Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Proc Natl Acad Sci U S A ; 117(20): 10927-10934, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32366643

ABSTRACT

Lions are one of the world's most iconic megafauna, yet little is known about their temporal and spatial demographic history and population differentiation. We analyzed a genomic dataset of 20 specimens: two ca. 30,000-y-old cave lions (Panthera leo spelaea), 12 historic lions (Panthera leo leo/Panthera leo melanochaita) that lived between the 15th and 20th centuries outside the current geographic distribution of lions, and 6 present-day lions from Africa and India. We found that cave and modern lions shared an ancestor ca. 500,000 y ago and that the 2 lineages likely did not hybridize following their divergence. Within modern lions, we found 2 main lineages that diverged ca. 70,000 y ago, with clear evidence of subsequent gene flow. Our data also reveal a nearly complete absence of genetic diversity within Indian lions, probably due to well-documented extremely low effective population sizes in the recent past. Our results contribute toward the understanding of the evolutionary history of lions and complement conservation efforts to protect the diversity of this vulnerable species.


Subject(s)
Evolution, Molecular , Lions/genetics , Lions/physiology , Africa , Animals , Gene Flow , Genetic Variation , Genomics , Geography , India , Lions/classification , Male , Phylogeny , X Chromosome
2.
BMC Evol Biol ; 15: 124, 2015 Jun 30.
Article in English | MEDLINE | ID: mdl-26123414

ABSTRACT

BACKGROUND: Hemostasis is a defense mechanism that enhances an organism's survival by minimizing blood loss upon vascular injury. In vertebrates, hemostasis has been evolving with the cardio-vascular and hemodynamic systems over the last 450 million years. Birds and mammals have very similar vascular and hemodynamic systems, thus the mechanism that blocks ruptures in the vasculature is expected to be the same. However, the speed of the process varies across vertebrates, and is particularly slow for birds. Understanding the differences in the hemostasis pathway between birds and mammals, and placing them in perspective to other vertebrates may provide clues to the genetic contribution to variation in blood clotting phenotype in vertebrates. We compiled genomic data corresponding to key elements involved in hemostasis across vertebrates to investigate its genetic basis and understand how it affects fitness. RESULTS: We found that: i) fewer genes are involved in hemostasis in birds compared to mammals; and ii) the largest differences concern platelet membrane receptors and components from the kallikrein-kinin system. We propose that lack of the cytoplasmic domain of the GPIb receptor subunit alpha could be a strong contributor to the prolonged bleeding phenotype in birds. Combined analysis of laboratory assessments of avian hemostasis with the first avian phylogeny based on genomic-scale data revealed that differences in hemostasis within birds are not explained by phylogenetic relationships, but more so by genetic variation underlying components of the hemostatic process, suggestive of natural selection. CONCLUSIONS: This work adds to our understanding of the evolution of hemostasis in vertebrates. The overlap with the inflammation, complement and renin-angiotensin (blood pressure regulation) pathways is a potential driver of rapid molecular evolution in the hemostasis network. Comparisons between avian species and mammals allowed us to hypothesize that the observed mammalian innovations might have contributed to the diversification of mammals that give birth to live young.


Subject(s)
Biological Evolution , Genetic Variation , Hemostasis , Vertebrates/classification , Vertebrates/genetics , Animals , Birds/classification , Birds/genetics , Birds/physiology , Blood Coagulation Factors/genetics , Blood Coagulation Factors/physiology , Evolution, Molecular , Phylogeny , Selection, Genetic
3.
Mol Ecol ; 24(23): 5899-909, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26503258

ABSTRACT

We characterized the nucleic acid-sensing Toll-like receptors (TLR) of a New World bat species, the common vampire bat (Desmodus rotundus), and through a comparative molecular evolutionary approach searched for general adaptation patterns among the nucleic acid-sensing TLRs of eight different bats species belonging to three families (Pteropodidae, Vespertilionidae and Phyllostomidae). We found that the bat TLRs are evolving slowly and mostly under purifying selection and that the divergence pattern of such receptors is overall congruent with the species tree, consistent with the evolution of many other mammalian nuclear genes. However, the chiropteran TLRs exhibited unique mutations fixed in ligand-binding sites, some of which involved nonconservative amino acid changes and/or targets of positive selection. Such changes could potentially modify protein function and ligand-binding properties, as some changes were predicted to alter nucleic acid binding motifs in TLR 9. Moreover, evidence for episodic diversifying selection acting specifically upon the bat lineage and sublineages was detected. Thus, the long-term adaptation of chiropterans to a wide variety of environments and ecological niches with different pathogen profiles is likely to have shaped the evolution of the bat TLRs in an order-specific manner. The observed evolutionary patterns provide evidence for potential functional differences between bat and other mammalian TLRs in terms of resistance to specific pathogens or recognition of nucleic acids in general.


