Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 103
Filter
Add more filters

Publication year range
1.
Mol Med ; 30(1): 87, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877413

ABSTRACT

BACKGROUND: Intervertebral disc degeneration (IDD) is a common musculoskeletal degenerative disease, which often leads to low back pain and even disability, resulting in loss of labor ability and decreased quality of life. Although many progresses have been made in the current research, the underlying mechanism of IDD remains unclear. The apoptosis of nucleus pulposus (NP) cells (NPCs) is an important pathological mechanism in intervertebral disc degeneration (IDD). This study evaluated the relationship between S100A6 and NPCs and its underlying mechanism. METHODS: Mass spectrometry, bioinformatics, and quantitative real-time polymerase chain reaction (qRT-PCR) analyses were used to screen and verify hub genes for IDD in human IVD specimens with different degeneration degrees. Western blotting, immunohistochemistry (IHC), and/or immunofluorescence (IF) were used to detect the expression level of S100A6 in human NP tissues and NPCs. The apoptotic phenotype of NPCs and Wnt/ß-catenin signaling pathway were evaluated using flow cytometry, western blotting, and IF. S100A6 was overexpressed or knocked down in NPCs to determine its impact on apoptosis and Wnt/ß-catenin signaling pathway activity. Moreover, we used the XAV-939 to inhibit and SKL2001 to activate the Wnt/ß-catenin signaling pathway. The therapeutic effect of S100A6 inhibition on IDD was also evaluated. RESULTS: S100A6 expression increased in IDD. In vitro, increased S100A6 expression promoted apoptosis in interleukin (IL)-1ß-induced NPCs. In contrast, the inhibition of S100A6 expression partially alleviated the progression of annulus fibrosus (AF) puncture-induced IDD in rats. Mechanistic studies revealed that S100A6 regulates NPC apoptosis via Wnt/ß-catenin signaling pathway. CONCLUSIONS: This study showed that S100A6 expression increased during IDD and promoted NPCs apoptosis by regulating the Wnt/ß-catenin signaling pathway, suggesting that S100A6 is a promising new therapeutic target for IDD.


Subject(s)
Apoptosis , Intervertebral Disc Degeneration , Nucleus Pulposus , S100 Calcium Binding Protein A6 , Wnt Signaling Pathway , Nucleus Pulposus/metabolism , Nucleus Pulposus/pathology , Apoptosis/genetics , Humans , S100 Calcium Binding Protein A6/metabolism , S100 Calcium Binding Protein A6/genetics , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/genetics , Intervertebral Disc Degeneration/pathology , Animals , Male , Female , Rats , Adult , Middle Aged , beta Catenin/metabolism , beta Catenin/genetics , Rats, Sprague-Dawley , Disease Models, Animal , Cell Cycle Proteins
2.
FASEB J ; 36(7): e22369, 2022 07.
Article in English | MEDLINE | ID: mdl-35747912

ABSTRACT

Intervertebral disc (IVD) degeneration (IVDD) is closely linked to degenerative spinal disease, resulting in disability, poor quality of life, and financial burden. Apoptosis of nucleus pulposus (NP) cells (NPCs) is a key pathological basis of IVDD. Periostin (POSTN), an extracellular matrix protein, is expressed in many tissues, whereas its abnormal expression is associated with IVDD. The conventional Wnt/ß-catenin pathway is also involved in IVDD and contributes to NPCs apoptosis. However, research on the mechanisms of POSTN in IVDD is lacking. This study investigated the relationship between POSTN and ß-catenin expression in degenerated IVDs. We detected the expression of POSTN, ß-catenin, and cleaved-caspase-3 (C-caspase3) in degenerated and non-degenerated IVD tissues of different grades (n = 8) using RT-qPCR, immunohistochemical staining, and western blotting analysis. Next, we explored the effects of recombinant periostin (rPOSTN) and isoquercitrin (Iso), an inhibitor of the Wnt/ß-catenin pathway, on NPCs apoptosis. Finally, we inhibited the expression of POSTN in degenerated NPCs in vivo and investigated the anti-apoptotic effect. The expression of ß-catenin, POSTN, and C-caspase3 in severe degenerative IVDs was significantly higher than that in mild degenerative IVDs. These findings were confirmed in rat and cell-based degenerative models. When treated with rPOSTN, the Wnt/ß-catenin pathway activity and cell apoptosis were time- and dose-dependent. However, rPOSTN-induced NPCs apoptosis decreased after iso-induced inhibition of the Wnt/ß-catenin pathway. POSTN inhibition reduced apoptosis but was restored by rPOSTN re-addition. Lastly, POSTN inhibition ameliorated puncture-induced IVDD in vivo. Overall, our study demonstrated that POSTN promotes NPCs apoptosis and aggravates degeneration by activating the Wnt/ß-catenin pathway.


