Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 249
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Curr Treat Options Oncol ; 25(6): 813-826, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38761266

ABSTRACT

OPINION STATEMENT: Non-melanoma skin cancers (NMSCs) are the most common malignancy and surgical excision is considered treatment of choice for the majority of cases. However, surgery can be very extensive in cases of large, multiple, or cosmetic-sensitive tumors located on areas such as scalp and face or genital region, leading to significant functional and cosmetic deficit. Aminolaevulinic acid photodynamic therapy (ALA-PDT) has emerged as a widely used approach in a variety of skin diseases, demonstrating remarkable efficacy in treatment of actinic keratosis, Bowen disease and basal cell carcinoma. Besides, when employed as a preoperative intervention, ALA-PDT effectively reduces tumor size and minimizes subsequent local surgical morbidity. With its minimally invasive nature and proven effectiveness, ALA-PDT holds significant promise as a neoadjuvant treatment option for NMSCs. In cases where the tumor is large, invasive, multiple, or located in cosmetically and functionally sensitive areas, or when considering patient factors such as age, comorbidity, willingness to undergo surgery, and post-operative quality-of-life, surgical intervention or radiotherapy alone may be impracticable or unacceptable. In such scenarios, neoadjuvant ALA-PDT can offer remarkable outcomes. In order to further ensure the maximum benefit of patients from neoadjuvant PDT, collaboration with multidisciplinary teams and whole-process management may be in need.


Subject(s)
Neoadjuvant Therapy , Photochemotherapy , Skin Neoplasms , Humans , Photochemotherapy/methods , Skin Neoplasms/therapy , Skin Neoplasms/drug therapy , Neoadjuvant Therapy/methods , Photosensitizing Agents/therapeutic use , Treatment Outcome , Aminolevulinic Acid/therapeutic use , Carcinoma, Basal Cell/therapy , Carcinoma, Basal Cell/drug therapy , Disease Management , Combined Modality Therapy/methods
2.
Clin Exp Dermatol ; 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38641554

ABSTRACT

BACKGROUND: Photodynamic therapy (PDT) has been strongly recommended as an excellent alternative treatment for Bowen's disease (BD). However, reported data on 5-aminolevulinic acid-mediated PDT (ALA-PDT) with red light irradiation are limited and the long-term effectiveness remains to be determined, especially in dark-skinned populations. METHODS: Medical records of BD patients who received ALA-PDT with red light irradiation between February 2011 and June 2021 were reviewed and summarized. Univariate and multivariate analyses of clinically relevant variables that may affect treatment outcomes were performed to identify risk predictors. RESULTS: The overall clearance rate of 122 BD lesions was 89.3% with a median follow-up time of 36 months. The correlation between the effectiveness and fluorescence intensity of pre-PDT or PDT sessions was statistically significant after eliminating the interference of confounding factors. All recurrences occurred in the first two years following ALA-PDT. CONCLUSION: ALA-PDT is an effective treatment for BD in the skin of color patients. Well-executed operation and effective pre-treatment are the determinants of effectiveness. Fluorescence intensity of pre-PDT appeared to be a significant predictor of final effectiveness. In addition, two years of follow-up is necessary following ALA-PDT.

3.
Curr Treat Options Oncol ; 24(12): 1978-1993, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38095778

ABSTRACT

OPINION STATEMENT: Non-melanoma skin cancer (NMSC) is a globally prevalent skin disease, with basal cell carcinoma and squamous cell carcinoma accounting for 99% of NMSC cases. While surgical excision is the most common approach, numerous non-surgical therapies have rapidly advanced in recent years. In cases of low-risk NMSC, alongside surgical excision, priority should be given to physical therapy and photodynamic therapy. Physical therapy modalities, exemplified by electrodessication and curettage, emerge as safe and efficacious alternatives. In juxtaposition, photodynamic therapy, albeit relatively more costly, assumes preference for patients exhibiting heightened cosmetic concerns owing to the scarring risks inherent to physical therapy and surgical excision. Notably, the combination of curettage and photodynamic therapy has exhibited remarkable efficacy in the treatment of nodular basal cell carcinoma. Additionally, for elderly patients who may be intolerant to stimulation, modified photodynamic therapy offers an almost painless option. When surgery is unavoidable, photodynamic therapy can be a valuable adjunct, allowing for a more conservative surgical approach, either before or after the procedure. Radiotherapy holds a prominent role in comprehensive treatment strategies, especially for patients ineligible for surgical intervention or those with lesions precluding further surgical measures. In cases of NMSC exhibiting perineural invasion or lymphovascular involvement, adjunctive radiotherapy is advised; however, potential adverse effects necessitate careful consideration. For advanced NMSC cases where surgery and physical therapy fall short, immunotherapy provide viable solutions. Systemic therapy employing Hedgehog pathway inhibitors can be considered for patients with distant metastatic basal cell carcinoma, despite its low incidence, or individuals with locally advanced lesions who are not surgical candidates, or those encountering recurrences after resection and radiotherapy. However, close monitoring of disease progression and adverse reactions is crucial. In this evolving landscape of NMSC treatment, personalized and multidisciplinary approaches are key, ensuring optimal outcomes while prioritizing patient safety and satisfaction.


Subject(s)
Antineoplastic Agents , Carcinoma, Basal Cell , Carcinoma, Squamous Cell , Skin Neoplasms , Humans , Aged , Hedgehog Proteins , Skin Neoplasms/therapy , Skin Neoplasms/drug therapy , Carcinoma, Basal Cell/therapy , Carcinoma, Basal Cell/drug therapy , Carcinoma, Squamous Cell/therapy , Carcinoma, Squamous Cell/drug therapy , Antineoplastic Agents/therapeutic use
4.
Skin Res Technol ; 29(10): e13497, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37881057

ABSTRACT

BACKGROUND: Extramammary Paget's disease (EMPD) is a rare cutaneous malignant tumor with a high recurrence rate after surgery. However, the genetic and epigenetic alterations underlying its pathogenesis remain unknown. DNA methylation is an important epigenetic modification involved in many biological processes. METHODS: In this study, enzymatic methyl-sequencing (EM-seq) technique was used to investigate the landscape of genome-wide DNA methylation from three pairs of tumor tissues and adjacent tissues of patients with EMPD. Additionally, we conducted histopathological examinations to assess the expression of fatty acid-binding protein 5 (FABP5) in another three paired samples from EMPD patients. RESULTS: The cluster analysis showed the good quality of the samples. A differential methylation region (DMR) heat map was used to quantitatively characterize genome-wide methylation differences between tumors and controls. Global DNA methylation level is lower in EMPD tissue compared to matched controls, indicating that DNA methylation discriminates between tumor and normal skin. And the top hypomethylation gene on the promoter region in tumor tissues was FABP5 on chromosome 8 with 38.44% decreased median methylation. We next identified the expression of FABP5 in paired tumors and adjacent tissues in three additional patients with EMPD. Immunofluorescence results showed FABP5 highly expressed in tumor tissues and co-located with CK7, CK20 and EMA. GO and KEGG enrichment analysis showed DMR genes on promoter are mainly enriched in the calcium ion transport, GTPase mediated signal transduction, Rap1 signaling pathway and GnRH signaling pathway. CONCLUSION: Taken together, our findings provide the first description of the whole genome methylation map of EMPD and identify FABP5 as a pathogenic target of EMPD.


Subject(s)
Paget Disease, Extramammary , Skin Neoplasms , Humans , Paget Disease, Extramammary/genetics , Paget Disease, Extramammary/metabolism , Paget Disease, Extramammary/pathology , Methylation , Skin Neoplasms/pathology , Epigenesis, Genetic/genetics , Fatty Acid-Binding Proteins/genetics , Fatty Acid-Binding Proteins/metabolism
5.
Lasers Surg Med ; 55(10): 871-879, 2023 12.
Article in English | MEDLINE | ID: mdl-37814511

ABSTRACT

BACKGROUND: Aminolevulinic acid photodynamic therapy (ALA-PDT) is an effective treatment for multiple actinic keratosis (AK). However, PDT-induced pain often discontinues the therapy to reduce its efficacy, limiting its application. If modified painless PDT schedule with shorter photosensitizer dressing and higher dose illumination could achieve good efficacy in AK, it is still unknown. OBJECTIVES: To explore the efficacy and pain tolerance of the modified painless PDT (M-PDT) in facial multiple AK. METHODS: A split-face controlled clinical study including 14 patients with facial multiple AK was conducted. The patients received conventional PDT (C-PDT) on the left and M-PDT in the contralateral area. The left area (C-PDT) was illuminated by a red light-emitting diode light (144 J/cm2 ) after applying the 10% ALA cream for 3 h; the other had illumination for a total light dose of 288 J/cm2 after applying the 10% ALA cream for 0.5 h. The primary endpoint was the lesion clearance rate at 1-month postthree sessions of PDT. Secondary endpoints included pain scores, the incidence of adverse events during treatment, and cosmetic outcomes. RESULTS: At 1 month following three treatments, the total lesion clearance rate was comparable between M-PDT and C-PDT (91.6% vs. 89.0%). While the lesion clearance rate of M-PDT was higher than that of C-PDT in the Grade III lesions (86.5% vs. 72.0%, respectively) (p < 0.05). M-PDT achieved a 100% lesion clearance rate for Grade I lesions earlier than C-PDT, with M-PDT treated twice and C-PDT treated thrice. Moreover, the pain score during illumination was significantly lower for M-PDT than for C-PDT (p < 0.01). Regarding photoaging, the Global Subjective Skin Aging Assessment score showed that the total and atrophy scores of C-PDT and M-PDT were significantly improved, and M-PDT also reduced discoloration. There was no significant difference in adverse reactions between C-PDT and M-PDT. CONCLUSIONS: M-PDT is comparable to C-PDT's efficacy for treating facial multiple AK, resulting in much lower pain scores.


Subject(s)
Keratosis, Actinic , Photochemotherapy , Humans , Keratosis, Actinic/drug therapy , Keratosis, Actinic/pathology , Photochemotherapy/methods , Prospective Studies , Aminolevulinic Acid , Photosensitizing Agents , Treatment Outcome , Pain/drug therapy , Pain/etiology , China
6.
Ann Hum Biol ; 50(1): 172-186, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36882371

ABSTRACT

BACKGROUND: Reference ranges for bone turnover markers (BTMs) are still lacking in the healthy Chinese population. AIM: To establish reference intervals for BTMs and to investigate the correlations between BTMs and bone mineral density (BMD) in Chinese older adults. SUBJECTS AND METHODS: A community-based cross-sectional study was conducted among 2511 Chinese subjects aged over 50 yrs residing in Zhenjiang, Southeast China. Reference intervals for BTMs (i.e. procollagen type I N-terminal propeptide, P1NP; ß cross-linked C-terminal telopeptide of type I collagen, ß-CTX) were calculated as the central 95% range of all measurements in Chinese older adults. RESULTS: The reference intervals of P1NP, ß-CTX and P1NP/ß-CTX were 15.8-119.9 ng/mL, 0.041-0.675 ng/mL and 49.9-1261.5 for females and 13.6-111.4 ng/mL, 0.038-0.627 ng/mL and 41.0-1269.1 for males, respectively. In the multiple linear regression analysis, only ß-CTX was negatively associated with BMD after adjusting for age and body mass index (BMI) in both sex-stratified groups (all p < .05). CONCLUSION: This study established age- and sex-specific reference intervals for BTMs in a large sample of healthy Chinese participants ≥ 50 and < 80 years of age and explored the correlations between BTMs and BMD, which provides an effective reference for the assessment of bone turnover in the clinical practice of osteoporosis.


Subject(s)
Peptide Fragments , Peptides , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Biomarkers , Bone Density , Bone Remodeling , Collagen Type I , Cross-Sectional Studies , East Asian People , Reference Values
7.
J Nutr ; 152(7): 1611-1620, 2022 07 06.
Article in English | MEDLINE | ID: mdl-35380692

ABSTRACT

Obesity develops from an imbalance of energy homeostasis and is associated with the development of metabolic disorders, including insulin resistance and type 2 diabetes. Identification of the underlying molecular mechanisms and effective therapeutic approaches is highly needed. Lysine-specific demethylase 1 (LSD1), an flavin adenine dinucletide-dependent amine oxidase, is implicated in a wide variety of biological processes, including tumorigenesis, stem cell fate decisions, and embryonic development. Recent studies have suggested a vital role of LSD1 in regulating adaptive thermogenesis, mitochondrial biogenesis, glucose, and lipid metabolism. More recently, LSD1 activity was found to be regulated by nutrients, energy status, and hormonal signals, suggesting that it may act as a novel sensor for nutritional regulation of metabolic health. Here, we first discuss the effects of LSD1 on physiological phenotypes, including body weight, fat mass, body temperature, and glucose homeostasis. We also summarize recent understanding of the physiological roles and underlying mechanisms of LSD1 in controlling metabolic functions of adipose and other tissues. Hopefully, a better understanding of the roles of LSD1 in metabolic regulation may provide new perspectives for the nutritional prevention and treatment of obesity.


Subject(s)
Diabetes Mellitus, Type 2 , Histone Demethylases , Lysine , Obesity , Energy Metabolism , Glucose , Histone Demethylases/metabolism , Humans , Lysine/metabolism
8.
BMC Infect Dis ; 22(1): 638, 2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35869450

ABSTRACT

BACKGROUND: Recurrence continues to place significant burden on patients and tuberculosis programmes worldwide, and previous studies have rarely provided analysis in negative recurrence cases. We characterized the epidemiological features of recurrent pulmonary tuberculosis (PTB) patients, estimated its probability associated with different bacteriology results and risk factors. METHODS: Using 2005-2018 provincial surveillance data from Henan, China, where the permanent population approximately were 100 million, we described the epidemiological and bacteriological features of recurrent PTB. The Kaplan-Meier method and Cox proportional hazard models, respectively, were used to estimate probability of recurrent PTB and risk factors. RESULTS: A total of 7143 (1.5%) PTB patients had recurrence, and of 21.1% were bacteriological positive on both laboratory tests (positive-positive), and of 34.9% were negative-negative. Compared with bacteriological negative recurrent PTB at first episodes, the bacteriological positive cases were more male (81.70% vs 72.79%; P < 0.001), higher mortality risk (1.78% vs 0.92%; P = 0.003), lower proportion of cured or completed treatment (82.81% vs 84.97%; P = 0.022), and longer time from onset to end-of-treatment. The probability of recurrence was higher in bacteriological positive cases than those in bacteriological negative cases (0.5% vs 0.4% at 20 months; P < 0.05). CONCLUSIONS: Based on patient's epidemiological characteristics and bacteriological type, it was necessary to actively enact measures to control their recurrent.


Subject(s)
Tuberculosis, Pulmonary , Tuberculosis , China/epidemiology , Humans , Male , Proportional Hazards Models , Risk Factors , Tuberculosis, Pulmonary/microbiology
9.
Lasers Surg Med ; 54(7): 945-954, 2022 09.
Article in English | MEDLINE | ID: mdl-35391497

ABSTRACT

BACKGROUND: Hematoporphyrine injection (HpD)-based photodynamic therapy (HpD-PDT) has emerged as a promising cancer therapy. However, its tumor-targeting ability and metabolokinetics in nonmelanoma skin cancer (NMSC) have not been well explored. Importantly, photodynamic diagnosis is widely used for cancer lesion assessment and positioning to ensure effective therapy, while the photosensitizer metabolic kinetics study is utilized for biosafety assessment and light-protection instruction. These are particularly important for the optimization of therapeutic parameters. OBJECTIVES: In the present study, NMSC patients were subjected to twice laser irradiation-based HpD-PDT strategy. Broadly, the study aimed to assess long-term variations in fluorescence (FL) intensity in vivo in NMSC patients after intravenous (i.v.) administration of HpD, and thus obtain information regarding metabolism, biosafety, and light-protection instruction for HpD during the therapy. METHODS: In vitro experiments were used for the evaluation of absorption and fluorescent characterization of HpD in aqueous solution and cutaneous squamous cell carcinoma (SCC) cells. For in vivo assessment, 20 patients with NMSC, including SCC, basal cell carcinoma (BCC), Bowen disease (BD), extramammary Paget's disease (EMPD), and malignant proliferating tricholemmoma (APT), were recruited, and treated with HpD-PDT. To evaluate the selectivity and pharmacokinetics of HpD in vivo, relative changes in FL intensity for lesional, perilesional, and nonlesional skin of nonmelanoma skin cancer patients, before and after HpD injection, were semiquantitatively analyzed for 1 month, using the FL detection system and Wood's lamp. RESULTS: The absorption and FL spectra were detected and semiquantitatively analyzed in HpD diluted solution and SCC cells after coincubation with HpD. After i.v. administration of HpD in EMPD patients, FL was detected in the skin lesions at 24 hours, and it was characterized by clear edges. Importantly, FL intensity in the skin lesions increased significantly at 48 and 72 hours postinjection, which was suitable for HpD-PDT. After 72 h, it decreased gradually and reached close to the baseline value at 4 weeks postinjection. No severe side effects were observed during HpD injection and the therapy. Urinary tract infection was recorded in one patient (with a previous history of recurrent urinary tract infections) after HpD-PDT, and the patient was cured afterward. Transient light was observed in two patients after HpD-PDT and they soon recovered after therapy. CONCLUSIONS: The present study reported a significant increase in FL intensities at 48 and 72 hours after i.v. administration of HpD in patients with nonmelanoma skin cancers, which indicated accumulation of HpD at the cancer site. Importantly, HpD was found to be safe for NMSC patients. After therapy, FL intensities decreased, which indicated expending and metabolization of HpD. Thus, the results of the present study highlighted the suitability of a twice red-light laser irradiation strategy for the application of HpD-PDT in nonmelanoma skin cancer treatment.


Subject(s)
Carcinoma, Squamous Cell , Paget Disease, Extramammary , Photochemotherapy , Skin Neoplasms , Fluorescence , Humans , Lasers , Photosensitizing Agents
10.
Int J Mol Sci ; 23(15)2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35955551

ABSTRACT

The rapid emergence of antibiotic resistance demands new antimicrobial strategies that are less likely to develop resistance. Augmenting the synthesis of endogenous host defense peptides (HDPs) has been proven to be an effective host-directed therapeutic approach. This study aimed to identify small-molecule compounds with a strong ability to induce endogenous HDP synthesis for further development as novel antimicrobial agents. By employing a stable HDP promoter-driven luciferase reporter cell line known as HTC/AvBD9-luc, we performed high-throughput screening of 5002 natural and synthetic compounds and identified 110 hits with a minimum Z-score of 2.0. Although they were structurally and functionally diverse, half of these hits were inhibitors of class I histone deacetylases, the phosphoinositide 3-kinase pathway, ion channels, and dopamine and serotonin receptors. Further validations revealed mocetinostat, a benzamide histone deacetylase inhibitor, to be highly potent in enhancing the expression of multiple HDP genes in chicken macrophage cell lines and jejunal explants. Importantly, mocetinostat was more efficient than entinostat and tucidinostat, two structural analogs, in promoting HDP gene expression and the antibacterial activity of chicken macrophages. Taken together, mocetinostat, with its ability to enhance HDP synthesis and the antibacterial activity of host cells, could be potentially developed as a novel antimicrobial for disease control and prevention.


Subject(s)
Anti-Infective Agents , Antimicrobial Cationic Peptides , Animals , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Antimicrobial Cationic Peptides/metabolism , Chickens/metabolism , Macrophages/metabolism , Phosphatidylinositol 3-Kinases/metabolism
11.
BMC Infect Dis ; 21(1): 813, 2021 Aug 13.
Article in English | MEDLINE | ID: mdl-34388976

ABSTRACT

BACKGROUND: Part of tuberculosis (TB) patients were missed if symptomatic screening was based on the main TB likely symptoms. This study conducted to compare the yield and relative costs of different TB screening algorithms in active case-finding in the whole population in China. METHODS: The study population was screened based on the TB likely symptoms through a face-to-face interview in selected 27 communities from 10 counties of 10 provinces in China. If the individuals had any of the enhanced TB likely symptoms, both chest X-ray and sputum tests were carried out for them furtherly. We used the McNemar test to analyze the difference in TB detection among four algorithms in active case-finding. Of four algorithms, two were from WHO recommendations including 1a/1c, one from China National Tuberculosis Program, and one from this study with the enhanced TB likely symptoms. Furthermore, a two-way ANOVA analysis was performed to analyze the cost difference in the performance of active case-finding adjusted by different demographic and health characteristics among different algorithms. RESULTS: Algorithm with the enhanced TB likely symptoms defined in this study could increase the yield of TB detection in active case-finding, compared with algorithms recommended by WHO (p < 0.01, Kappa 95% CI: 0. 93-0.99) and China NTP (p = 0.03, Kappa 95% CI: 0.96-1.00). There was a significant difference in the total costs among different three algorithms WHO 1c/2/3 (F = 59.13, p < 0.01). No significant difference in the average costs for one active TB case screened and diagnosed through the process among Algorithms 1c/2/3 was evident (F = 2.78, p = 0.07). The average costs for one bacteriological positive case through algorithm WHO 1a was about two times as much as the costs for one active TB case through algorithms WHO 1c/2/3. CONCLUSIONS: Active case-finding based on the enhanced symptom screening is meaningful for TB case-finding and it could identify more active TB cases in time. The findings indicated that this enhanced screening approach cost more compared to algorithms recommend by WHO and China NTP, but the increased yield resulted in comparative costs per patient. And it cost much more that only smear/bacteriological-positive TB cases are screened in active case-finding.


Subject(s)
Mass Screening/economics , Tuberculosis/diagnosis , Tuberculosis/economics , Adolescent , Adult , Aged , Aged, 80 and over , Algorithms , Child , China/epidemiology , Cross-Sectional Studies , Female , Humans , Infant , Infant, Newborn , Male , Mass Screening/methods , Middle Aged , Sputum , Tuberculosis/epidemiology
12.
Sensors (Basel) ; 21(22)2021 Nov 13.
Article in English | MEDLINE | ID: mdl-34833633

ABSTRACT

For the engineering application of manipulator grasping objects, mechanical arm occlusion and limited imaging angle produce various holes in the reconstructed 3D point clouds of objects. Acquiring a complete point cloud model of the grasped object plays a very important role in the subsequent task planning of the manipulator. This paper proposes a method with which to automatically detect and repair the holes in the 3D point cloud model of symmetrical objects grasped by the manipulator. With the established virtual camera coordinate system and boundary detection, repair and classification of holes, the closed boundaries for the nested holes were detected and classified into two kinds, which correspond to the mechanical claw holes caused by mechanical arm occlusion and the missing surface produced by limited imaging angle. These two kinds of holes were repaired based on surface reconstruction and object symmetry. Experiments on simulated and real point cloud models demonstrate that our approach outperforms the other state-of-the-art 3D point cloud hole repair algorithms.

13.
Appl Environ Microbiol ; 86(13)2020 06 17.
Article in English | MEDLINE | ID: mdl-32358003

ABSTRACT

The gastrointestinal (GI) tract harbors a diverse population of microorganisms. While much work has been focused on the characterization of the bacterial community, very little is known about the fungal community, or mycobiota, in different animal species and chickens in particular. Here, we characterized the biogeography of the mycobiota along the GI tract of day 28 broiler chicks and further examined its possible shift in response to bacitracin methylene disalicylate (BMD), a commonly used in-feed antibiotic, through Illumina sequencing of the internal transcribed spacer 2 (ITS2) region of fungal rRNA genes. Out of 124 samples sequenced, we identified a total of 468 unique fungal features that belong to four phyla and 125 genera in the GI tract. Ascomycota and Basidiomycota represented 90% to 99% of the intestinal mycobiota, with three genera, i.e., Microascus, Trichosporon, and Aspergillus, accounting for over 80% of the total fungal population in most GI segments. Furthermore, these fungal genera were dominated by Scopulariopsis brevicaulis (Scopulariopsis is the anamorph form of Microascus), Trichosporon asahii, and two Aspergillus species. We also revealed that the mycobiota are more diverse in the upper than lower GI tract. The cecal mycobiota transitioned from being S. brevicaulis dominant on day 14 to T. asahii dominant on day 28. Furthermore, 2-week feeding of 55 mg/kg BMD tended to reduce the cecal mycobiota α-diversity. Taken together, we provided a comprehensive biogeographic view and succession pattern of the chicken intestinal mycobiota and its influence by BMD. A better understanding of intestinal mycobiota may lead to the development of novel strategies to improve animal health and productivity.IMPORTANCE The intestinal microbiota is critical to host physiology, metabolism, and health. However, the fungal community has been often overlooked. Recent studies in humans have highlighted the importance of the mycobiota in obesity and disease, making it imperative that we increase our understanding of the fungal community. The significance of this study is that we revealed the spatial and temporal changes of the mycobiota in the GI tract of the chicken, a nonmammalian species. To our surprise, the chicken intestinal mycobiota is dominated by a limited number of fungal species, in contrast to the presence of hundreds of bacterial taxa in the bacteriome. Additionally, the chicken intestinal fungal community is more diverse in the upper than the lower GI tract, while the bacterial community shows an opposite pattern. Collectively, this study lays an important foundation for future work on the chicken intestinal mycobiome and its possible manipulation to enhance animal performance and disease resistance.


Subject(s)
Antifungal Agents/pharmacology , Bacitracin/pharmacology , Chickens/microbiology , Fungi/drug effects , Gastrointestinal Microbiome/drug effects , Intestines/microbiology , Mycobiome/drug effects , Salicylates/pharmacology , Animals , Male
14.
FASEB J ; 33(3): 4490-4501, 2019 03.
Article in English | MEDLINE | ID: mdl-30653349

ABSTRACT

The gut microbiota plays a critical role in various physiologic processes; however, maternal microbial and metabolic changes during pregnancy and lactation remain elusive. Using pigs as an animal model, we conducted comparative analyses of gut microbiota and short-chain fatty acid (SCFA) profiles across different stages of gestation, lactation, and the empty (nonpregnancy) phase in 2 distinct breeds of sow, Rongchang (RS) and Landrace (LS). Coriobacteriaceae were found to gradually increase over gestational time irrespective of breed, which was further validated in an independent cohort of sows, indicating that Coriobacteriaceae are likely associated with the progression of pregnancy. Escherichia increased as well. Relative to empty and gestation, lactation was associated with an increase in SCFA producers and a concomitant augmentation in SCFA production in both breeds. A comparison between the 2 breeds revealed that Ruminococcaceae were more abundant in RSs than in LSs, consistent with the strong ability of Rongchang pigs to digest highly fibrous feedstuffs. Taken together, we revealed characteristic structural and metabolic changes in maternal gut microbiota throughout pregnancy, lactation, and the empty phase, which could potentially help improve the pregnancy and lactation outcomes for both animals and humans.-Liu, H., Hou, C., Li, N., Zhang, X., Zhang, G., Yang, F., Zeng, X., Liu, Z., Qiao, S. Microbial and metabolic alterations in gut microbiota of sows during pregnancy and lactation.


Subject(s)
Gastrointestinal Microbiome , Lactation/metabolism , Pregnancy, Animal/metabolism , Swine/metabolism , Animal Feed , Animals , Bacteria/isolation & purification , Colon , Dietary Fats/pharmacokinetics , Fatty Acids, Volatile/analysis , Feces/chemistry , Feces/microbiology , Female , Pregnancy , Species Specificity , Swine/microbiology
15.
Br J Nutr ; 123(8): 881-891, 2020 04 28.
Article in English | MEDLINE | ID: mdl-31928547

ABSTRACT

The effect of holly polyphenols (HP) on intestinal inflammation and microbiota composition was evaluated in a piglet model of lipopolysaccharide (LPS)-induced intestinal injury. A total of twenty-four piglets were used in a 2 × 2 factorial design including diet type and LPS challenge. After 16 d of feeding with a basal diet supplemented with or without 250 mg/kg HP, pigs were challenged with LPS (100 µg/kg body weight) or an equal volume of saline for 4 h, followed by analysis of disaccharidase activities, gene expression levels of several representative tight junction proteins and inflammatory mediators, the SCFA concentrations and microbiota composition in intestinal contents as well as proinflammatory cytokine levels in plasma. Our results indicated that HP enhanced intestinal disaccharidase activities and reduced plasma proinflammatory cytokines including TNF-α and IL-6 in LPS-challenged piglets. Moreover, HP up-regulated mRNA expression of intestinal tight junction proteins such as claudin-1 and occludin. In addition, bacterial 16S rRNA gene sequencing showed that HP altered hindgut microbiota composition by enriching Prevotella and enhancing SCFA production following LPS challenge. These results collectively suggest that HP is capable of alleviating LPS-triggered intestinal injury by improving intestinal disaccharidase activities, barrier function and SCFA production, while reducing intestinal inflammation.


Subject(s)
Gastrointestinal Microbiome/drug effects , Ilex/chemistry , Intestines/pathology , Lipopolysaccharides/toxicity , Polyphenols/pharmacology , Animals , Gene Expression Regulation/drug effects , Inflammation/chemically induced , Inflammation/veterinary , Intestines/microbiology , Male , Polyphenols/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism , Swine/growth & development , Swine Diseases/chemically induced , Swine Diseases/drug therapy
16.
Nature ; 511(7507): 99-103, 2014 Jul 03.
Article in English | MEDLINE | ID: mdl-24990750

ABSTRACT

Tuberculosis remains second only to HIV/AIDS as the leading cause of mortality worldwide due to a single infectious agent. Despite chemotherapy, the global tuberculosis epidemic has intensified because of HIV co-infection, the lack of an effective vaccine and the emergence of multi-drug-resistant bacteria. Alternative host-directed strategies could be exploited to improve treatment efficacy and outcome, contain drug-resistant strains and reduce disease severity and mortality. The innate inflammatory response elicited by Mycobacterium tuberculosis (Mtb) represents a logical host target. Here we demonstrate that interleukin-1 (IL-1) confers host resistance through the induction of eicosanoids that limit excessive type I interferon (IFN) production and foster bacterial containment. We further show that, in infected mice and patients, reduced IL-1 responses and/or excessive type I IFN induction are linked to an eicosanoid imbalance associated with disease exacerbation. Host-directed immunotherapy with clinically approved drugs that augment prostaglandin E2 levels in these settings prevented acute mortality of Mtb-infected mice. Thus, IL-1 and type I IFNs represent two major counter-regulatory classes of inflammatory cytokines that control the outcome of Mtb infection and are functionally linked via eicosanoids. Our findings establish proof of concept for host-directed treatment strategies that manipulate the host eicosanoid network and represent feasible alternatives to conventional chemotherapy.


Subject(s)
Immunotherapy , Interferon Type I/immunology , Interleukin-1/immunology , Mycobacterium tuberculosis/immunology , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/therapy , Animals , Dinoprostone/antagonists & inhibitors , Dinoprostone/biosynthesis , Dinoprostone/metabolism , Disease Models, Animal , Female , Humans , Immunity, Innate/immunology , Interferon Type I/antagonists & inhibitors , Interferon Type I/biosynthesis , Male , Mice , Mice, Inbred C57BL , Tuberculosis, Pulmonary/microbiology
17.
Cell Mol Life Sci ; 76(20): 3917-3937, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31250035

ABSTRACT

The gastrointestinal tract is the site of nutrient digestion and absorption and is also colonized by diverse, highly mutualistic microbes. The intestinal microbiota has diverse effects on the development and function of the gut-specific immune system, and provides some protection from infectious pathogens. However, interactions between intestinal immunity and microorganisms are very complex, and recent studies have revealed that this intimate crosstalk may depend on the production and sensing abilities of multiple bioactive small molecule metabolites originating from direct produced by the gut microbiota or by the metabolism of dietary components. Here, we review the interplay between the host immune system and the microbiota, how commensal bacteria regulate the production of metabolites, and how these microbiota-derived products influence the function of several major innate and adaptive immune cells involved in modulating host immune homeostasis.


Subject(s)
Adaptive Immunity , Dysbiosis/metabolism , Gastrointestinal Microbiome/immunology , Immunity, Innate , Intestinal Mucosa/metabolism , Metabolome/immunology , Amino Acids/immunology , Amino Acids/metabolism , Animals , Bile Acids and Salts/immunology , Bile Acids and Salts/metabolism , Dysbiosis/immunology , Dysbiosis/microbiology , Dysbiosis/therapy , Fatty Acids/immunology , Fatty Acids/metabolism , Fecal Microbiota Transplantation , Germ-Free Life/immunology , Homeostasis/immunology , Humans , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Lymphocytes/immunology , Lymphocytes/metabolism , Lymphocytes/microbiology , Myeloid Cells/immunology , Myeloid Cells/metabolism , Myeloid Cells/microbiology , Symbiosis/immunology
18.
BMC Biol ; 17(1): 106, 2019 12 18.
Article in English | MEDLINE | ID: mdl-31852478

ABSTRACT

BACKGROUND: The early-life microbiota exerts a profound and lifelong impact on host health. Longitudinal studies in humans have been informative but are mostly based on the analysis of fecal samples and cannot shed direct light on the early development of mucosa-associated intestinal microbiota and its impact on GI function. Using piglets as a model for human infants, we assess here the succession of mucosa-associated microbiota across the intestinal tract in the first 35 days after birth. RESULTS: Although sharing a similar composition and predicted functional profile at birth, the mucosa-associated microbiome in the small intestine (jejunum and ileum) remained relatively stable, while that of the large intestine (cecum and colon) quickly expanded and diversified by day 35. Among detected microbial sources (milk, vagina, areolar skin, and feces of sows, farrowing crate, and incubator), maternal milk microbes were primarily responsible for the colonization of the small intestine, contributing approximately 90% bacteria throughout the first 35 days of the neonatal life. Although maternal milk microbes contributed greater than 90% bacteria to the large intestinal microbiota of neonates upon birth, their presence gradually diminished, and they were replaced by maternal fecal microbes by day 35. We found strong correlations between the relative abundance of specific mucosa-associated microbes, particularly those vertically transmitted from the mother, and the expression levels of multiple intestinal immune and barrier function genes in different segments of the intestinal tract. CONCLUSION: We revealed spatially specific trajectories of microbial colonization of the intestinal mucosa in the small and large intestines, which can be primarily attributed to the colonization by vertically transmitted maternal milk and intestinal microbes. Additionally, these maternal microbes may be involved in the establishment of intestinal immune and barrier functions in neonates. Our findings strengthen the notion that studying fecal samples alone is insufficient to fully understand the co-development of the intestinal microbiota and immune system and suggest the possibility of improving neonatal health through the manipulation of maternal microbiota.


Subject(s)
Gastrointestinal Microbiome/physiology , Intestinal Mucosa/microbiology , Intestines/microbiology , Milk/microbiology , Sus scrofa/microbiology , Animals , Animals, Newborn/microbiology , Feces/microbiology
19.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 37(8): 871-874, 2020 Aug 10.
Article in Zh | MEDLINE | ID: mdl-32761598

ABSTRACT

OBJECTIVE: To explore the genetic basis for a sporadic case with neurofibromatosis type 1 (NF1). METHODS: Peripheral blood samples were collected from the patient, his unaffected parents and 100 healthy controls. The NF1 gene was detected by PCR and direct sequencing. RESULTS: The patient was found to carry a novel nonsense variant c.4339C>T (p.Q1447X) in exon 33 of the NF1 gene. The same variant was not found in his unaffected parents and the 100 healthy controls. CONCLUSION: The c.4339C>T (p.Q1447X) variant probably underlies the pathogenesis of NF1 in this patient.


Subject(s)
Genes, Neurofibromatosis 1 , Neurofibromatosis 1 , Neurofibromin 1/genetics , Codon, Nonsense , Exons/genetics , Humans , Male , Neurofibromatosis 1/genetics , Polymerase Chain Reaction
20.
BMC Genomics ; 20(1): 263, 2019 Apr 02.
Article in English | MEDLINE | ID: mdl-30940068

ABSTRACT

BACKGROUND: There are hundreds of phenotypically distinguishable domestic chicken breeds or lines with highly specialized traits worldwide, which provide a unique opportunity to illustrate how selection shapes patterns of genetic variation. There are many local chicken breeds in China. RESULTS: Here, we provide a population genome landscape of genetic variations in 86 domestic chickens representing 10 phenotypically diverse breeds. Genome-wide analysis indicated that sex chromosomes have less genetic diversity and are under stronger selection than autosomes during domestication and local adaptation. We found an evidence of admixture between Tibetan chickens and other domestic population. We further identified strong signatures of selection affecting genomic regions that harbor genes underlying economic traits (typically related to feathers, skin color, growth, reproduction and aggressiveness) and local adaptation (to high altitude). By comparing the genomes of the Tibetan and lowland fowls, we identified genes associated with high-altitude adaptation in Tibetan chickens were mainly involved in energy metabolism, body size maintenance and available food sources. CONCLUSIONS: The work provides crucial insights into the distinct evolutionary scenarios occurring under artificial selection for agricultural production and under natural selection for success at high altitudes in chicken. Several genes were identified as candidates for chicken economic traits and other phenotypic traits.


Subject(s)
Chickens/genetics , Genetic Variation , Genetics, Population , Selection, Genetic , Adaptation, Physiological/genetics , Animals , Body Weight , Genome , High-Throughput Nucleotide Sequencing , Linkage Disequilibrium , Phenotype , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Tibet
SELECTION OF CITATIONS
SEARCH DETAIL