Subject(s)
Chiroptera/genetics , Evolution, Molecular , Selection, Genetic , Toll-Like Receptors/genetics , Animals , Chiroptera/classification , Models, Genetic , Sequence Analysis, DNA
4.
IEEE Trans Nanobioscience ; 19(3): 394-402, 2020 07.
Article in English | MEDLINE | ID: mdl-32142451

ABSTRACT

Pseudomonas aeruginosa is an opportunistic pathogen with a large repertoire of virulence factors that allow it to cause acute and chronic infections. Treatment of P. aeruginosa infections often fail due to its antibiotic resistance mechanisms, thus novel strategies aim at targeting virulence factors instead of growth-related features. Although the elements of the virulence networks of P. aeruginosa have been identified, how they interact and influence the overall virulence regulation is unclear. In this study, we reconstructed the signaling and transcriptional regulatory networks of 12 acute and 8 chronic virulence factors, and the 4 quorum sensing systems of P. aeruginosa. Using Boolean modelling, we showed that the static interactions and the time when they take place are important features in the quorum sensing network. We also found that the virulence factors of the acute networks are under strict repression or non-strict activation, while those of most of the chronic networks are under repression. In conclusion, Boolean modelling provides a system-level view of the P. aeruginosa virulence and quorum sensing networks to gain new insights into the various mechanisms that support its pathogenicity. Thus, we suggest that Boolean modelling could be used to guide the design of new treatments against P. aeruginosa.


Subject(s)
Drug Resistance, Bacterial/physiology , Models, Biological , Pseudomonas aeruginosa , Quorum Sensing/physiology , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/pathogenicity , Pseudomonas aeruginosa/physiology , Virulence Factors/chemistry , Virulence Factors/metabolism
5.
Curr Biol ; 30(24): 5018-5025.e5, 2020 12 21.
Article in English | MEDLINE | ID: mdl-33065008

ABSTRACT

Homotherium was a genus of large-bodied scimitar-toothed cats, morphologically distinct from any extant felid species, that went extinct at the end of the Pleistocene [1-4]. They possessed large, saber-form serrated canine teeth, powerful forelimbs, a sloping back, and an enlarged optic bulb, all of which were key characteristics for predation on Pleistocene megafauna [5]. Previous mitochondrial DNA phylogenies suggested that it was a highly divergent sister lineage to all extant cat species [6-8]. However, mitochondrial phylogenies can be misled by hybridization [9], incomplete lineage sorting (ILS), or sex-biased dispersal patterns [10], which might be especially relevant for Homotherium since widespread mito-nuclear discrepancies have been uncovered in modern cats [10]. To examine the evolutionary history of Homotherium, we generated a ∼7x nuclear genome and a ∼38x exome from H. latidens using shotgun and target-capture sequencing approaches. Phylogenetic analyses reveal Homotherium as highly divergent (∼22.5 Ma) from living cat species, with no detectable signs of gene flow. Comparative genomic analyses found signatures of positive selection in several genes, including those involved in vision, cognitive function, and energy consumption, putatively consistent with diurnal activity, well-developed social behavior, and cursorial hunting [5]. Finally, we uncover relatively high levels of genetic diversity, suggesting that Homotherium may have been more abundant than the limited fossil record suggests [3, 4, 11-14]. Our findings complement and extend previous inferences from both the fossil record and initial molecular studies, enhancing our understanding of the evolution and ecology of this remarkable lineage.


Subject(s)
Felidae/genetics , Genetic Drift , Genetic Speciation , Animal Distribution , Animals , Cuspid , DNA, Ancient , Extinction, Biological , Felidae/anatomy & histology , Fossils/anatomy & histology , Genomics , Hybridization, Genetic , Phylogeny , Recombination, Genetic
6.
Nat Ecol Evol ; 2(4): 659-668, 2018 04.
Article in English | MEDLINE | ID: mdl-29459707

ABSTRACT

Adaptation to specialized diets often requires modifications at both genomic and microbiome levels. We applied a hologenomic approach to the common vampire bat (Desmodus rotundus), one of the only three obligate blood-feeding (sanguivorous) mammals, to study the evolution of its complex dietary adaptation. Specifically, we assembled its high-quality reference genome (scaffold N50 = 26.9 Mb, contig N50 = 36.6 kb) and gut metagenome, and compared them against those of insectivorous, frugivorous and carnivorous bats. Our analyses showed a particular common vampire bat genomic landscape regarding integrated viral elements, a dietary and phylogenetic influence on gut microbiome taxonomic and functional profiles, and that both genetic elements harbour key traits related to the nutritional (for example, vitamin and lipid shortage) and non-nutritional (for example, nitrogen waste and osmotic homeostasis) challenges of sanguivory. These findings highlight the value of a holistic study of both the host and its microbiota when attempting to decipher adaptations underlying radical dietary lifestyles.


Subject(s)
Biological Evolution , Chiroptera/physiology , Diet , Gastrointestinal Microbiome , Genome , Animals , Blood , Chiroptera/genetics , Chiroptera/microbiology , Phylogeny
7.
Curr Biol ; 27(21): 3330-3336.e5, 2017 Nov 06.
Article in English | MEDLINE | ID: mdl-29056454

ABSTRACT

Saber-toothed cats (Machairodontinae) are among the most widely recognized representatives of the now largely extinct Pleistocene megafauna. However, many aspects of their ecology, evolution, and extinction remain uncertain. Although ancient-DNA studies have led to huge advances in our knowledge of these aspects of many other megafauna species (e.g., mammoths and cave bears), relatively few ancient-DNA studies have focused on saber-toothed cats [1-3], and they have been restricted to short fragments of mitochondrial DNA. Here we investigate the evolutionary history of two lineages of saber-toothed cats (Smilodon and Homotherium) in relation to living carnivores and find that the Machairodontinae form a well-supported clade that is distinct from all living felids. We present partial mitochondrial genomes from one S. populator sample and three Homotherium sp. samples, including the only Late Pleistocene Homotherium sample from Eurasia [4]. We confirm the identification of the unique Late Pleistocene European fossil through ancient-DNA analyses, thus strengthening the evidence that Homotherium occurred in Europe over 200,000 years later than previously believed. This in turn forces a re-evaluation of its demography and extinction dynamics. Within the Machairodontinae, we find a deep divergence between Smilodon and Homotherium (∼18 million years) but limited diversity between the American and European Homotherium specimens. The genetic data support the hypothesis that all Late Pleistocene (or post-Villafrancian) Homotherium should be considered a single species, H. latidens, which was previously proposed based on morphological data [5, 6].


Subject(s)
Biological Evolution , DNA, Ancient/analysis , DNA, Mitochondrial/genetics , Felidae/genetics , Animals , Cats , Fossils , Phylogeny , Tooth
8.
Mar Genomics ; 30: 3-13, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27184710

ABSTRACT

As sequencing technologies become more affordable, it is now realistic to propose studying the evolutionary history of virtually any organism on a genomic scale. However, when dealing with non-model organisms it is not always easy to choose the best approach given a specific biological question, a limited budget, and challenging sample material. Furthermore, although recent advances in technology offer unprecedented opportunities for research in non-model organisms, they also demand unprecedented awareness from the researcher regarding the assumptions and limitations of each method. In this review we present an overview of the current sequencing technologies and the methods used in typical high-throughput data analysis pipelines. Subsequently, we contextualize high-throughput DNA sequencing technologies within their applications in non-model organism biology. We include tips regarding managing unconventional sample material, comparative and population genetic approaches that do not require fully assembled genomes, and advice on how to deal with low depth sequencing data.


Subject(s)
Genome , Genomics/methods , High-Throughput Nucleotide Sequencing , Sequence Analysis, DNA , Archaea/genetics , Bacteria/genetics , Eukaryota/genetics , Genomics/trends
SELECTION OF CITATIONS
SEARCH DETAIL