Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Environ Manage ; 351: 119922, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38150929

ABSTRACT

Layered double hydroxides (LDHs) have gained significant recognition for their facile synthesis and super-hydrophilic two-dimensional (2D) structure to fabricate antifouling membranes for oily wastewater separation. However, conventional PVDF membranes, due to their hydrophobic nature and inert matrix, often exhibit insufficient permeance and compatibility. In this study, a novel NiFe-LDH@MnO2/PVDF membrane was synthesized using ultrasonic, redox, and microwave-hydrothermal processes. This innovative approach cultivated grass-like NiFe-LDH@MnO2 nanoparticles within an inert PVDF matrix, promoting the growth of highly hydrophilic composites. The presence of NiFe-LDH@MnO2 resulted in pronounced enhancements in surface morphology, interfacial wettability, and oil rejection for the fabricated membrane. The optimal NiFe-LDH@MnO2/PVDF-2 membrane exhibited an extremely high pure water flux (1364 L m-2•h-1), and increased oil rejection (from 81.2% to 93.5%) without sacrificing water permeation compared to the original PVDF membrane. Additionally, the NiFe-LDH@MnO2/PVDF membrane demonstrated remarkable antifouling properties, evident by an exceptional fouling resistance ratio of 96.8% following slight water rinsing. Mechanistic insights into the enhanced antifouling performance were elucidated through a comparative "semi-immersion" investigation. The facile synthesis method, coupled with the improved membrane performance, highlights the potential application prospects of this hybrid membrane in emulsified oily wastewater treatment and environmental remediation.


Subject(s)
Biofouling , Fluorocarbon Polymers , Polyvinyls , Water Purification , Manganese Compounds , Oxides , Oils , Water , Water Purification/methods
2.
iScience ; 27(3): 109252, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38439981

ABSTRACT

DNA demethylase TET2 was related with lung function. However, the precise role of TET2 in cigarette smoke (CS)-induced apoptosis of airway epithelium cells, and the mechanisms involved, have yet to be elucidated. Here, we showed that CS decreased TET2 protein levels but had no significant effect on its mRNA levels in lung tissues of chronic obstructive pulmonary disease (COPD) patients and CS-induced COPD mice model and even in airway epithelial cell lines. TET2 could inhibit CS-induced apoptosis of airway epithelial cell in vivo and in vitro. Moreover, we identified ubiquitin-specific protease 21 (USP21) as a deubiquitinase of TET2 in airway epithelial cells. USP21 interacted with TET2 and inhibited CSE-induced TET2 degradation. USP21 downregulated decreased TET2 abundance and further reduced the anti-apoptosis effect of TET2. Thus, we draw a conclusion that the USP21/TET2 axis is involved in CS-induced apoptosis of airway epithelial cells.

3.
Tob Induc Dis ; 222024.
Article in English | MEDLINE | ID: mdl-38274000

ABSTRACT

INTRODUCTION: Endothelial progenitor cells (EPCs) dysfunction is involved in the pathogenesis of chronic obstructive pulmonary disease (COPD). The transcription factor PU.1 is essential for the maintenance of stem/progenitor cell homeostasis. However, the role of PU.1 in COPD and its effects on EPC function and lung-homing, remain unclear. This study aimed to explore the protective activity of PU.1 and the underlying mechanisms in a cigarette smoke extract (CSE)-induced emphysema mouse model. METHODS: C57BL/6 mice were treated with CSE to establish a murine emphysema model and injected with overexpressed PU.1 or negative control adeno-associated virus. Morphometry of lung slides, lung function, and apoptosis of lung tissues were evaluated. Immunofluorescence co-localization was used to analyze EPCs homing into the lung. Flow cytometry was performed to detect EPC count in lung tissues and bone marrow (BM). The angiogenic ability of BM-derived EPCs cultured in vitro was examined by tube formation assay. We determined the expression levels of PU.1, ß-catenin, C-X-C motif ligand 12 (CXCL12), C-X-C motif receptor 4 (CXCR4), stem cell antigen-1 (Sca-1), and stemness genes. RESULTS: CSE exposure significantly reduced the expression of PU.1 in mouse lung tissues, BM, and BM-derived EPCs. PU.1 overexpression attenuated CSE-induced emphysematous changes, lung function decline, and apoptosis. In emphysematous mice, PU.1 overexpression markedly reversed the decreased proportion of EPCs in BM and promoted the lung-homing of EPCs. The impaired angiogenic ability of BM-derived EPCs induced by CSE could be restored by the overexpression of PU.1. In addition, PU.1 upregulation evidently reversed the decreased expression of ß-catenin, CXCL12, CXCR4, Scal-1, and stemness genes in mouse lung tissues, BM, and BM-derived EPCs after CSE exposure. CONCLUSIONS: PU.1 alleviates the inhibitory effects of CSE on EPC function and lung-homing via activating the canonical Wnt/ß-catenin pathway and CXCL12/CXCR4 axis. While further research is needed, our research may indicate a potential therapeutic target for COPD patients.

