechanism of the CO2-mediated synthesis of ZIF-8 nanoparticles was proposed based on comprehensive characterizations and analyses, which indicated that the dissolved CO2 in methanol was able to perturb the pre-equilibrium states of crystallization intermediates and led to a comparatively fast nucleation rate due to a low number of overcoordinated species between the metal ion and the ligand. Both methanol and the base were critically important to the dissolution-recrystallization of ZIF-8, wherein the methyl carbonate linker might be reversibly produced by CO2 insertion into the methoxide group (Zn-OCH3). Also, the CO2-mediated synthesis led to the small particle size, high crystallinity, good thermal stability, and high purity of ZIF-8, as compared to the conventional ZIF-8 prepared without CO2 gas bubbling. As proof of workability, the prepared monodispersed ZIF-8 nanoparticles showed a much higher photocatalytic activity toward various organic dyes' decomposition than the conventional ZIF-8. Also, the CO2 bubbling-mediated method could be further extended to prepare other ZIFs (e.g., ZIF-67).

20.
J Clin Lab Anal ; 34(7): e23255, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32133679

ABSTRACT

OBJECTIVE: To investigate the influence of storage time and temperature on plasma insulin levels and to establish a correction formula. METHODS: Venous blood samples were taken from 20 volunteers and processed as follows: whole blood samples, centrifuged samples, and separated plasma samples were stored at 4°C or 25°C. Insulin levels were determined by direct chemiluminescence at 0, 0.5, 1, 2, 4, and 8 hours. According to the correlation between the insulin concentration ratio and storage time, correction formulas for the insulin concentration were established. To verify the test, the venous blood samples of another 33 volunteers were processed in the same way. The insulin levels of the samples were corrected after 3, 6, 12, and 24 hours and compared with the value at 0 hours to verify the feasibility of the corrected formula. RESULTS: With the prolongation of storage time, the insulin levels of the whole blood samples at 4°C or 25°C and of the centrifuged samples at 25°C decreased gradually (P < .001), and the insulin level correction formulas were Ccorrection  = Cdetermination /0.991e-0.069 x , Ccorrection  = Cdetermination /1.048e-0.126 x , and Ccorrection  = Cdetermination /[-0.068ln(x) + 0.9242]. There was no significant difference between the corrected insulin results and the original results at any time within 12 hours (P > .05). CONCLUSIONS: The insulin levels of the whole blood samples at 4°C or 25°C and of the plasma samples at 25°C gradually decreased with storage time. The effect of storage time on the insulin level can be reduced with the correction formulas.


Subject(s)
Blood Specimen Collection/methods , Insulin/blood , Adult , Clinical Laboratory Techniques , Female , Hemoglobins/analysis , Humans , Male , Phlebotomy , Temperature , Time Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL