Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Front Med (Lausanne) ; 11: 1399527, 2024.
Article in English | MEDLINE | ID: mdl-38933112

ABSTRACT

Objective: The objective of this research was to create a machine learning predictive model that could be easily interpreted in order to precisely determine the risk of premature death in patients receiving intensive care after pulmonary inflammation. Methods: In this study, information from the China intensive care units (ICU) Open Source database was used to examine data from 2790 patients who had infections between January 2019 and December 2020. A 7:3 ratio was used to randomly assign the whole patient population to training and validation groups. This study used six machine learning techniques: logistic regression, random forest, gradient boosting tree, extreme gradient boosting tree (XGBoost), multilayer perceptron, and K-nearest neighbor. A cross-validation grid search method was used to search the parameters in each model. Eight metrics were used to assess the models' performance: accuracy, precision, recall, F1 score, area under the curve (AUC) value, Brier score, Jordon's index, and calibration slope. The machine methods were ranked based on how well they performed in each of these metrics. The best-performing models were selected for interpretation using both the Shapley Additive exPlanations (SHAP) and Local interpretable model-agnostic explanations (LIME) interpretable techniques. Results: A subset of the study cohort's patients (120/1668, or 7.19%) died in the hospital following screening for inclusion and exclusion criteria. Using a cross-validated grid search to evaluate the six machine learning techniques, XGBoost showed good discriminative ability, achieving an accuracy score of 0.889 (0.874-0.904), precision score of 0.871 (0.849-0.893), recall score of 0.913 (0.890-0.936), F1 score of 0.891 (0.876-0.906), and AUC of 0.956 (0.939-0.973). Additionally, XGBoost exhibited excellent performance with a Brier score of 0.050, Jordon index of 0.947, and calibration slope of 1.074. It was also possible to create an interactive internet page using the XGBoost model. Conclusion: By identifying patients at higher risk of early mortality, machine learning-based mortality risk prediction models have the potential to significantly improve patient care by directing clinical decision making and enabling early detection of survival and mortality issues in patients with pulmonary inflammation disease.

2.
Heliyon ; 9(7): e17772, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37483738

ABSTRACT

Introduction: Lung cancer is a prevalent malignancy globally, with approximately 20% of patients developing cardiopulmonary complications after lobectomy. In order to prevent complications, an accurate and personalized method based on machine learning (ML) is required. Methods: During the period of 2017-2021, a retrospective analysis was conducted on the medical records of patients who had undergone lobectomy for non-small cell lung cancer (NSCLC). We performed logical regression, decision tree (DT), random forest (RF), gradient boost DT, and eXtreme gradient boosting analyses to establish an ML model. The ten-fold cross-validation was used to evaluate the performance of multiple ML models based on various evaluation metrics, including accuracy, precision, recall, F1 score, and area under the receiver operating (AUC). Additionally, we also calculated the Kappa value of these model. Each model used grid search to optimize hyper-parameters and then used the interpretability method to provide explanations for the model's Decisions. Results: The study included 718 eligible patients, among whom the incidence of postoperative cardiopulmonary complications was 20.89%. The RF model showed the best comprehensive performance among all models, and its ten-fold cross-validation accuracy, precision, recall, F1 score, and AUC were (OR and 95% confidence interval [CI]) 0.786 (0.738-0.834), 0.803 (0.735-0.872), 0.738 (0.678-0.797), 0.766 (0.714-0.818), 0.856 (0.815-0.898), respectively. The kappa value of the RF model was 0.696 (0.617-0.768). The SHAP method showed that gender, age, and intraoperative blood loss were closely associated with postoperative cardiopulmonary complications. Conclusion: The application of ML methods for predicting postoperative cardiopulmonary complications based on clinical data of patients with NSCLC showed a good performance. The results indicate that ML combined with the SHAP individualized interpretation method has practical clinical value.

SELECTION OF CITATIONS
SEARCH DETAIL