4.
Tob Induc Dis ; 222024.
Article in English | MEDLINE | ID: mdl-38650847

ABSTRACT

INTRODUCTION: Apoptosis and chronic inflammation are the main phenotypes in chronic obstructive pulmonary disease (COPD) pathogenesis. Cigarette smoke exposure is the leading risk factor for COPD, which causes aberrant airway epithelial structure and function. As a non-classical calpain, the molecular function of calpain5 (CAPN5) in COPD remains unclear. This study investigated the role of CAPN5 in mediating cigarette smoke extract (CSE)-induced apoptosis and inflammation. METHODS: Immunohistochemistry (IHC) and Western blotting (WB) were performed to detect the location and expression of CAPN5. In vitro, BEAS-2B cells were transfected with CAPN5 siRNA or CAPN5 plasmid, followed by phosphate-buffered saline (PBS) or cigarette smoke extract (CSE) treatment. The protein expression levels of CAPN5, NF-κB p65, p-p65, IκBα, p-IκBα and apoptosis proteins (BCL-2, BAX) were measured by WB. Flow cytometry (FCM) was performed to analyze the cell apoptosis index. RESULTS: CAPN5 was mainly expressed in the airway epithelium and significantly decreased in the COPD-smoker and emphysema-mouse groups. Silencing CAPN5 significantly decreased the protein expression of BCL-2, IκBα, and increased p-p65 and BAX protein expression. Additionally, an increased apoptosis index was detected after silencing CAPN5. Moreover, overexpression of CAPN5 partly inhibited IκBα degradation and p65 activation, and reduced CSE-induced inflammation and apoptosis. CONCLUSIONS: These combined results indicate that CAPN5 could protect against CSE-induced apoptosis and inflammation, which may provide a potential therapeutic target for smoking-related COPD.

5.
J Hazard Mater ; 474: 134844, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38852252

ABSTRACT

With advances in plastic resource utilization technologies, polystyrene (PS) and sulfonated polystyrene (SPS) microplastics continue to be produced and retained in environmental media, potentially posing greater environmental risks. These plastics, due to their different physicochemical properties, may have different environmental impacts when compounded with other pollutants. The objective of this study was to investigate the combined toxic effects of PS and SPS on wheat using cadmium (Cd) as a background contaminant. The results demonstrated that Cd significantly impeded the normal growth of wheat by disrupting root development. Both PS and SPS exhibited hormesis at low concentrations and promoted wheat growth. Under combined toxicity, PS reduced oxidative stress and promoted the uptake of essential metal elements in wheat. Additionally, KEGG pathway analysis revealed that PS facilitated the repair of Cd-induced blockage of the TCA cycle and glutathione metabolism. However, high concentrations of SPS in combined toxicity not only enhanced oxidative stress and interfered with the uptake of essential metal elements, but also exacerbated the blocked TCA cycle and interfered with pyrimidine metabolism. These differences are related to the different stability (Zeta potential, Hydrodynamic particle size) of the two microplastics in the aquatic environment and their ability to carry heavy metal ions, especially Cd. The results of this study provide important insights into understanding the effects of microplastics on crops in the context of Cd contamination and their environmental and food safety implications.


Subject(s)
Cadmium , Oxidative Stress , Polystyrenes , Triticum , Polystyrenes/toxicity , Triticum/drug effects , Triticum/growth & development , Triticum/metabolism , Cadmium/toxicity , Oxidative Stress/drug effects , Microplastics/toxicity , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/metabolism , Water Pollutants, Chemical/toxicity , Soil Pollutants/toxicity
6.
Environ Pollut ; 356: 124319, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38844042

ABSTRACT

The presence of microplastics in the ecological environment, serving as carriers for other organic pollutants, has garnered widespread attention. These microplastics exposed in the environment may undergo various aging processes. However, there is still a lack of information regarding how these aged microplastics impact the environmental behavior and ecological toxicity of pollutants. In this study, we modified polystyrene microplastics by simulating the aging behavior that may occur under environmental exposure, and then explored the adsorption behavior and adsorption mechanism of microplastics before and after aging for typical triazine herbicides. It was shown that all aging treatments of polystyrene increased the adsorption of herbicides, the composite aged microplastics had the strongest adsorption capacity and the fastest adsorption rate, and of the three herbicides, metribuzin was adsorbed the most by microplastics. The interactions between microplastics and herbicides involved mechanisms such as hydrophobic interactions, surface adsorption, the effect of π-π interactions, and the formation of hydrogen bonds. Further studies confirmed that microplastics adsorbed with herbicides cause greater biotoxicity to E. coli. These findings elucidate the interactions between microplastics before and after aging and triazine herbicides. Acting as carriers, they alter the environmental behavior and ecological toxicity of organic pollutants, providing theoretical support for assessing the ecological risk of microplastics in water environments.


Subject(s)
Microplastics , Polystyrenes , Triazines , Water Pollutants, Chemical , Microplastics/chemistry , Microplastics/toxicity , Polystyrenes/chemistry , Triazines/chemistry , Triazines/toxicity , Adsorption , Water Pollutants, Chemical/chemistry , Herbicides/chemistry , Pesticides/chemistry
7.
Sci Total Environ ; 945: 174023, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38885711

ABSTRACT

Microplastics in food and drinking water can enter the human body through oral exposure, posing potential health risks to the human health. Most studies on the toxic effects of microplastics have focused on aquatic organisms, but the effects of the human digestive environment on the physicochemical properties of microplastics and their potential toxicity during gastrointestinal digestion are often limited. In this study, we first studied the influence of interactions between digestive tract protein (α-amylase, pepsin, and trypsin) and microplastics on the activity and conformation of digestive enzymes, and the physicochemical properties of polyvinyl chloride microplastics (PVC-MPs). Subsequently, a simulated digestion assay was performed to determine the biotransformation of PVC-MPs in the digestive tract and the intestinal toxicity of PVC-MPs. The in vitro experiments showed that the protein structure and activity of digestive enzymes were changed after adsorption by microplastics. After digestion, the static contact angle of PVC-MPs was decreased, indicating that the hydrophilicity of the PVC-MPs increased, which will increase its mobility in organisms. Cell experiment showed that the altered physicochemical property of PVC-MPs after digestion process also affect its cytotoxicity, including cellular uptake, cell viability, cell membrane integrity, reactive oxygen species levels, and mitochondrial membrane potential. Transcriptome analyses further confirmed the enhanced biotoxic effect of PVC-MPs after digestion treatment. Therefore, the ecological risk of microplastics may be underestimated owing to the interactions of microplastics and digestive tract protein during biological ingestion.


Subject(s)
Gastrointestinal Tract , Microplastics , Polyvinyl Chloride , Water Pollutants, Chemical , Polyvinyl Chloride/toxicity , Microplastics/toxicity , Water Pollutants, Chemical/toxicity , Humans , Gastrointestinal Tract/drug effects , Gastrointestinal Tract/metabolism
8.
J Thorac Dis ; 15(12): 6796-6805, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38249912

ABSTRACT

Background: Almost all patients with small cell lung cancer (SCLC) relapse. The therapeutic options of relapsed SCLC are limited, and the clinical outcomes are poor. Thus, genomic profiling of relapsed SCLC patients may help to develop more effective therapeutic options. Methods: We collected blood specimens and follow-up information from a consecutive cohort of 31 patients diagnosed with relapsed SCLC in Zhongnan Hospital, Wuhan University, between 2018 and 2019, to analyze the comprehensive genomic profiling, and to investigate the impact of genomic alterations on therapeutic options and survival. Results: In our cohort of relapsed SCLC, the median number of genomic alterations was 5 (range, 1-11) per sample. The majority of patients were defined as low tumor mutation burden (TMB; 83.9%) and microsatellite stability (MSS; 87.1%). Immune checkpoint inhibitors (ICIs)-based treatment still brought considerable progression-free survival (PFS; 4.93-20.27 months) for patients with low TMB and MSS. Additionally, the most frequent genetic alterations observed in relapsed SCLC were TP53 (77%) and RB1 (52%). Other genomic alterations of high frequency were breast cancer 2 (BRCA2) (32%), ataxia telangiectasia mutated (ATM) (13%), epidermal growth factor receptor (EGFR) (10%), Notch receptor 1 (NOTCH1) (10%), and Fanconi anemia complementation group A (FANCA) (10%), in turn. Finally, based on the survival of therapeutic strategies targeting potential mutation genes, the role of genotyping in relapsed SCLC was confirmed. Conclusions: Our studies first exhibited comprehensive genomic profiling of relapsed SCLC, identifying several candidate genes, and briefly analyzed the association of survival and genomic alterations. Our data from a small cohort of relapsed SCLC will benefit further exploration the potential targets or biomarkers.

SELECTION OF CITATIONS
SEARCH DETAIL