Subject(s)
Intervertebral Disc Degeneration , Nucleus Pulposus , Animals , Apoptosis , Intervertebral Disc Degeneration/metabolism , Nucleus Pulposus/metabolism , Quality of Life , Rats , Wnt Signaling Pathway , beta Catenin/metabolism
3.
Int J Mol Sci ; 24(17)2023 Aug 26.
Article in English | MEDLINE | ID: mdl-37686041

ABSTRACT

Lower back pain, a leading cause of disability worldwide, is associated with intervertebral disc degeneration (IDD) in approximately 40% of cases. Although nucleus pulposus (NP) cell senescence is a major contributor to IDD, the underlying mechanisms remain unclear. We collected NP samples from IDD patients who had undergone spinal surgery. Healthy and senescent NP tissues (n = 3) were screened using the Pfirrmann grading system combined with immunohistochemistry, as well as hematoxylin and eosin, Safranin O, Alcian blue, and Masson staining. Differentially expressed proteins (DEPs) were identified using quantitative TMT-based proteomics technology. Bioinformatics analyses included gene ontology (GO) annotation, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and protein-protein interaction (PPI) analyses. In addition, immunofluorescence was used to verify protein expression. In total, 301 DEPs were identified in senescent NP tissues, including 92 upregulated and 209 downregulated proteins. In GO, DEPs were primarily associated with NF-kappaB transcription factor, extracellular regions, cellular protein metabolic processes, and post-translational protein modification. The enriched KEGG pathways included TGF-ß, Wnt, RAP1, interleukin-17, extracellular matrix-receptor adhesion, and PI3K/Akt signaling pathways. PPI analysis demonstrated interactions between multiple proteins. Finally, immunofluorescence verified the expressions of MMP3, LUM, TIMP1, and CDC42 in senescent NP cells. Our study provides valuable insights into the mechanisms underlying senescent NP tissues in IDD patients. DEPs provide a basis for further investigation of the effects of senescent factors on IDD.


Subject(s)
Intervertebral Disc Degeneration , Nucleus Pulposus , Humans , Intervertebral Disc Degeneration/genetics , Phosphatidylinositol 3-Kinases , Proteomics , Genes, Regulator
4.
Int J Mol Sci ; 24(23)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38068915

ABSTRACT

The dysregulation of intracellular and extracellular environments as well as the aberrant expression of ion channels on the cell membrane are intricately linked to a diverse array of degenerative disorders, including intervertebral disc degeneration. This condition is a significant contributor to low back pain, which poses a substantial burden on both personal quality of life and societal economics. Changes in the number and function of ion channels can disrupt the water and ion balance both inside and outside cells, thereby impacting the physiological functions of tissues and organs. Therefore, maintaining ion homeostasis and stable expression of ion channels within the cellular microenvironment may prove beneficial in the treatment of disc degeneration. Aquaporin (AQP), calcium ion channels, and acid-sensitive ion channels (ASIC) play crucial roles in regulating water, calcium ions, and hydrogen ions levels. These channels have significant effects on physiological and pathological processes such as cellular aging, inflammatory response, stromal decomposition, endoplasmic reticulum stress, and accumulation of cell metabolites. Additionally, Piezo 1, transient receptor potential vanilloid type 4 (TRPV4), tension response enhancer binding protein (TonEBP), potassium ions, zinc ions, and tungsten all play a role in the process of intervertebral disc degeneration. This review endeavors to elucidate alterations in the microenvironment of the nucleus pulposus during intervertebral disc degeneration (IVDD), with a view to offer novel insights and approaches for exploring therapeutic interventions against disc degeneration.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc , Nucleus Pulposus , Humans , Nucleus Pulposus/metabolism , Intervertebral Disc Degeneration/metabolism , Quality of Life , Intervertebral Disc/metabolism , Ion Channels/metabolism , Homeostasis/physiology , Ions/metabolism , Water/metabolism
5.
Int J Mol Sci ; 24(21)2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37958534

ABSTRACT

The results of artificial insemination (AI) are adversely affected by changes in sperm motility and function throughout the cryopreservation procedure. The proteome alterations of frozen-thawed spermatozoa with various levels of freezability in dairy goats, however, remain largely unknown. To discover differentially expressed proteins (DEPs) and their roles in dairy goat sperm with high or low freezability (HF or LF), we conducted 4D-DIA quantitative proteomics analysis, the results of which are presented in this work. Additionally, we explored the underlying processes that may lead to the variations in sperm freezing resistance. A total of 263 DEPs (Fold Change > 2.0, p-value < 0.05) were identified between the HF group and LF group in frozen-thawed dairy goat spermatozoa. In our Gene Ontology (GO) enrichment analysis, the DEPs were mostly associated with the regulation of biological processes, metabolic processes, and responses to stress and cellular component biogenesis. Our Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis also revealed that the DEPs were predominantly engaged in oxidative phosphorylation, N-Glycan biosythesis, and cysteine and methionien metabolism. A protein-protein interaction (PPI) network analysis revealed 14 potential proteins (NUDFB8, SDHC, PDIA4, HSPB1, etc.) that might influence the freezability of dairy goat sperm. These findings shed light on the processes underlying alterations in the proteome and sperm freezability, aiding further research on sperm cryopreservation.


Subject(s)
Semen Preservation , Semen , Male , Animals , Semen/physiology , Proteomics , Proteome , Sperm Motility/physiology , Semen Preservation/veterinary , Semen Preservation/methods , Spermatozoa/physiology , Cryopreservation/veterinary , Cryopreservation/methods , Goats
6.
Apoptosis ; 27(1-2): 133-148, 2022 02.
Article in English | MEDLINE | ID: mdl-35147801

ABSTRACT

This study aimed to determine the effects of SKI on interleukin (IL)-1ß-induced apoptosis of nucleus pulposus (NP) cells, intervertebral disc degeneration (IDD), and the Wnt signaling pathway. NP tissue specimens of different Pfirrmann grades (II-V) were collected from patients with different grades of IDD. Real-time polymerase chain reaction and western blotting were used to compare SKI mRNA and protein expression in NP tissues from patients. Using the IL-1ß-induced IDD model, NP cells were infected with lentivirus-coated si-SKI to downregulate the expression of SKI and treated with LiCl to evaluate the involvement of the Wnt/ß-catenin signaling pathway. Western blotting, immunofluorescence, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining were used to detect NP cell apoptosis, extracellular matrix (ECM) metabolism, and related protein expression changes in the Wnt/ß-catenin signaling pathway. To investigate the role of SKI in vivo, a rat IDD model was established by needle puncture of the intervertebral disc. Rats were injected with lentivirus-coated si-SKI and evaluated by magnetic resonance imaging (MRI), and hematoxylin and eosin (HE) and safranin O staining. SKI expression positively correlated with the severity of human IDD. In the IL-1ß-induced NP cell degeneration model, SKI expression increased significantly and reached a peak at 24 h. SKI knockdown protected against IL-1ß-induced NP cell apoptosis and ECM degradation. LiCl treatment reversed the protective effects of si-SKI on NP cells. Furthermore, lentivirus-coated si-SKI injection partially reversed the NP tissue damage in the IDD model in vivo. SKI knockdown reduced NP cell apoptosis and ECM degradation by inhibiting the Wnt/ß-catenin signaling pathway, ultimately protecting against IDD. Therefore, SKI may be an effective target for IDD treatment.


Subject(s)
Intervertebral Disc Degeneration , Nucleus Pulposus , Animals , Apoptosis/genetics , Cells, Cultured , Extracellular Matrix/metabolism , Humans , Intervertebral Disc Degeneration/genetics , Intervertebral Disc Degeneration/therapy , Nucleus Pulposus/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Rats , Wnt Signaling Pathway , beta Catenin/genetics , beta Catenin/metabolism
7.
Connect Tissue Res ; 63(6): 559-576, 2022 11.
Article in English | MEDLINE | ID: mdl-35736364

ABSTRACT

Intervertebral disc degeneration (IDD) is a common age-related disease with clinical manifestations of lumbar and leg pain and limited mobility. The pathogenesis of IDD is mainly mediated by the death of intervertebral disc (IVD) cells and the imbalance of extracellular matrix (ECM) synthesis and degradation. Oxidative stress and inflammatory reactions are the important factors causing this pathological change. Therefore, the regulation of reactive oxygen species and production of inflammatory factors may be an effective strategy to delay the progression of IDD. In recent years, nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream regulated protein heme oxygenase-1 (HO-1) have received special attention due to their antioxidant, anti-inflammatory and anti-apoptotic protective effects. Recent studies have elucidated the important role of these two proteins in the treatment of IDD disease. However, Nrf2 and HO-1 have not been systematically reported in IDD-related diseases. Therefore, this review describes the biological characteristics of Nrf2 and HO-1, the relationship between Nrf2- and HO-1-regulated oxidative stress and the inflammatory response and IDD, and the progress in research on some extracts targeting Nrf2 and HO-1 to improve IDD. Understanding the role and mechanism of Nrf2 and HO-1 in IDD may provide novel ideas for the clinical treatment and development of Nrf2- and HO-1-targeted drugs.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc , Nucleus Pulposus , Anti-Inflammatory Agents/metabolism , Anti-Inflammatory Agents/therapeutic use , Antioxidants/metabolism , Antioxidants/therapeutic use , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/therapeutic use , Humans , Intervertebral Disc/pathology , Intervertebral Disc Degeneration/pathology , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/therapeutic use , Nucleus Pulposus/pathology , Reactive Oxygen Species/metabolism
8.
Connect Tissue Res ; 63(6): 650-662, 2022 11.
Article in English | MEDLINE | ID: mdl-35491814

