Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
Environ Sci Technol ; 56(19): 13517-13527, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36103712

ABSTRACT

Freshwater salinity is rising across many regions of the United States as well as globally, a phenomenon called the freshwater salinization syndrome (FSS). The FSS mobilizes organic carbon, nutrients, heavy metals, and other contaminants sequestered in soils and freshwater sediments, alters the structures and functions of soils, streams, and riparian ecosystems, threatens drinking water supplies, and undermines progress toward many of the United Nations Sustainable Development Goals. There is an urgent need to leverage the current understanding of salinization's causes and consequences─in partnership with engineers, social scientists, policymakers, and other stakeholders─into locally tailored approaches for balancing our nation's salt budget. In this feature, we propose that the FSS can be understood as a common pool resource problem and explore Nobel Laureate Elinor Ostrom's social-ecological systems framework as an approach for identifying the conditions under which local actors may work collectively to manage the FSS in the absence of top-down regulatory controls. We adopt as a case study rising sodium concentrations in the Occoquan Reservoir, a critical water supply for up to one million residents in Northern Virginia (USA), to illustrate emerging impacts, underlying causes, possible solutions, and critical research needs.


Subject(s)
Drinking Water , Ecosystem , Carbon , Fresh Water/chemistry , Sodium , Soil , United States
2.
Environ Monit Assess ; 163(1-4): 81-94, 2010 Apr.
Article in English | MEDLINE | ID: mdl-19266300

ABSTRACT

It is vitally important to define the critical condition for a receiving water body in the total maximum daily load (TMDL) development process. One of the major disadvantages of using a continuous simulation approach is that there is no guarantee that the most critical condition will be covered within the subjectively selected representative hydrologic period, which is usually several years depending on the availability of data. Another limitation of the continuous simulation approach, compared to a design storm approach, is the lack of an estimate of the risk involved. Because of the above limitations, a storm event-based critical flow-storm (CFS) approach was previously developed to explicitly address the critical condition as a combination of a prescribed stream flow and a storm event of certain magnitude, both having a certain frequency of occurrence and when combined, would create a critical condition. The CFS approach was tested successfully in a TMDL study for Muddy Creek in Virginia. The present paper reports results of a comparative study on the applicability of the CFS approach in Taiwan. The Dy-yu creek watershed in northern Taiwan differs significantly from Muddy Creek in terms of climate, hydrology, terrain, and other characteristics. Results show that the critical condition for different watersheds might be also different, and that the CFS approach could clearly define that critical condition and should be considered as an alternative method for TMDL development to a continuous simulation approach.


Subject(s)
Water , Weather , Virginia
SELECTION OF CITATIONS
SEARCH DETAIL