Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
J Am Chem Soc ; 146(26): 17801-17816, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38887845

ABSTRACT

Gangliosides, sialic acid bearing glycosphingolipids, are components of the outer leaflet of plasma membranes of all vertebrate cells. They contribute to cell regulation by interacting with proteins in their own membranes (cis) or their extracellular milieu (trans). As amphipathic membrane constituents, gangliosides present challenges for identifying their ganglioside protein interactome. To meet these challenges, we synthesized bifunctional clickable photoaffinity gangliosides, delivered them to plasma membranes of cultured cells, then captured and identified their interactomes using proteomic mass spectrometry. Installing probes on ganglioside lipid and glycan moieties, we captured cis and trans ganglioside-protein interactions. Ganglioside interactomes varied with the ganglioside structure, cell type, and site of the probe (lipid or glycan). Gene ontology revealed that gangliosides engage with transmembrane transporters and cell adhesion proteins including integrins, cadherins, and laminins. The approach developed is applicable to other gangliosides and cell types, promising to provide insights into molecular and cellular regulation by gangliosides.


Subject(s)
Click Chemistry , Gangliosides , Gangliosides/chemistry , Gangliosides/metabolism , Humans , Photoaffinity Labels/chemistry , Photoaffinity Labels/chemical synthesis , Molecular Probes/chemistry , Molecular Probes/chemical synthesis , Cell Membrane/metabolism , Cell Membrane/chemistry
2.
Cancer Immunol Immunother ; 73(4): 74, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38451314

ABSTRACT

BACKGROUND: Pembrolizumab has been indicated in the treatment of solid tumors with high frequency microsatellite instability (MSI-H) or high tumor mutational burden (TMB-H); however, real-world data on the effectiveness of pembrolizumab with or without chemotherapy in this molecular subset remain limited. Our retrospective study evaluated the clinical efficacy and safety of pembrolizumab in treating advanced solid tumors with either MSI-H or TMB-H. METHODS: This retrospective study analyzed data from 116 patients with MSI-H or TMB-H advanced solid cancers who received pembrolizumab with or without chemotherapy regardless of treatment setting. We analyzed objective response rate (ORR) and progression-free survival (PFS). RESULTS: The top three cancer types were colorectal (48.6% MSI-H, 6.5% TMB-H), lung (15.4% MSI-H, 84.4% TMB-H), and gastric (15.4% MSI-H, 5.1% TMB-H). The ORR with pembrolizumab was 52.6%, including complete response (CR) observed in 8.6% (n = 10) of cases and partial responses (PR) in 43.9% (n = 51). Of the 93 patients who received first-line pembrolizumab, 52 patients achieved objective response (10 CR, 42 PR), with a median PFS of 14.0 months (95% confidence intervals [CI] 6.6-21.4). Of the 23 who received subsequent-line pembrolizumab, the ORR was 39.1%, disease control rate was 91.3%, and median PFS was 5.7 months (95% CI 3.9-7.5). Treatment-related adverse events were observed in 32 patients (27.6%), with no reported treatment-related fatal adverse events. CONCLUSION: Our study provides real-world evidence on the clinical effectiveness of pembrolizumab with or without chemotherapy in the treatment of patients with MSI-H and TMB-H advanced solid cancers.


Subject(s)
Antibodies, Monoclonal, Humanized , Microsatellite Instability , Neoplasms , Humans , Retrospective Studies , Neoplasms/drug therapy , Neoplasms/genetics , China , Pathologic Complete Response
3.
J Neuroinflammation ; 21(1): 43, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38317227

ABSTRACT

Glaucoma is a complex neurodegenerative disorder characterized by the progressive loss of retinal ganglion cells (RGC) and optic nerve axons, leading to irreversible visual impairment. Despite its clinical significance, the underlying mechanisms of glaucoma pathogenesis remain poorly understood. In this study, we aimed to unravel the multifaceted nature of glaucoma by investigating the interaction between T cells and retinas. By utilizing clinical samples, murine glaucoma models, and T cell transfer models, we made several key findings. Firstly, we observed that CD4+ T cells from glaucoma patients displayed enhanced activation and a bias towards T helper (Th) 1 responses, which correlated with visual impairment. Secondly, we identified the infiltration of Th1 cells into the retina, where they targeted RGC and integrated into the pro-inflammatory glial network, contributing to progressive RGC loss. Thirdly, we discovered that circulating Th1 cells upregulated vascular cell adhesion protein 1 (VCAM-1) on retinal microvessels, facilitating their entry into the neural retina. Lastly, we found that Th1 cells underwent functional reprogramming before reaching the retina, acquiring a phenotype associated with lymphocyte migration and neurodegenerative diseases. Our study provides novel insights into the role of peripheral CD4+ T cells in glaucoma pathogenesis, shedding light on the mechanisms underlying their infiltration into the retina and offering potential avenues for innovative therapeutic interventions in this sight-threatening disease.


Subject(s)
Glaucoma , Retinal Ganglion Cells , Humans , Mice , Animals , Retinal Ganglion Cells/pathology , Vascular Cell Adhesion Molecule-1/metabolism , Th1 Cells/pathology , Glaucoma/metabolism , Retina/pathology , Vision Disorders/pathology , Disease Models, Animal
4.
Mol Cell Biochem ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39085744

ABSTRACT

Brain metastasis (BM) in laryngeal squamous cell carcinoma (LSCC) is uncommon but prognosis is poor. Anti-PD-1 immunotherapy benefits some advanced LSCC cases, yet its efficiency is limited by tumor complexity. We analyzed paired metastatic tumor samples from before and after immunotherapy using single-cell RNA sequencing (scRNA-seq), along with a primary LSCC dataset and bulk RNA sequencing. This identified changes post-immunotherapy and revealed differences in single-cell transcriptomes among LSCC, primBM, and neoBM. Our findings show that anti-PD-1 treatment suppresses metastasis-promoting pathways like VEGF and EMT in cancer cells, and alters immune cell functions. Notably, it upregulates T cell activation, leading to CD8 T cell exhaustion from excess heat shock proteins, notably HSPA8. However, CD8 T cell cytotoxic functions improve post-treatment. In myeloid cells, anti-PD-1 therapy enhances antigen presentation and promotes a proinflammatory shift post-metastasis. Additionally, NUPR1 is linked to BM in LSCC, and NEAT1 is a potential metastatic cancer cell cycle participant. Our study provides insights into cancer heterogeneity and the impact of PD-1 immunotherapy on metastasis, aiding precise diagnosis and prognosis.

5.
Org Biomol Chem ; 22(5): 965-969, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38205855

ABSTRACT

A visible-light-induced decarboxylative cascade reaction of acryloylbenzamides with alkyl N-hydroxyphthalimide (NHP) esters for the synthesis of various 4-alkyl isoquinolinediones mediated by triphenylphosphine (PPh3) and sodium iodide (NaI) was developed. This operationally simple protocol proceeded via the photoactivation of electron donor-acceptor (EDA) complexes between N-hydroxyphthalimide esters and NaI/PPh3, resulting in multiple carbon-carbon bond formations without the use of precious metal complexes or synthetically elaborate organic dyes, which provided an alternative practical approach to synthesize diverse isoquinoline-1,3(2H,4H)-dione derivatives.

6.
J Chem Inf Model ; 64(3): 575-583, 2024 02 12.
Article in English | MEDLINE | ID: mdl-38265916

ABSTRACT

Discovery of small-molecule antibiotics with novel chemotypes serves as one of the essential strategies to address antibiotic resistance. Although a considerable number of computational tools committed to molecular design have been reported, there is a deficit in holistic and efficient tools specifically developed for small-molecule antibiotic discovery. To address this issue, we report AutoMolDesigner, a computational modeling software dedicated to small-molecule antibiotic design. It is a generalized framework comprising two functional modules, i.e., generative-deep-learning-enabled molecular generation and automated machine-learning-based antibacterial activity/property prediction, wherein individually trained models and curated datasets are out-of-the-box for whole-cell-based antibiotic screening and design. It is open-source, thus allowing for the incorporation of new features for flexible use. Unlike most software programs based on Linux and command lines, this application equipped with a Qt-based graphical user interface can be run on personal computers with multiple operating systems, making it much easier to use for experimental scientists. The software and related materials are freely available at GitHub (https://github.com/taoshen99/AutoMolDesigner) and Zenodo (https://zenodo.org/record/10097899).


Subject(s)
Artificial Intelligence , Software , Computer Simulation
7.
BMC Vet Res ; 20(1): 164, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678277

ABSTRACT

BACKGROUND: Esculentin-1, initially discovered in the skin secretions of pool frogs (Pelophylax lessonae), has demonstrated broad-spectrum antimicrobial activity; however, its immunomodulatory properties have received little attention. RESULTS: In the present study, esculentin-1 cDNA was identified by analysing the skin transcriptome of the dark-spotted frog (Pelophylax nigromaculatus). Esculentin-1 from this species (esculentin-1PN) encompasses a signal peptide, an acidic spacer peptide, and a mature peptide. Sequence alignments with other amphibian esculentins-1 demonstrated conservation of the peptide, and phylogenetic tree analysis revealed its closest genetic affinity to esculentin-1P, derived from the Fukien gold-striped pond frog (Pelophylax fukienensis). Esculentin-1PN transcripts were observed in various tissues, with the skin exhibiting the highest mRNA levels. Synthetic esculentin-1PN demonstrated antibacterial activity against various pathogens, and esculentin-1PN exhibited bactericidal activity by disrupting cell membrane integrity and hydrolyzing genomic DNA. Esculentin-1PN did not stimulate chemotaxis in RAW264.7, a murine leukemic monocyte/macrophage cell line. However, it amplified the respiratory burst and augmented the pro-inflammatory cytokine gene (TNF-α and IL-1ß) expression in RAW264.7 cells. CONCLUSIONS: This novel finding highlights the immunomodulatory activity of esculentin-1PN on immune cells.


Subject(s)
Amphibian Proteins , Anti-Bacterial Agents , Phylogeny , Ranidae , Animals , Amphibian Proteins/pharmacology , Amphibian Proteins/chemistry , Amphibian Proteins/genetics , Mice , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/genetics , Amino Acid Sequence , Skin/metabolism , Immunologic Factors/pharmacology , Immunologic Factors/chemistry , RAW 264.7 Cells , Sequence Alignment
8.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(6): 659-664, 2024 Jun 15.
Article in Zh | MEDLINE | ID: mdl-38926385

ABSTRACT

In infants with severe bronchopulmonary dysplasia (sBPD), severe pulmonary lobar emphysema may occur as a complication, contributing to significant impairment in ventilation. Clinical management of these infants is extremely challenging and some may require lobectomy to improve ventilation. However, prior to the lobectomy, it is very difficult to assess whether the remaining lung parenchyma would be able to sustain adequate ventilation postoperatively. In addition, preoperative planning and perioperative management are also quite challenging in these patients. This paper reports the utility of selective bronchial occlusion in assessing the safety and efficacy of lobectomy in a case of sBPD complicated by severe right upper lobar emphysema. Since infants with sBPD already have poor lung development and significant lung injury, lobectomy should be viewed as a non-traditional therapy and be carried out with extreme caution. Selective bronchial occlusion test can be an effective tool in assessing the risks and benefits of lobectomy in cases with sBPD and lobar emphysema. However, given the technical difficulty, successful application of this technique requires close collaboration of an experienced interdisciplinary team.


Subject(s)
Bronchopulmonary Dysplasia , Infant, Premature , Pulmonary Emphysema , Humans , Pulmonary Emphysema/surgery , Bronchopulmonary Dysplasia/etiology , Infant, Newborn , Bronchi , Male , Pneumonectomy , Female
9.
Zhonghua Nan Ke Xue ; 29(7): 630-633, 2023 Jul.
Article in Zh | MEDLINE | ID: mdl-38619411

ABSTRACT

Objective: To observe the clinical effect of Manlyman Spray combined with biofeedback therapy in the treatment of premature ejaculation (PE).Methods: A total of 60 primary premature ejaculation patients with stable sexual partners and regular sexual activity (≥1 times per week) from April 2021 to October 2022 were involved in the clinical observation, The patients' age is (34.3 ± 4.9) years old, and the course of the disease is (112.5 ± 65.5) months, and Manlyman Spray combined with biofeedback therapy was used to treat patients for 8 weeks. Manlyman Spray was sprayed 3 times on the surface of the penisqd for 4 weeks, and Biofeedback therapy is treated twice a week according to the AI setting module, for a total of 8 weeks. Before and 8 weeks after medication and at 4 weeks after drug withdrawal, the Intravaginal Ejaculation Latency Time (IELT), Premature Ejaculation Diagnostic Tool (PEDT) scores and Clinical Global Impression of Change (CGIC) scores were Obtained and compared. Results: After 8 weeks of treatment, the IELT of the patients was significantly prolonged (ï¼»351.4 ± 76.7ï¼½ vs ï¼»87 ± 16.8ï¼½,P<0.05) and at 4 weeks after drug withdrawal, the therapeutic effect still existed (ï¼»345.9 ± 80.3ï¼½ vs ï¼»87 ± 16.8ï¼½,P<0.05), the PEDT scores were significantly improved after treatment (ï¼»18.2 ± 1.1ï¼½ vs ï¼»9.0 ± 1.4ï¼½,P<0.05)and at 4 weeks after drug withdrawal(ï¼»18.0 ± 1.2ï¼½ vs ï¼»9.0 ± 1.4ï¼½,P<0.05), and so were the CGIC scores (ï¼»13.4 ± 1.3ï¼½ vs ï¼»3.3 ± 1.4ï¼½,P<0.05, and ï¼»12.6 ± 1.6ï¼½ vs ï¼»3.3 ± 1.4ï¼½,P<0.05). Conclusion: The combination of Manlyman Spray and biofeedback therapy can effectively treat primary premature ejaculation, with a long duration of treatment and good safety, and the specific mechanism needs further study.


Subject(s)
Premature Ejaculation , Male , Humans , Adult , Premature Ejaculation/therapy , Biofeedback, Psychology , Treatment Outcome , Ejaculation , Sexual Behavior
10.
Front Oncol ; 14: 1388999, 2024.
Article in English | MEDLINE | ID: mdl-38646439

ABSTRACT

Heat shock protein 70 (HSP70) is a highly conserved protein functioning as a "molecular chaperone", which is integral to protein folding and maturation. In addition to its high expression within cells upon stressful challenges, HSP70 can be translocated to the cell membrane or released from cells in free form or within extracellular vesicles (EVs). Such trafficking of HSP70 is also present in cancer cells, as HSP70 is overexpressed in various types of patient samples across a range of common malignancies, signifying that extracellular HSP70 (eHSP70) can serve as a tumor biomarker. eHSP70 is involved in a broad range of cancer-related events, including cell proliferation and apoptosis, extracellular matrix (ECM) remodeling, epithelial-mesenchymal transition (EMT), angiogenesis, and immune response. eHSP70 can also induce cancer cell resistance to various treatments, such as chemotherapy, radiotherapy, and anti-programmed death-1 (PD-1) immunotherapy. Though the role of eHSP70 in tumors is contradictory, characterized by both pro-tumor and anti-tumor effects, eHSP70 serves as a promising target in cancer treatment. In this review, we comprehensively summarized the current knowledge about the role of eHSP70 in cancer progression and treatment resistance and discussed the feasibility of eHSP70 as a cancer biomarker and therapeutic target.

11.
Ann Clin Lab Sci ; 54(3): 335-346, 2024 May.
Article in English | MEDLINE | ID: mdl-39048173

ABSTRACT

OBJECTIVE: Cardiac dysfunction can result from excessive fibrosis in cardiac fibroblasts (CFs) following an acute myocardial infarction (AMI). SIRT3 has been shown to be associated with numerous cardiovascular diseases. This study aimed to investigate the mechanism by which SIRT3 influences myocardial fibrosis following AMI. METHODS: An AMI model was established in rats and echocardiography was used to assess cardiac systolic function. Triphenyl tetrazolium chloride (TTC) and H&E staining were employed to observe the myocardial histopathological status. Masson trichrome staining was used to detect fibrosis, and the changes in expression of fibrosis-related proteins were detected by Western Blot (WB). In this study, we utilized in vitro cell models stimulated by Ang II to investigate the underlying mechanisms. We employed Transwell and CCK-8 assays to detect the function of CFs. Additionally, we used transmission electron microscopy (TEM) to observe the structural morphology of mitochondria, whereas WB was performed to quantify fibrosis-associated proteins and to assay the changes in SIRT3, SRV2, and Drp1. RESULTS: We observed a significant decrease in the expression of SIRT3 and an increase in mitochondrial fragmentation in rats with AMI. Additionally, we observed upregulation of fibrosis-associated signature proteins and collagen proteins expression. Through the use of vitro Ang II stimulation we observed a downregulation of SIRT3 expression, an increase in mitochondrial fragmentation, and an increase in the proliferation and migration of CFs. Opposite effects were observed when SIRT3 was overexpressed. Additive mitochondrial division agonists were found to stimulate the proliferation and migration of CFs, however, SIRT3 expression was unchanged. Interference with SRV2 and SIRT3 revealed that SIRT3 effectively prevented the expression of SRV2/Drp1, resulting in the inhibition of mitochondrial division and the suppression of CFs proliferative migration. CONCLUSION: In summary, SIRT3 can suppress myocardial fibrosis after acute myocardial infarction by regulating SRV2/Drp1-mediated mitochondrial division.


Subject(s)
Fibroblasts , Mitochondrial Dynamics , Myocardial Infarction , Myocardium , Sirtuin 3 , Animals , Male , Rats , Cell Proliferation , Disease Models, Animal , Fibroblasts/metabolism , Fibroblasts/pathology , Fibrosis , Mitochondrial Dynamics/drug effects , Myocardial Infarction/pathology , Myocardial Infarction/metabolism , Myocardium/pathology , Myocardium/metabolism , Rats, Sprague-Dawley , Sirtuin 3/metabolism , Sirtuin 3/genetics , Sirtuins
12.
Cancer Res Commun ; 4(2): 418-430, 2024 02 15.
Article in English | MEDLINE | ID: mdl-38324026

ABSTRACT

PURPOSE: Intratumoral nerve infiltration relates to tumor progression and poor survival in oral squamous cell carcinoma (OSCC). How neural involvement regulates antitumor immunity has not been well characterized. This study aims to investigate molecular mechanisms of regulating tumor aggressiveness and impairing antitumor immunity by nerve-derived factors. EXPERIMENTAL DESIGN: We performed the surgical lingual denervation in an immunocompetent mouse OSCC model to investigate its effect on tumor growth and the efficacy of anti-PD-1 immunotherapy. A trigeminal ganglion neuron and OSCC cell coculture system was established to investigate the proliferation, migration, and invasion of tumor cells and the PD-L1 expression. Both the neuron-tumor cell coculture in vitro model and the OSCC animal model were explored. RESULTS: Lingual denervation slowed down tumor growth and improved the efficacy of anti-PD-1 treatment in the OSCC model. Coculturing with neurons not only enhanced the proliferation, migration, and invasion but also upregulated TGFß-SMAD2 signaling and PD-L1 expression of tumor cells. Treatment with the TGFß signaling inhibitor galunisertib reversed nerve-derived tumor aggressiveness and downregulated PD-L1 on tumor cells. Similarly, lingual denervation in vivo decreased TGFß and PD-L1 expression and increased CD8+ T-cell infiltration and the expression of IFNγ and TNFα within tumor. CONCLUSIONS: Neural involvement enhanced tumor aggressiveness through upregulating TGFß signaling and PD-L1 expression in OSCC, while denervation of OSCC inhibited tumor growth, downregulated TGFß signaling, enhanced activities of CD8+ T cells, and improved the efficacy of anti-PD-1 immunotherapy. This study will encourage further research focusing on denervation as a potential adjuvant therapeutic approach in OSCC. SIGNIFICANCE: This study revealed the specific mechanisms for nerve-derived cancer progression and impaired antitumor immunity in OSCC, providing a novel insight into the cancer-neuron-immune network as well as pointing the way for new strategies targeting nerve-cancer cross-talk as a potential adjuvant therapeutic approach for OSCC.


Subject(s)
Carcinoma, Squamous Cell , Mouth Neoplasms , Animals , Mice , B7-H1 Antigen/metabolism , Carcinoma, Squamous Cell/immunology , Carcinoma, Squamous Cell/therapy , Denervation , Immunotherapy , Mouth Neoplasms/immunology , Mouth Neoplasms/therapy , Transforming Growth Factor beta/metabolism , Signal Transduction
13.
J Ethnopharmacol ; 334: 118586, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39032664

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Acquired resistance to osimertinib limits its clinical efficacy in non-small cell lung cancer (NSCLC) with EGFR mutations. The widespread recognition of Taxus chinensis var. Mairei (Lemée et Lévl) Cheng et L.K. Fu (Chinese yew) as a natural anti-cancer medication is well-established. However, the specific contribution of Taxus chinensis var. Mairei (Lemée et Lévl) Cheng et L.K. Fu in addressing resistance to osimertinib is still uncertain. AIM OF THE STUDY: Based on the biological behaviors and lipid metabolism, we investigated whether aqueous extract of Taxus chinensis var. Mairei (Lemée et Lévl) Cheng et L.K. Fu (AETC) could enhance the antitumor effect of osimertinib in NSCLC with an investigation on the precise mechanisms. MATERIALS AND METHODS: The effect of AETC on enhancing osimertinib sensitivity was assessed via cell viability measurements, levels of reactive oxygen species (ROS), apoptosis, and lipid levels. Western blotting was used to verify the mechanisms of AETC responsible for overcoming the resistance to osimertinib via ERK1/2 overexpression and knockdown models. In vivo validation was conducted using subcutaneous xenografts from osimertinib-resistant cells in nude mice. RESULTS: Osimertinib-resistant cells exhibited altered cholesterol biosynthesis, which was induced by ERK1/2 activation. The combination of AETC and osimertinib can synergistically decrease the levels of ROS in cells, enhance apoptosis, and inhibit the growth of osimertinib-resistant cells. Mechanistic experiments demonstrated that AETC can downregulate the key regulators of cholesterol biosynthesis by regulating ERK1/2, inhibiting the endogenous synthesis rate of cholesterol, and suppressing the level of lipids in osimertinib-resistant cells and xenograft tumors when combined with osimertinib, ultimately reversing resistance to osimertinib. CONCLUSIONS: The resistance to osimertinib is significantly influenced by cholesterol biosynthesis, highlighting its pivotal role in this context. AETC can enhance osimertinib sensitivity via ERK/SREBP-2/HMGCR-mediated cholesterol biosynthesis. These results provide a promising therapeutic target and potential treatment option for resistance to osimertinib.


Subject(s)
Acrylamides , Aniline Compounds , Carcinoma, Non-Small-Cell Lung , Cholesterol , Drug Resistance, Neoplasm , ErbB Receptors , Lung Neoplasms , Taxus , Animals , Female , Humans , Mice , Acrylamides/pharmacology , Aniline Compounds/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cholesterol/biosynthesis , Drug Resistance, Neoplasm/drug effects , ErbB Receptors/genetics , ErbB Receptors/metabolism , Indoles , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , MAP Kinase Signaling System/drug effects , Mice, Inbred BALB C , Mice, Nude , Mutation , Plant Extracts/pharmacology , Pyrimidines , Xenograft Model Antitumor Assays
14.
Integr Cancer Ther ; 23: 15347354241237969, 2024.
Article in English | MEDLINE | ID: mdl-38462913

ABSTRACT

Jixueteng, the vine of the bush Spatholobus suberectus Dunn., is widely used to treat irregular menstruation and arthralgia. Yinyanghuo, the aboveground part of the plant Epimedium brevicornum Maxim., has the function of warming the kidney to invigorate yang. This research aimed to investigate the effects and mechanisms of the Jixueteng and Yinyanghuo herbal pair (JYHP) on cisplatin-induced myelosuppression in a mice model. Firstly, ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) screened 15 effective compounds of JYHP decoction. Network pharmacology enriched 10 genes which may play a role by inhibiting the apoptosis of bone marrow (BM) cells. Then, a myelosuppression C57BL/6 mice model was induced by intraperitoneal (i.p.) injection of cis-Diaminodichloroplatinum (cisplatin, CDDP) and followed by the intragastric (i.g.) administration of JYHP decoction. The efficacy was evaluated by blood cell count, reticulocyte count, and histopathological analysis of bone marrow and spleen. Through the vivo experiments, we found the timing of JYHP administration affected the effect of drug administration, JYHP had a better therapeutical effect rather than a preventive effect. JYHP obviously recovered the hematopoietic function of bone marrow from the peripheral blood cell test and pathological staining. Flow cytometry data showed JYHP decreased the apoptosis rate of BM cells and the western blotting showed JYHP downregulated the cleaved Caspase-3/Caspase-3 ratios through RAS/MEK/ERK pathway. In conclusion, JYHP alleviated CDDP-induced myelosuppression by inhibiting the apoptosis of BM cells through RAS/MEK/ERK pathway and the optimal timing of JYHP administration was after CDDP administration.


Subject(s)
Cisplatin , Drugs, Chinese Herbal , Mice , Animals , Female , Cisplatin/adverse effects , Caspase 3 , Network Pharmacology , Mice, Inbred C57BL , Drugs, Chinese Herbal/pharmacology , Mitogen-Activated Protein Kinase Kinases
15.
Integr Cancer Ther ; 23: 15347354231226108, 2024.
Article in English | MEDLINE | ID: mdl-38240227

ABSTRACT

OBJECTIVE: In China, grade 2 to 3 immune-related rash will probably lead to the interruption of immunotherapy. Corticosteroid (CS) is the main treatment, but not always effective. The external application of clearing heat and removing dampness, which is represented by Qing-Re-Li-Shi Formula (QRLSF), has been used in our hospital to treat immune-related cutaneous adverse events (ircAEs) for the last 5 years. The purpose of this study was to discuss its efficacy and safety in the treatment of grade 2 to 3 rash. METHODS: A retrospective study of patients with grade 2 to 3 immune-related rash in our hospital from December 2019 to December 2022 was conducted. These patients received QRLSF treatment. Clinical characteristics, treatment outcome, and health-related quality of life (HrQoL) were analyzed. RESULTS: Thirty patients with grade 2 to 3 rash (median onset time: 64.5 days) were included. The skin lesions of 24 cases (80%) returned to grade 1 with a median time of 8 days. The accompanying symptoms were also improved with median time of 3 to 4 days. The addition of antihistamine (AH) drug didn't increase the efficacy of QRLSF (AH + QRLSF: 75.00% vs QRLSF: 83.33%, P = .66). No significant difference was observed in the efficacy of QRLSF treatment regardless of whether patients had previously received CS therapy (untreated population: 88.24% vs treated population: 69.23%, P = .36). During 1-month follow-up, 2 cases (8.33%) underwent relapses. In terms of HrQoL, QRLSF treatment could significantly reduce the median scores of all domains of Skindex-16, including symptoms (39.58 vs 8.33, P < .0001), emotions (58.33 vs 15.48, P < .0001), functioning (46.67 vs 13.33, P < .0001) and composite (52.60 vs 14.06, P < .0001). CONCLUSION: External application of clearing heat and removing dampness was proven to be an effective and safe treatment for such patients. In the future, high-quality trials are required to determine its clinical application in the field of ircAEs.


Subject(s)
B7-H1 Antigen , Exanthema , Programmed Cell Death 1 Receptor , Humans , B7-H1 Antigen/antagonists & inhibitors , Exanthema/chemically induced , Exanthema/drug therapy , Hot Temperature , Ligands , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Quality of Life , Retrospective Studies
16.
Reprod Sci ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38871967

ABSTRACT

We explore the interaction between estrogen and PCSK9 and their collective impact on lipid metabolism, especially concerning the regulation of low-density lipoprotein receptor levels. Utilizing both animal and cellular models, including ovariectomized mice and HepG2 cell lines, we demonstrate that estrogen deficiency leads to a disruption in lipid metabolism, characterized by elevated levels of total cholesterol and LDL-C. The study commences with mice undergoing ovariectomy, followed by a diet regimen comprising either high-fat diet or normal feed for a four-week duration. Key assessments include analyzing lipid metabolism, measuring PCSK9 levels in the bloodstream, and evaluating hepatic low-density lipoprotein receptor expression. We will also conduct correlation analyses to understand the relationship between PCSK9 and various lipid profiles. Further, a subset of ovariectomized mice on high-fat diet will undergo treatment with either estrogen or PCSK9 inhibitor for two weeks, with a subsequent re-evaluation of the earlier mentioned parameters. Our findings reveal that estrogen inhibits PCSK9-mediated degradation of low-density lipoprotein receptor, a process crucial for maintaining lipid homeostasis. Through a series of experiments, including immunohistochemistry and western blot analysis, we establish that PCSK9 is involved in lipid metabolism disorders caused by estrogen deficiency and that estrogen regulates PCSK9 and low-density lipoprotein receptor at post-transcriptional level. The study provides a mechanism for the involvement of PCSK9 in elucidating the disorders of lipid metabolism caused by estrogen deficiency due to perimenopause and ovarian decline.

17.
Adv Sci (Weinh) ; 11(21): e2309111, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38501909

ABSTRACT

Nickel oxide (NiOx)-based inverted perovskite solar cells stand as promising candidates for advancing perovskite photovoltaics towards commercialization, leveraging their remarkable stability, scalability, and cost-effectiveness. However, the interfacial redox reaction between high-valence Ni4+ and perovskite, alongside the facile conversion of iodide in perovskite into I2, significantly deteriorates the performance and reproducibility of NiOx-based perovskite photovoltaics. Here, potassium borohydride (KBH4) is introduced as a dual-action reductant, which effectively avoids the Ni4+/perovskite interface reaction and mitigates the iodide-to-I2 oxidation within perovskite film. This synergistic redox modulation significantly suppresses nonradiative recombination and increases the carrier lifetime. As a result, an impressive power conversion efficiency of 24.17% for NiOx-based perovskite solar cells is achieved, and a record efficiency of 20.2% for NiOx-based perovskite solar modules fabricated under ambient conditions. Notably, when evaluated using the ISOS-L-2 standard protocol, the module retains 94% of its initial efficiency after 2000 h of continuous illumination under maximum power point at 65 °C in ambient air.

18.
Heliyon ; 10(3): e25318, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38356571

ABSTRACT

Objective: To review studies on digital medicine in cardiovascular diseases (CVD), discuss its development process, knowledge structure and research hotspots, and provide a perspective for researchers in this field. Methods: The relevant literature in recent 20 years (January 2004 to October 2022) were retrieved from the Web of Science Core Collection (WoSCC). CiteSpace was used to demonstrate our knowledge of keywords, co-references and speculative frontiers. VOSviewer was used to chart the contributions of authors, institutions and countries and incorporates their link strength into the table. Results: A total of 5265 English articles in set timespan were included. The number of publications increased steadily annually. The United States (US) produced the highest number of publications, followed by England. Most publications were from Harvard Medicine School, followed by Massachusetts General Hospital and Brigham Women's Hospital. The most authoritative academic journal was JMIR mHealth and uHealth. Noseworthy PA may have the highest influence in this intersected field with the highest number of citations and total link strength. The utilization of wearable mobile devices in the context of CVD, encompassing the identification of risk factors, diagnosis and prevention of diseases, as well as early intervention and remote management of diseases, has been widely acknowledged as a knowledge base and an area of current interest. To investigate the impact of various digital medicine interventions on chronic care and assess their clinical effectiveness, examine the potential of machine learning (ML) in delivering clinical care for atrial fibrillation (AF) and identifying early disease risk factors, as well as explore the development of disease prediction models using neural networks (NNs), ML and unsupervised learning in CVD prognosis, may emerge as future trends and areas of focus. Conclusion: Recently, there has been a significant surge of interest in the investigation of digital medicine in CVD. This initial bibliometric study offers a comprehensive analysis of the research landscape pertaining to digital medicine in CVD, thereby furnishing related scholars with a dependable reference to facilitate further progress in this domain.

19.
Chem Commun (Camb) ; 60(31): 4230-4233, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38526583

ABSTRACT

Lead-free perovskite microcrystals (MCs) have been regarded as promising potential photocatalysts, owing to their high molar extinction coefficient, low economic cost, adjustable light absorption range, and ample surface-active sites. Herein, C-3 thio/selenocyanation of indoles is demonstrated in high selectivity and yield by using lead-free double perovskite Cs2AgBiBr6 MCs under visible light irradiation. Moreover, the photocatalyst can be recycled at least 5 times without a significant decrease in catalytic activity.

20.
Chem Commun (Camb) ; 60(21): 2958-2961, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38375889

ABSTRACT

Visible-light-induced EDA complex-promoted ring-opening of cycloketone oxime esters to synthesise various cyanoalkylated products with N-methacryloyl benzamides was developed. Various radical receptors were compatible with the current reaction system to furnish diverse heterocyclic compounds. Mechanistic analysis shows that the formation of an EDA complex was crucial to the photocatalytic strategy. Importantly, 4-cyanoalkyl isoquinoline-1,3-diones were obtained in high yields by using a catalytic amount of 1,4-diazabicyclo[2.2.2]octane (DABCO) through prolonging the reaction time, which provided a practical approach to give a variety of isoquinoline-1,3-dione derivatives.

SELECTION OF CITATIONS
SEARCH DETAIL