ABSTRACT

BACKGROUND: Low back pain is a common symptom of intervertebral disc degeneration (IDD), which seriously affects the quality of life of patients. The abnormal apoptosis and senescence of nucleus pulposus (NP) cells play important roles in the pathogenesis of IDD. Proanthocyanidins (PACs) are polyphenolic compounds with anti-apoptosis and anti-aging effects. However, their functions in NP cells are not yet clear. Therefore, this study was performed to explore the effects of PACs on NP cell apoptosis and aging and the underlying mechanisms of action. METHODS: Cell viability was evaluated by cell counting kit-8 (CCK-8) assay. The apoptosis rate was determined TUNEL assays. Levels of apoptosis-associated molecules (Bcl-2, Bax, C-caspase-3 and Caspase-9) were evaluated via western blot. The senescence was observed through SA-ß-gal staining and western blotting analysis was performed to observe the expression of senescence-related molecules (p-P53, P53, P21 and P16). RESULTS: Pretreatment with PACs exhibited protective effects against IL-1ß-induced NP cell apoptosis including apoptosis rate, expressions of proapoptosis and antiapoptosis related genes and protein. PACs could also alleviate the increase of p-p53, P21, and P16 in IL-1ß-treated NP cells. SA-ß-gal staining showed that IL-1ß-induced senescence of NP cells was prevented by PACs pertreatment. In addition, PACs activated PI3K/Akt pathway in IL-1ß-stimulated NP cells. However, these protected effects were inhibited after LY294002 treatment. CONCLUSION: The results of the present study showed that PACs inhibit IL-1ß-induced apoptosis and aging of NP cells by activating the PI3K/Akt pathway, and suggested that PACs have therapeutic potential for IDD.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc , Nucleus Pulposus , Proanthocyanidins , Aging , Caspase 3/metabolism , Caspase 9/metabolism , Caspase 9/pharmacology , Cells, Cultured , Humans , Intervertebral Disc/pathology , Intervertebral Disc Degeneration/pathology , Nucleus Pulposus/pathology , Phosphatidylinositol 3-Kinases/metabolism , Proanthocyanidins/metabolism , Proanthocyanidins/pharmacology , Proanthocyanidins/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Quality of Life , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/pharmacology , Tumor Suppressor Protein p53/therapeutic use , bcl-2-Associated X Protein/metabolism , bcl-2-Associated X Protein/pharmacology
9.
J Appl Microbiol ; 133(5): 2680-2693, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35543356

ABSTRACT

AIM: Oxalic acid (OA) is one of the pathogenic factors of Botrytis cinerea. Trichoderma afroharzianum exerts both antagonistic and oxalate-degrading effects on B. cinerea. This study aimed to investigate the relationship between the elimination of OA by T. afroharzianum and its antagonistic effects on B. cinerea. METHODS AND RESULTS: Reversed-phase high performance liquid chromatogram (RP-HPLC) analysis showed that T. afroharzianum LTR-2 eliminated 10- or 20-mmol/L OA within 120 h, with the degradation being particularly efficient at the concentration of 20 mmol/L. RNA-seq analysis showed that the oxalate decarboxylase (OXDC) gene Toxdc, ß-1,3-exoglucanase gene Tglu and aspartic protease gene Tpro of LTR-2 were significantly upregulated after treatment with 20-mmol/L OA. RT-qPCR analysis showed that under the conditions of confrontation, Toxdc and three cell wall degrading enzyme (CWDE) genes were upregulated before physical contact with B. cinerea. In addition, RT-qPCR analysis showed that OA synthesis in B. cinerea was not significantly affected by LTR-2. CONCLUSIONS: The results revealed a correlation between OA degradation and mycoparasitism in T. afroharzianum when antagonising B. cinerea at the transcriptional level. SIGNIFICANCE AND IMPACT OF THE STUDY: The relationship between OA degradation by T. afroharzianum and its effects against B. cinerea provide a new perspective on the antagonism of T. afroharzianum against B. cinerea. In addition, this study provides theoretical data for the scientific application of T. afroharzianum in the field of biocontrol.


Subject(s)
Oxalic Acid , Trichoderma , Oxalic Acid/metabolism , Trichoderma/genetics , Trichoderma/metabolism , Plant Diseases , Botrytis/genetics , Botrytis/metabolism , Cell Wall/metabolism , Peptide Hydrolases/metabolism
10.
J Appl Microbiol ; 132(3): 2306-2322, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34709709

ABSTRACT

AIM: To evaluation the probiotic potential of Lactobacillus plantarum strain RW1 isolated from healthy dogs for its further utilization as a dietary supplement for dogs. METHODS AND RESULTS: This study aimed to evaluate the probiotic potential of L. plantarum strain RW1 isolated from canine faeces. After confirming by conventional and then by 16S rRNA sequencing, the identified strain RW1 was in vitro screened for its survivability in simulated gastrointestinal conditions, low pH, bile salts and adhesion to gut epithelial tissues, growth inhibitory effects on common pathogens and anti-inflammatory potential by measuring the mRNA expression level of IL-6, IL-8, IL-1ß in Salmonella-infected MODE-K cells. Furthermore, the effects on epithelial barrier function and host defensin peptide (beta-defensin 3) was studied by measuring the mRNA expression level of tight junction protein (occludin) and beta-defensin 3 in MODE-K cells. The strain RW1 showed a considerable potential to survive in simulated gastrointestinal environmental conditions, low pH and high bile salt concentrations along with good adhesion to MODE-K cell line. Pathogenic bacterial growth and their adhesion to MODE-K cell line were significantly inhibited by the strain RW1. Real-time PCR analyses demonstrated that the strain RW1 inhibited Salmonella-induced pro-inflammatory cytokines (IL-6, IL-8 and IL-1ß) production and reinforced the expression of tight junction protein (occludin). The strain RW1 did not induce mRNA expression of beta-defensin 3. CONCLUSION: Based on in vitro results, the strain RW1 has the potential to be used as a probiotic supplement in dogs. However, further study involving in vivo health effects is needed. SIGNIFICANCE AND IMPACT OF THE STUDY: Antibiotics have many side effects and nowadays the probiotics are considered as a potential alternative to antibiotics. This study evaluates the probiotic potential of dog isolated L. plantarum strain RW1 to use it as a dietary supplement in dogs feeding to control infectious diseases.


Subject(s)
Lactobacillus plantarum , Probiotics , Animals , Bacterial Adhesion , Bile Acids and Salts/metabolism , Dogs , Feces/microbiology , Lactobacillus plantarum/metabolism , Probiotics/pharmacology , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism
11.
Genomics ; 113(1 Pt 2): 785-794, 2021 01.
Article in English | MEDLINE | ID: mdl-33069828

ABSTRACT

Risk stratification using prognostic markers facilitates clinical decision-making in treatment of osteosarcoma (OS). In this study, we performed a comprehensive analysis of DNA methylation and transcriptome data from OS patients to establish an optimal methylated lncRNA signature for determining OS patient prognosis. The original OS datasets were downloaded from the the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database. Univariate, Lasso, and machine learning algorithm-iterative Lasso Cox regression analyses were used to establish a methylated lncRNA signature that significantly correlated with OS patient survival. The validity of this signature was verified by the Kaplan-Meier curves, Receiver Operating Characteristic (ROC) curves. We established a four-methylated lncRNA signature that can predict OS patient survival (verified in independent cohort [GSE39055]). Kaplan-Meier analysis showed that the signature can distinguish between the survival of high- and low-risk patients. ROC analysis corroborated this finding and revealed that the signature had higher prediction accuracy than known biomarkers. Kaplan-Meier analysis of the clinical subgroup showed that the signature's prognostic ability was independent of clinicopathological factors. The four-methylated lncRNA signature is an independent prognostic biomarker of OS.


Subject(s)
Biomarkers, Tumor/genetics , DNA Methylation , Osteosarcoma/genetics , RNA, Long Noncoding/genetics , Humans , Machine Learning , Osteosarcoma/pathology
12.
Liver Int ; 41(8): 1879-1883, 2021 08.
Article in English | MEDLINE | ID: mdl-34008271

ABSTRACT

Recurrent primary biliary cholangitis (rPBC) is frequent following liver transplantation and associated with increased morbidity and mortality. It has been argued that rPBC behaves like an infectious disease because more potent immunosuppression with tacrolimus is associated with earlier and more severe recurrence. Prophylactic ursodeoxycholic acid is an established therapeutic option to prevent rPBC, whereas the role of second line therapies, such as obeticholic acid and bezafibrate in rPBC, remains largely unexplored. To address the hypothesis that a human betaretrovirus plays a role in the development of PBC, we have tested antiretroviral therapy in vitro and conducted randomised controlled trials showing improvements in hepatic biochemistry. Herein, we describe the utility of combination antiretroviral therapy to manage rPBC in two patients treated with open label tenofovir/emtricitabine-based regimens in combination with either lopinavir or raltegravir. Both patients experienced sustained biochemical and histological improvement with treatment, but the antiretroviral therapy was associated with side effects.


Subject(s)
Cholangitis , HIV Infections , Liver Cirrhosis, Biliary , Liver Transplantation , Anti-Retroviral Agents/therapeutic use , Cholangitis/drug therapy , HIV Infections/complications , HIV Infections/drug therapy , Humans , Liver Cirrhosis, Biliary/drug therapy , Ursodeoxycholic Acid/therapeutic use
13.
Arch Virol ; 166(7): 1877-1883, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33884475

ABSTRACT

Here, we report the development of an indirect enzyme-linked immunosorbent assay (ELISA) method that involves using multiepitope recombinant S protein (rSP) as the coating antigen to detect antibodies against canine coronavirus (CCoV). rSP was designed by arranging its four S fragments (91-135 aa, S1 gene; 377-434 aa, S2 gene; 647-671 aa, S3 gene; 951-971 aa, S4 gene; 207-227 aa) and two T-cell epitopes in tandem: T-E1-E2-E3-E4-T. This multiepitope antigen, which has a molecular weight of approximately 25 kDa and contains a His-tag, was recognized by a CCoV-positive serum in a Western blot assay. The optimal concentration of rSP as a coating antigen in the ELISA was 2 µg/mL, and the optimal dilution of enzyme-labeled secondary antibody was 1:10,000. The cutoff OD450 value was established at 0.2395. No reactivity was observed with antisera against canine distemper virus, canine parvovirus, or feline calicivirus, indicating that this assay is highly specific. We also tested 64 clinical serum samples using our newly established method, and the positive rate was found to be 82.8%. In conclusion, our assay was found to be highly sensitive and specific for the detection of antibodies against CCoV, and it can therefore serve as a new, efficient diagnostic method.


Subject(s)
Antibodies, Viral/immunology , COVID-19 Serological Testing/methods , Coronavirus, Canine/immunology , Enzyme-Linked Immunosorbent Assay/methods , Spike Glycoprotein, Coronavirus/immunology , Animals , Distemper Virus, Canine/immunology , Dogs , Recombinant Proteins/immunology , Sensitivity and Specificity
14.
Toxicol Appl Pharmacol ; 397: 115014, 2020 Apr 19.
Article in English | MEDLINE | ID: mdl-32320792

ABSTRACT

Spinal cord injury (SCI) is a severe central nervous system injury for which few efficacious drugs are available. Rosmarinic acid (RA), a water-soluble polyphenolic phytochemical, has antioxidant, anti-inflammatory, and anti-apoptotic properties. However, the effect of RA on SCI is unclear. We investigated the therapeutic effect and underlying mechanism of RA on SCI. Using a rat model of SCI, we showed that RA improved locomotor recovery after SCI and significantly mitigated neurological deficit, increased neuronal preservation, and reduced apoptosis. Also, RA inhibited activation of microglia and the release of TNF-α, IL-6, and IL-1ß and MDA. Moreover, proteomics analyses identified the Nrf2 and NF-κB pathways as targets of RA. Pretreatment with RA increased levels of Nrf2 and HO-1 and reduced those of TLR4 and MyD88 as well as phosphorylation of IκB and subsequent nuclear translocation of NF-κB-p65. Using H2O2- and LPS-induced PC12 cells, we found that RA ameliorated the H2O2-induced decrease in viability and increase in apoptosis and oxidative injury by activating the Nrf2/HO-1 pathway. Also, LPS-induced cytotoxicity and increased apoptosis and inflammatory injury in PC-12 cells were mitigated by RA by inhibiting the TLR4/NF-κB pathway. The Nrf2 inhibitor ML385 weakened the effect of RA on oxidant stress, inflammation and apoptosis in SCI rats, and significantly increased the nuclear translocation of NF-κB. Therefore, the neuroprotective effect on SCI of RA may be due to its antioxidant and anti-inflammatory properties, which are mediated by modulation of the Nrf2/HO-1 and TLR4/NF-κB pathways. Moreover, RA activated Nrf2/HO-1, which amplified its inhibition of the NF-κB pathway.

15.
Med Sci Monit ; 26: e927747, 2020 Nov 28.
Article in English | MEDLINE | ID: mdl-33247084

ABSTRACT

BACKGROUND Trapezoidal changes of the vertebral body are more common in patients with lumbar spondylolisthesis than in others. However, we lack an understanding of factors predisposing to the development of a marked trapezoidal deformity. Also, no associations between a trapezoidal vertebrae (TV) and spine-pelvis sagittal parameters have been previously reported. MATERIAL AND METHODS A total of 73 subjects with lumbar spondylolisthesis were enrolled and we collected their clinical data. Vertebral body parameters and spine-pelvis sagittal alignment parameters were measured via lumbar spine X-ray. Using the lumbar index (LI), patients were divided into a TV group (LI >0.8, n=24) and a control group (LI >0.8, n=49). The clinical data and spine-pelvic sagittal parameters of the 2 groups were compared using the t test or chi-squared test. Pearson's correlation analysis and multiple linear regression were used to determine relationships among the parameters. RESULTS The TV and control groups differed significantly in terms of the slipped segment, extent of slippage, intervertebral disc height (IDH), and sagittal parameters (all P<0.05). Pearson's correlation analysis and multiple linear regression analysis showed that the slipped segment (r=-0.606), extent of slippage (r=-0.660), and IDH (r=0.698) were risk factors for the development of a TV body. Also, vertebral trapezoidal deformation was closely associated with sagittal parameters. CONCLUSIONS The vertebral body affected by lumbar spondylolisthesis exhibits a trapezoidal change closely associated with the slipped segment, the extent of slippage, and IDH. The TV group exhibited greater pelvic incidence values and lumbar lordosis, which may have caused wedging of the slipped vertebra.


Subject(s)
Lumbar Vertebrae/physiopathology , Pelvis/physiopathology , Spondylolisthesis/physiopathology , Vertebral Body/physiopathology , Case-Control Studies , Female , Humans , Lordosis/diagnostic imaging , Lordosis/physiopathology , Lumbar Vertebrae/diagnostic imaging , Male , Middle Aged , Multivariate Analysis , Pelvis/diagnostic imaging , Spondylolisthesis/diagnostic imaging , Vertebral Body/diagnostic imaging
16.
Mediators Inflamm ; 2020: 6420425, 2020.
Article in English | MEDLINE | ID: mdl-32273830

ABSTRACT

Neuropathic pain is a serious clinical problem to be solved. This study is aimed at investigating protein kinase A (PKA) expression in neuropathic pain and its possible mechanisms of involvement. A neuropathic pain-related gene expression dataset was downloaded from Gene Expression Omnibus, and differentially expressed genes were screened using the R software. cytoHubba was used to screen for hub genes. A spared nerve injury (SNI) rat model was established, and the paw withdrawal threshold was determined using von Frey filaments. Western blotting and immunofluorescence were used to detect the expression and cellular localization, respectively, of key proteins in the spinal cord. Western blot, ELISA, and TUNEL assays were used to detect cell signal transduction, inflammation, and apoptosis, respectively. Pka was identified as a key gene involved in neuropathic pain. After SNI, mechanical allodynia occurred, PKA expression in the spinal cord increased, the p38MAPK pathway was activated, and spinal cord inflammation and apoptosis occurred in rats. PKA colocalized with neurons, astrocytes, and microglia, and apoptotic cells were mainly neurons. Intrathecal injection of a PKA inhibitor not only relieved mechanical hyperalgesia, inflammatory reaction, and apoptosis in SNI rats but also inhibited p38MAPK pathway activation. However, intrathecal injection of a p38MAPK inhibitor attenuated mechanical hyperalgesia, inflammation, and apoptosis, but did not affect PKA expression. In conclusion, PKA is involved in neuropathic pain by activating the p38MAPK pathway to mediate spinal cord cell apoptosis.


Subject(s)
Apoptosis/physiology , Cyclic AMP-Dependent Protein Kinases/metabolism , Neuralgia/metabolism , Neuralgia/pathology , p38 Mitogen-Activated Protein Kinases/metabolism , p38 Mitogen-Activated Protein Kinases/physiology , Animals , Apoptosis/genetics , Blotting, Western , Cyclic AMP-Dependent Protein Kinases/genetics , Enzyme-Linked Immunosorbent Assay , Imidazoles/pharmacology , Immunohistochemistry , In Situ Nick-End Labeling , Male , Pyridines/pharmacology , Rats , Software , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors
17.
Analyst ; 144(9): 2994-3004, 2019 May 07.
Article in English | MEDLINE | ID: mdl-30892312

ABSTRACT

The human telomerase reverse transcriptase catalytic subunit (hTERT) is the rate-limiting subunit of the telomerase holoenzyme. Down-regulating the expression of hTERT mRNA by antisense oligonucleotides would reduce the expression of hTERT, inhibit telomerase activity, and impair the growth of cancer cells in vitro. In this work, we propose a locked nucleic acid-functionalized gold nanoparticle flare probe (AuNP-probe). After transferring these probes into cells by endocytosis of the gold nanoparticles, the binding process of the antisense locked nucleic acid with hTERT mRNA along with gene regulation can be visualized by fluorescence recovery of flare-sequences. A significant decline in hTERT mRNA levels and the hTERT content occurred in cancer cells after treatment with the AuNP-probes, and only approximately 25% of the original level of hTERT mRNA remained after 72 h. AuNP-probe treated cancer cells were arrested in the G1 phase of the cell cycle and underwent apoptosis; cell viability decreased obviously compared with that of telomerase-negative normal cells.


Subject(s)
DNA/chemistry , Fluorescent Dyes/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , RNA, Messenger/metabolism , Telomerase/metabolism , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/toxicity , Apoptosis/drug effects , Carbocyanines/chemistry , Catechin/analogs & derivatives , Catechin/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , DNA/toxicity , Down-Regulation , Enzyme Inhibitors/pharmacology , Fluorescence , G1 Phase Cell Cycle Checkpoints/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , Metal Nanoparticles/toxicity , Microscopy, Confocal/methods , Microscopy, Fluorescence/methods , Nucleic Acid Hybridization , Oligonucleotides/chemistry , Oligonucleotides/genetics , Oligonucleotides/toxicity , Oligonucleotides, Antisense/chemistry , Oligonucleotides, Antisense/genetics , Oligonucleotides, Antisense/toxicity , RNA, Messenger/genetics , Telomerase/antagonists & inhibitors , Telomerase/genetics , Time Factors
18.
Arch Virol ; 163(3): 731-735, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29214362

ABSTRACT

Jasmine virus H (JaVH) is a novel virus associated with symptoms of yellow mosaic on jasmine. The JaVH genome is 3,867 nt in length with five open reading frames (ORFs) encoding a 27-kDa protein (ORF 1), an 87-kDa replicase protein (ORF 2), two centrally located movement proteins (ORF 3 and 4), and a 37-kDa capsid protein (ORF 5). Based on genomic and phylogenetic analysis, JaVH is predicted to be a member of the genus Pelarspovirus in the family Tombusviridae.


Subject(s)
Genome, Viral , Jasminum/virology , Phylogeny , RNA, Viral/genetics , Tombusviridae/genetics , Base Sequence , Capsid Proteins/genetics , High-Throughput Nucleotide Sequencing , Open Reading Frames , RNA-Dependent RNA Polymerase/genetics , Tombusviridae/classification , Tombusviridae/isolation & purification
19.
Sensors (Basel) ; 18(2)2018 Feb 03.
Article in English | MEDLINE | ID: mdl-29401668

ABSTRACT

One of the remarkable challenges about Wireless Sensor Networks (WSN) is how to transfer the collected data efficiently due to energy limitation of sensor nodes. Network coding will increase network throughput of WSN dramatically due to the broadcast nature of WSN. However, the network coding usually propagates a single original error over the whole network. Due to the special property of error propagation in network coding, most of error correction methods cannot correct more than C/2 corrupted errors where C is the max flow min cut of the network. To maximize the effectiveness of network coding applied in WSN, a new error-correcting mechanism to confront the propagated error is urgently needed. Based on the social network characteristic inherent in WSN and L1 optimization, we propose a novel scheme which successfully corrects more than C/2 corrupted errors. What is more, even if the error occurs on all the links of the network, our scheme also can correct errors successfully. With introducing a secret channel and a specially designed matrix which can trap some errors, we improve John and Yi's model so that it can correct the propagated errors in network coding which usually pollute exactly 100% of the received messages. Taking advantage of the social characteristic inherent in WSN, we propose a new distributed approach that establishes reputation-based trust among sensor nodes in order to identify the informative upstream sensor nodes. With referred theory of social networks, the informative relay nodes are selected and marked with high trust value. The two methods of L1 optimization and utilizing social characteristic coordinate with each other, and can correct the propagated error whose fraction is even exactly 100% in WSN where network coding is performed. The effectiveness of the error correction scheme is validated through simulation experiments.

20.
Vet Res ; 47(1): 101, 2016 10 19.
Article in English | MEDLINE | ID: mdl-27756386

ABSTRACT

The stomach of pigs at slaughter age is often colonized by Helicobacter (H.) suis, which is also the most prevalent gastric non-H. pylori Helicobacter (NHPH) species in humans. It is associated with chronic gastritis, gastric ulceration and other gastric pathological changes in both hosts. Parietal cells are highly specialized, terminally differentiated epithelial cells responsible for gastric acid secretion and regulation. Dysfunction of these cells is closely associated with gastric pathology and disease. Here we describe a method for isolation and culture of viable and responsive parietal cells from slaughterhouse pigs. In addition, we investigated the interactions between H. suis and gastric parietal cells both in H. suis-infected six-month-old slaughter pigs, as well as in our in vitro parietal cell model. A close interaction of H. suis and parietal cells was observed in the fundic region of stomachs from H. suis positive pigs. The bacterium was shown to be able to directly interfere with cultured porcine parietal cells, causing a significant impairment of cell viability. Transcriptional levels of Atp4a, essential for gastric acid secretion, showed a trend towards an up-regulation in H. suis positive pigs compared to H. suis-negative pigs. In addition, sonic hedgehog, an important factor involved in gastric epithelial differentiation, gastric mucosal repair, and stomach homeostasis, was also significantly up-regulated in H. suis positive pigs. In conclusion, this study describes a successful approach for the isolation and culture of porcine gastric parietal cells. The results indicate that H. suis affects the viability and function of this cell type.


Subject(s)
Helicobacter Infections/veterinary , Helicobacter heilmannii , Parietal Cells, Gastric/physiology , Swine Diseases/microbiology , Animals , Cells, Cultured , Fluorescent Antibody Technique, Indirect/veterinary , Gastric Acid/metabolism , Helicobacter Infections/pathology , Helicobacter Infections/physiopathology , Parietal Cells, Gastric/pathology , Parietal Cells, Gastric/virology , Polymerase Chain Reaction/veterinary , Swine , Swine Diseases/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL