Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
ACS Appl Mater Interfaces ; 16(38): 51010-51019, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39283697

ABSTRACT

Oxide semiconductor thin-film transistors (TFTs) have shown great potential in emerging applications such as flexible displays, radio-frequency identification tags, sensors, and back-end-of-line compatible transistors for monolithic 3D integration beyond their well-established flat-plane display technology. To meet the requirements of these appealing applications, high current drivability is essential, necessitating exploration in materials science and device engineering. In this work, we report for the first time on a simple solution-based superacid (SA) treatment to enhance the current drivability of top-gate TiO2 TFTs with a gate-offset structure. The on-current of these transistors is limited by the relatively low mobility of TiO2 due to its d-orbital conduction nature. It is found that the on-current of TiO2 TFTs is nearly doubled via a quick dip in a SA solution at room temperature in ambient air. A series of experiments, including comparative I-V measurements of TFTs with different treatments and gate structures, C-V measurements, X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry, and device simulation, were performed to uncover the underlying reason for the current enhancement. It is believed that the protons (H+) from SA are doped into the offset region of TiO2 TFTs, forming an electron double layer and thus boosting the on-current, with the top gate serving as a self-aligned mask for ionic doping. Furthermore, the ionic size and the proportion of the offset region to the channel play crucial roles in the effectiveness of ionic doping, while the position of the incorporated ions, whether in the channel or dielectric, may result in distinct shifts in the turn-on voltage (VON) and affect the functionality of ionic doping. This study provides a pathway for enhancing the current drivability of TiO2 TFTs via selective ionic doping enabled by SA treatment and deepens our understanding of ion incorporation in electronic devices. This approach could be applicable to other material systems and may also benefit TFTs with miniaturized dimensions, thus opening up unprecedented opportunities for TiO2 TFTs in future applications requiring high current drivability.

2.
Materials (Basel) ; 14(15)2021 Jul 23.
Article in English | MEDLINE | ID: mdl-34361291

ABSTRACT

The nonrenewable nature of fossil energy has led to a gradual decrease in reserves. Meanwhile, as society becomes increasingly aware of the severe pollution caused by fossil energy, the demand for clean energy, such as solar energy, is rising. Moreover, in recent years, electronic devices with screens, such as mobile phones and computers, have had increasingly higher requirements for light transmittance. Whether in solar cells or in the display elements of electronic devices, transparent conductive films directly affect the performance of these devices as a cover layer. In this context, the development of transparent electrodes with low sheet resistance and high light transmittance has become one of the most urgent issues in related fields. At the same time, conventional electrodes can no longer meet the needs of some of the current flexible devices. Because of the high sheet resistance, poor light transmittance, and poor bending stability of the conventional tin-doped indium tin oxide conductive film and fluorine-doped tin oxide transparent conductive glass, there is a need to find alternatives with better performance. In this article, the progress of research on transparent electrode materials with sandwich structures and their advantages is reviewed according to the classification of conductive materials to provide reference for research in related fields.

SELECTION OF CITATIONS
SEARCH DETAIL