Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Inflamm Res ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39112649

ABSTRACT

OBJECTIVE: Ischemic stroke is a leading cause of death and disability in individuals worldwide. Cerebral ischemia-reperfusion injury (CIRI) typically results in severe secondary injury and complications following reperfusion therapy. Microglia play critical roles in the inflammatory reaction of CIRI. However, less attention has been given to microglial death in this process. Our study aims to explore microglial death in CIRI and the effects and mechanism of minocycline treatment on microglia. METHODS: A middle cerebral artery occlusion (MCAO) model was applied to induce CIRI in rats. At 0 h, 24 h and 48 h post-operation, rats were intraperitoneally injected with 45 mg/kg minocycline. Neurological deficit scoring, 2,3,5-triphenyltetrazolium chloride (TTC) staining, assessment of activated microglia and examination of mitochondrial structure were conducted and checked at 72 h after reperfusion. Additionally, an in vitro model of oxygen-glucose deprivation/reperfusion (OGD/R) model was established. BV-2 cells were treated with various pharmacological inhibitors of cell death or minocycline. Cell viability, lipid peroxidation, mitochondrial structure and function, and labile Fe2+ and ferroptosis-associated gene/protein levels were measured. Hemin was used for further validation after transcriptome analysis. RESULTS: In the MCAO and OGD/R models, ferroptosis was identified as a major form of microglial death. Minocycline inhibited microglia ferroptosis by reducing HO-1 expression. In addition, minocycline improved mitochondrial membrane potential, mitochondrial structures and microglial survival in vivo. Minocycline also decreased labile Fe2+ levels, lipid peroxidation, and expression of ferritin heavy chain (FTH) and it improved mitochondrial structure and function in vitro. Upregulation of HO-1 counteracted the protective effect of minocycline. CONCLUSION: Ferroptosis is a major form of microglial death in CIRI. The protective mechanism of minocycline in CIRI partially hinges on its ability to effectively ameliorate microglia ferroptosis by downregulating HO-1 expression. Consequently, targeting microglia ferroptosis is a promising treatment for CIRI.

2.
J Sci Food Agric ; 104(4): 2359-2371, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-37985177

ABSTRACT

BACKGROUND: Large yellow croaker is highly perishable during storage because of high protein and moisture content. The degradation of the fish is mainly attributed to microbial growth and enzyme activity, so it is important to find an efficient storage method to extend its shelf life. METHODOLOGY: This study investigated the effect of a low-voltage electrostatic field combined with partial freezing treatment on the physicochemical properties of myofibrillar protein (MP) and metabolomic analysis of large yellow croaker during preservation. The samples in chilled storage (C), partial freezing storage (PF) and 6 kV/m low-voltage electrostatic field partial freezing storage (LVEF-PF) were analyzed during an 18 day storage period. RESULTS: In comparison with the C and PF groups, LVEF-PF delayed the oxidation of MP by inhibiting the formation of carbonyl groups (2.25 nmol/mg pro), and maintaining higher sulfhydryl content (29.73 nmol/mg pro). Fourier transform infrared (FTIR) spectroscopy and fluorescence spectroscopy analysis also demonstrated that the LVEF-PF treatment maintained the stability of the protein structure by increasing the a-helix ratio (19.88%) and reducing the random coil ratio (17.83%). Scanning electron microscopy showed that, compared with the LVEF-PF group, there was more degeneration and aggregation of MP in the C and PF groups after 18 days' storage. The results of untargeted metabolomic analysis showed that 415 kinds of differential metabolites were identified after storage, and the difference levels of differential metabolites were least between the samples treated with LVEF-PF stored on the ninth day and the fresh samples. The main differential metabolic pathways during storage were amino acid metabolism and lipid metabolism. CONCLUSION: The LVEF-PF treatment could maintain the stability of myofibrillar protein in large yellow croaker during storage. These results showed a potential application of the LVEF-PF method for aquatic product preservation. © 2023 Society of Chemical Industry.


Subject(s)
Food Storage , Perciformes , Animals , Freezing , Food Storage/methods , Static Electricity , Proteins
3.
BMC Anesthesiol ; 23(1): 395, 2023 12 01.
Article in English | MEDLINE | ID: mdl-38041014

ABSTRACT

BACKGROUND: Thoracoscopic surgical techniques continue to advance, yet the intensity of postoperative pain remains significant, impeding swift patient recovery. This study aimed to evaluate the differences in postoperative pain and recuperation between patients receiving intrathecal morphine paired with low-dose bupivacaine and those administered general anesthesia exclusively. METHODS: This randomized controlled trial enrolled 100 patients, who were allocated into three groups: Group M (5 µg/kg morphine intrathecal injection), Group B (5 µg/kg morphine combined with bupivacaine 3 mg intrathecal injection) and Group C (intrathecal sham injection). The primary outcome was the assessment of pain relief using the Numeric Rating Scale (NRS). Additionally, intraoperative remifentanil consumption was quantified at the end of the surgery, and postoperative opioid use was determined by the number of patient-controlled analgesia (PCIA) compressions at 48 h post-surgery. Both the efficacy of the treatments and any complications were meticulously recorded. RESULTS: Postoperative NRS scores for both rest and exercise at 6, 12, 24, and 48 h were significantly lower in groups M and B than in group C (P<0.05). The intraoperative remifentanil dosage was significantly greater in groups M and C than in group B (P<0.05), while there was no significant difference between groups M and C (P>0.05). There was no significant difference in intraoperative propofol dosage across all three groups (P>0.05). Postoperative dosages of both sufentanil and Nonsteroidal anti-inflammatory drugs (NSAIDs) were significantly less in groups M and B compared to group C (P<0.05). The time of first analgesic request was later in both groups M and B than in group C (P<0.05). Specific and total scores were elevated at 2 days postoperative when compared to scores at 1 day for all groups (P<0.05). Furthermore, at 1 day and 2 days postoperatively, both specific scores and total scores were higher in groups M and B compared to group C (P<0.05). CONCLUSION: Intrathecal administration of morphine combined with bupivacaine has been shown to effectively ameliorate acute pain in patients undergoing thoracoscopic surgery. TRIAL REGISTRATION: The trial was registered on ClinicalTrials.gov: ChiCTR2200058544, registered 10/04/2022.


Subject(s)
Bupivacaine , Morphine , Humans , Anesthetics, Local , Remifentanil/therapeutic use , Thoracic Surgery, Video-Assisted , Analgesics, Opioid , Treatment Outcome , Pain, Postoperative/drug therapy , Pain, Postoperative/prevention & control , Pain, Postoperative/etiology , Injections, Spinal/adverse effects , Analgesia, Patient-Controlled/methods
4.
Crit Rev Food Sci Nutr ; : 1-15, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36454077

ABSTRACT

Sugar is crucial as an essential nutrient for humans as well as for providing texture, sweetness and so on to food. But with the rise in people's pursuit of health, it is becoming increasingly clear that excessive consumption of sugar can locate a load on the body. It has been that excessive sugar is associated with many diseases, such as dental caries, obesity, diabetes, and coronary heart disease. Therefore, researchers and industries are trying to reduce or substitute sugar in food without affecting the sensory evaluation. Substituting sugar with sweeteners is alternatively becoming the most traditional way to minimize its use. So far, the sweeteners such as stevia and xylitol have been are commercially applied. Several studies have shown that technological innovation can partially compensate for the loss in sweetness as a result of sugar reduction, such as cross-modal interactions that stimulate sweetness with aroma, nanofiltration that filters disaccharides and above, enzyme-catalyzed sugar hydrolysis, and microbial fermentation that turns sugar into sugar alcohol. This review summarizes these studies to enhance the safety and quality of sugar-reduced products, and will provide some theoretical frameworks for the food industry to reduce sugar in foods, meet consumers' needs, and promote human health.

5.
Food Microbiol ; 98: 103686, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33875196

ABSTRACT

This study aimed to achieve deeper insights into the microbiota composition and dynamic succession of the dry-cured black carp during storage using a high-throughput sequencing technique (HTS). The effect of lipid oxidation on microorganisms was also evaluated. Over 651 bacterial genera belonging to 37 phyla were identified. Firmicutes, Proteobacteria and Actinobacteria were the main bacterial phylum, some are highly associated with meat spoilage. Staphylococcus, Macrococcus and Acinetobacter were the most three microbial genera throughout the entire storage period (30 days). Between two different storage temperature, refrigeration at 4 °C could facilitate maintaining the microbial diversity, while 25 °C storage led to the formation of dominant microflora and the reduction of community diversity. Canonical correspondence analysis (CCA) showed that acid value (AV), malondialdehyde (MDA) and 4-hydroxy-2-hexenal (HHE) contents were three key environmental factors (oxidation products) affecting the profile of the microbiota. Staphylococcus presented a positive correlation with HHE content, while Macrococcus and Acinetobacter were negatively correlated with HHE content. These results could expand our knowledge on the effect of lipid oxidation on change of microbial distribution, it could also present an guideline to develop advanced storage methods for the vacuum packed dry-cured fish products.


Subject(s)
Bacteria/isolation & purification , Fish Products/microbiology , Lipids/chemistry , Microbiota , Animals , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Biodiversity , Carps/microbiology , Fish Products/analysis , Food Microbiology , Food Packaging/instrumentation , Food Packaging/methods , Food Storage , High-Throughput Nucleotide Sequencing , Oxidation-Reduction , Refrigeration , Vacuum
6.
Molecules ; 26(24)2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34946625

ABSTRACT

Acetes chinensis (belonging to the Decapoda Sergestidae genus) is widely distributed in East Asian waters and is extremely widespread and present in the shallow coastal areas of China. Polyphenol oxidase (PPO), which was extracted from Acetes chinensis, was purified in a four-step procedure involving phosphate-buffered saline treatment, ammonium sulphate precipitation, DEAE-Cellulose chromatography, and Phenyl-Sepharose HP chromatography, and then, its biochemical characterization was measured. The specific activity of the purified enzyme was increased to 643.4 U/mg, which is a 30.35 times increase in purification, and the recovery rate was 17.9%. L-dopa was used as the substrate, the enzymatic reactions catalyzed by PPO conformed to the Michaelis equation, the maximum reaction velocity was 769.23 U/mL, and the Michaelis constant Km was 0.846 mmol/L. The optimal pH of PPO from Acetes chinensis was 7.5, and the optimal temperature was 35 °C. The metal ions experiment showed that Mn2+ and K+ could enhance the activity of PPO; that Ba2+ and Ca2+ could inhibit the activity of PPO; and that Cu2+ had a double effect on PPO, increasing the PPO activity at low concentrations and inhibiting the PPO activity at high concentrations. The inhibitor experiment showed that the inhibitory effects of EDTA and kojic acid were weak and that ascorbic acid and sodium pyrophosphate had good inhibitory effects. The purification and characterization of Acetes chinensis serve as guidelines for the prediction of enzyme behavior, leading to effective prevention of enzymatic browning during processing.


Subject(s)
Arthropod Proteins/chemistry , Arthropod Proteins/isolation & purification , Catechol Oxidase/chemistry , Catechol Oxidase/isolation & purification , Decapoda/enzymology , Animals , Enzyme Stability , Substrate Specificity
7.
J Sci Food Agric ; 101(14): 6117-6124, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33908046

ABSTRACT

BACKGROUND: Myosin (Ms) is abundant in fish meat, but it has limited application in the food industry because of its low solubility and thermal stability. Our previous reports found that these functional properties of Ms can be significantly improved after glycation with konjac oligo-glucomannan (KOG). However, the effects of phosphorylated KOG (PKOG) on physicochemical, structural and functional properties of silver carp Ms are still unknown. RESULTS: This study characterized the silver carp Ms protein glycated with PKOG at 50 °C and 75% relative humidity for 48 h. As degree of phosphorylation increased, free amino content increased, whereas degree of grafting decreased. Meanwhile, isoelectric point (pI) reduced, however, PKOGs showed no differences in pI. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis suggested the formation of glycoconjugates, and scanning electron microscopy revealed thinner flakes and uneven appearance of glycoconjugates. Fourier transform infrared spectroscopy indicated that the amide I, II and III bands of Ms were changed by the glycation. Ms became highly soluble in 0.5 mol L-1 NaCl with increased phosphate addition in PKOGs. Thermal stability of Ms was effectively improved when heated at 80 °C for 60 min. CONCLUSION: Glycation with appropriate PKOG might be a promising method for Ms modification because of the resulting improvement in solubility and thermal stability. © 2021 Society of Chemical Industry.


Subject(s)
Fish Proteins/chemistry , Food Handling/methods , Mannans/chemistry , Myosins/chemistry , Amorphophallus/chemistry , Animals , Carps , Electrophoresis, Polyacrylamide Gel , Glycosylation , Isoelectric Point , Meat/analysis , Phosphorylation , Solubility
8.
Foods ; 13(11)2024 May 25.
Article in English | MEDLINE | ID: mdl-38890881

ABSTRACT

The purpose of this study was to prepare mackerel peptides (MPs) with calcium-binding capacity through an enzyme method and to investigate the potential role they play in improving the bioavailability of calcium in vitro. The calcium-binding capacity, degree of hydrolysis (DH), molecular weight (MW), and charge distribution changes with the enzymolysis time of MPs were measured. The structural characterization of mackerel peptide-calcium (MP-calcium) complexes was performed using spectroscopy and morphology analysis. The results showed that the maximum calcium-binding capacity of the obtained MPs was 120.95 mg/g when alcalase was used for 3 h, with a DH of 15.45%. Moreover, with an increase in hydrolysis time, the MW of the MPs decreased, and the negative charge increased. The carboxyl and amino groups in aspartic (Asp) and glutamate (Glu) of the MPs may act as calcium-binding sites, which are further assembled into compact nanoscale spherical complexes with calcium ions through intermolecular interactions. Furthermore, even under the influence of oxalic acid, MP-calcium complexes maintained a certain solubility. This study provides a basis for developing new calcium supplements and efficiently utilizing the mackerel protein resource.

9.
Sci Rep ; 14(1): 5339, 2024 03 04.
Article in English | MEDLINE | ID: mdl-38438469

ABSTRACT

Tumor-associated neutrophils (TANs) can promote tumor progression. This study aimed to investigate the molecular signature that predict the prognosis and immune response of breast cancer (BRCA) based on TAN-related gene (TANRG) expression data. The RNA-seq data of BRCA were gathered from The Cancer Genome Atlas (TCGA) and gene expression omnibus (GEO) datasets. Univariate Cox regression analysis and the least absolute shrinkage and selection operator for selecting prognostic genes. A neo-TAN-related risk signature was constructed by multivariate Cox regression analysis. Time-dependent receiver operating characteristic (ROC) curve analyses and Kaplan-Meier analyses were performed to validate the signature in GEO cohorts and the triple-negative breast cancer (TNBC) subtype. We constructed an independent prognostic factor model with 11 TANRGs. The areas under the ROC curve (AUCs) of the TCGA training cohorts for 3-, 5-, and 7-year overall survival were 0.72, 0.73, and 0.73, respectively. The AUCs of the GEO test cohorts for 3-, 5-, and 7-year overall survival were 0.83, 0.89, and 0.94 (GSE25066) and 0.67, 0.69, and 0.73 (GSE58812), respectively. The proportion of immune subtypes differed among the different risk groups. The IC50 values differed significantly between risk groups and can be used as a guide for systemic therapy. The prognostic model developed by TANRGs has excellent predictive performance in BRCA patients. In addition, this feature is closely related to the prediction of survival, immune activity and treatment response in BRCA patients.


Subject(s)
Neutrophils , Triple Negative Breast Neoplasms , Humans , Prognosis , Genes, Neoplasm , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/therapy , Area Under Curve , Tumor Microenvironment/genetics
10.
Int J Biol Macromol ; 275(Pt 2): 133176, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38880449

ABSTRACT

The present study assessed the impact of guar gum (GG) on the physical and chemical attributes and the in vitro digestibility of maize starch (MS), pea starch (PS), and sweet potato starch (SPS) subjected to extrusion treatment. Starch with 25 % moisture content and combined with GG in a 9:1 ratio was selected for extrusion. Scanning electron microscopy and differential scanning calorimetry reveal that extrusion disrupts the ordered structure of starch and induces aggregation of starch granules, resulting in a more cohesive structure, and GG addition led to the further evolution of this structure into a more intricate and irregular form. Rheological assessments demonstrated a remarkable enhancement in the gelatinization characteristics of starch with GG addition, which led to elevated flow resistance and increased viscosity. On evaluating the in vitro digestive characteristics, we noted that adding GG to starch augmented the levels of slow-digestible starch and resistant starch. Consequently, this resulted in diminished digestibility and a lowered glycemic index. In summary, GG synergistically interacts with starch, forming intricately assimilable components. Moreover, the effects of extrusion vary across different starches, which proves advantageous for SPS and GG amalgamation, thereby enhancing their resistant components. Conversely, extrusion manifests contrasting outcomes for MS and PS.


Subject(s)
Galactans , Mannans , Plant Gums , Starch , Plant Gums/chemistry , Galactans/chemistry , Mannans/chemistry , Starch/chemistry , Digestion , Viscosity , Chemical Phenomena , Rheology
11.
J Food Sci ; 89(4): 2347-2358, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38488735

ABSTRACT

Mashed potatoes (MP) are famous as ready-to-eat products due to their excellent taste and texture. Problems such as complex injection occur when MP is used as a 3D printing material. To improve the smoothness of MP loading into a 3D syringe barrel and its 3D extrusion printability, the effects of the protein-polysaccharide hybrid gelator developed with different gelatin-B (GB, 2%, 4%, 6%) and κ-carrageenan (KG, 1%) on the rheology and 3D extrusion printability of MP were studied. The rheological results showed that the MP developed a glass transition temperature by adding the hybrid gelator. Adding 1% KG+6% GB (w/w, dry base) to the hybrid gelator has good shear thinning and self-supporting properties and showed the best geometric accuracy. In the extrusion stage, the yield stress, the consistency index (K), and the flow behavior index (n) of MP were 470.69 Pa, 313.48 Pa·sn, and 0.159, respectively. In the recovery stage, the shear recovery time is 30 s. In the self-supporting stage, the storage modulus and loss modulus are significantly higher than those of other groups and have the strongest mechanical properties. Moreover, water distribution, Fourier transform infrared spectroscopy, X-ray diffraction analysis, and microstructure of printed MP with different hybrid gelators were observed. The addition of hybrid gelators reduced the content of free water in MP. Hybrid gelators did not produce new functional groups in the printed materials and did not change the structure of starch. These results provide new insights for applying protein and polysaccharide hybrid gelators in 3D printing.


Subject(s)
Solanum tuberosum , Solanum tuberosum/chemistry , Polysaccharides , Food , Carrageenan , Water , Rheology
12.
J Food Sci ; 88(10): 4097-4107, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37589300

ABSTRACT

This study mainly evaluated the effect of different energies of pulsed light (PL) treatment (100, 200, 300, 400, and 500 J/pulse) on myofibrillar protein (MP) of large yellow croaker during refrigerated storage. The results showed that PL treatment would cause a certain degree of oxidation to the MP of large yellow croaker at the initial stage, which showed that the total sulfhydryl content of the protein decreased, the carbonyl content and the average particle size increased, and the ß-sheet to ß-turn transformation, the tertiary structure of the protein unfolds, and the hydrophobic groups were exposed, causing the reduction of intrinsic fluorescence intensity. However, subsequent storage studies found that PL treatment could slow down the oxidation rate of MP. The decrease rate of total sulfhydryl content and the increase rate of carbonyl content in the 300 J/pulse group were both reduced by about 1.7 times compared with the control group. At the same time, the PL treatment with this intensity could also better protect the secondary structure, tertiary structure, and microstructure of MP. This study provided theoretical basis and reference for analyzing the quality change rule and mechanism of large yellow croaker during refrigerated storage after PL treatment. Studies have shown that PL treatment can reduce the adverse changes of MP in large yellow croaker during cold storage.

13.
Food Res Int ; 169: 112933, 2023 07.
Article in English | MEDLINE | ID: mdl-37254359

ABSTRACT

The effect of low voltage electrostatic field combined with partial freezing (LVEF- PF) treatment on storage quality and microbial community of large yellow croaker was studied. Three different methods including chilled (C), partial freezing (PF) and 6 kV/m electrostatic field combined partial freezing storage were used to preserve large yellow croaker for 18 days. Total viable counts (TVC), sensory evaluation, and physiochemical index including pH, total volatile basic nitrogen (TVB-N), K value and centrifugal loss were examined. During storage, the large yellow croaker was susceptible to microbial growth and spoilage. However, LVEF-PF treatment was found to be effective in enhancing sensory quality, inhibiting microbial growth, and maintaining myofibril microstructure. Low field nuclear magnetic resonance showed that LVEF-PF treatment reduced the migration of immobilized water to free water. At 18th day, the TVC value of LVEF-PF, PF and chilled group were 3.56 log CFU/g, 5.11 log CFU/g, 7.73 log CFU/g, respectively. Therefore, from the results of TVB-N and TVC value, the shelf life of LVEF-PF group was at least 3 days longer than PF group, and 6 days longer than the chilled group. High-throughput sequencing showed that the microbial community diversity significantly decreased during storage. The predominant bacteria in chilled, PF, LVEF-PF group at 18th day were Pseudomonas, Psychrobacter and Shewanella, respectively, and the relative abundance of spoilage bacteria such as Pseudomonas and Psychrobacter were reduced by LVEF-PF treatment, that corresponding with lower values of TVB-N and TVC value. LVEF-PF treatment could be used as a new processing and storage method to delay deterioration and prolong shelf life of large yellow croaker.


Subject(s)
Microbiota , Perciformes , Animals , Freezing , Static Electricity , Bacteria
14.
Food Chem ; 406: 135062, 2023 Apr 16.
Article in English | MEDLINE | ID: mdl-36462361

ABSTRACT

The labeled quantitative proteomic method was used to study the changes in muscle proteins of large yellow croaker (Pseudosciaena crocea) treated with electrolytic water (EW) and chitosan (CHI) combined preservation during 12 days of refrigeration storage (4 °C). The analysis indicated that the freshness instructed by total viable count (TVC), total volatile basic nitrogen (TVB-N) and K value was significantly maintained after combined preservation during storage at 4 °C for 12 days (CS12). Furthermore, 46 differentially abundant proteins (DAPs) were detected in storage at 4 °C for 12 days (S12) compared to the freshness group (F), which bioinformatics confirmed were mainly skeletal proteins and enzymes. Correlation analysis showed that 19 highly correlated DAPs could be used as potential protein markers of freshness. Changes in the relation of freshness and protein were shown in further correlative analysis of F and CS12, which were caused by combined preservation. Therefore, combined preservation is promising in the quality and stability of large yellow croakers.


Subject(s)
Chitosan , Perciformes , Animals , Water , Chitosan/pharmacology , Proteome , Proteomics
15.
Food Res Int ; 162(Pt B): 112070, 2022 12.
Article in English | MEDLINE | ID: mdl-36461325

ABSTRACT

Deoxynivalenol (DON) is prevalent in wheat and threatens the health of humans and animals. It has been certificated that plasma activated water (PAW) can effectively degrade DON in wheat. However, the application of PAW used in the production of wheat flours was not reported nowadays. Thus, PAW was used to replace pure water in the traditional tempering process to eliminate DON in wheat, and DON degradation effect of PAW was compared with H2O2 and O3. The DON degradation rate was 58.78 % by tempering for 24 h with PAW prepared at 50 kV for 10 min. The H2O2 and O3 were found to be critical contributors in PAW for DON degradation. Afterwards, effects of PAW on microorganism inactivation and wheat qualities were studied. After tempering with PAW, the bacterial and fungal counts, the number of surviving Fusarium graminearum in wheat were decreased significantly. Moreover, no negative effects were observed except a slight decrease in vitamin E content. Therefore, tempering with PAW can be a promising strategy to control DON pollutant in wheat.


Subject(s)
Hydrogen Peroxide , Triticum , Animals , Humans , Plasma , Water
16.
Foods ; 11(2)2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35053904

ABSTRACT

Pre-cooked adzuki beans (Vigna angularis), which looks like dried adzuki bean, is easily cooked and preserved. This study aimed to optimize the microwave pre-cooked conditions on adzuki beans by applying the response surface methodology. The results showed that soaking time has a significant effect on the gelatinization degree of adzuki beans according to microwave time. The most suitable gelatinization and the sensory scores were obtained with a soaking time of 7.8 h, a microwave power of 830 W, and microwave time of 92 s. The pre-cooked treatment had no significant effect (p > 0.05) on the protein, free amino acid, fat and starch content of adzuki bean products. The results of SEM and polarized light microscopy showed that the surface and center of starch were damaged after microwave treatment. XRD showed that microwave pre-cooking did not change the crystal structure of starch and maintained the original order of type A structure while reducing the relative starch crystallinity. FT-IR showed that the pre-cooked treatment did not produce new structure in adzuki bean starch, but the ratio of 1047/1022 cm-1 was slightly decreased, indicating that the starch crystallization area decreased relative to the amorphous area and the relative crystallinity decreased. The results of FTIR were consistent with X-ray diffraction results. Therefore, microwaves improved the gelatinization of adzuki beans and made the pre-cooked adzuki beans more suitable.

17.
Biomed Opt Express ; 13(8): 4102-4117, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-36032568

ABSTRACT

Circulating tumor DNA (ctDNA) has recently emerged as an ideal target for biomarker analytes. Thus, the development of rapid and ultrasensitive ctDNA detection methods is essential. In this study, a high-throughput surface-enhanced Raman scattering (SERS)-based lateral flow assay (LFA) strip is proposed. The aim of this method is to achieve accurate quantification of TP53 and PIK3CA E545K, two types of ctDNAs associated with head and neck squamous cell carcinoma (HNSCC), particularly for point-of-care testing (POCT). Raman reporters and hairpin DNAs are used to functionalize the Pd-Au core-shell nanorods (Pd-AuNRs), which serve as the SERS probes. During the detection process, the existence of targets could open the hairpins on the surface of Pd-AuNRs and trigger the first step of catalytic hairpin assembly (CHA) amplification. The next stage of CHA amplification is initiated by the hairpins prefixed on the test lines, generating numerous "hot spots" to enhance the SERS signal significantly. By the combination of high-performing SERS probes and a target-specific signal amplification strategy, TP53 and PIK3CA E545K are directly quantified in the range of 100 aM-1 nM, with the respective limits of detection (LOD) calculated as 33.1 aM and 20.0 aM in the PBS buffer and 37.8 aM and 23.1 aM in human serum, which are significantly lower than for traditional colorimetric LFA methods. The entire detection process is completed within 45 min, and the multichannel design realizes the parallel detection of multiple groups of samples. Moreover, the analytical performance is validated, including reproducibility, uniformity, and specificity. Finally, the SERS-LFA biosensor is employed to analyze the expression levels of TP53 and PIK3CA E545K in the serum of patients with HNSCC. The results are verified as consistent with those of qRT-PCR. Thus, the SERS-LFA biosensor can be considered as a noninvasive liquid biopsy assay for clinical cancer diagnosis.

18.
Carbohydr Polym ; 294: 119763, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35868787

ABSTRACT

Three-dimensional (3D) printing is a new technique used to construct complex geometric forms for personalized nutrition and customization. With good rheological and gelling properties, starch materials have great potential in the 3D printed food industry. The successful printing of materials depends on various aspects, and current researches have focused on discussing the influence of the rheological properties of starch materials on printing, while the researches on the printing characteristics with other starch properties, material processing methods, printing process parameters are still insufficient. This review mainly focuses on the relationship between the material properties of starch foods and hot extrusion 3D printing, discussing the influence of material properties (rheology, adhesiveness, thermal properties, microstructure and component interaction) on the feasibility of printing. In addition, the effects of additives (hydrocolloids, lipids, fiber, protein, salt and other), processing methods, and process parameters (nozzle diameter, print height, print speed, and throughput) on printing are reviewed.


Subject(s)
Food , Printing, Three-Dimensional , Colloids , Rheology , Starch
19.
J Food Sci ; 86(10): 4500-4510, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34519050

ABSTRACT

The aim of this paper was to study the effect of infrared radiation (IR) on the activity and conformation of polyphenol oxidase (PPO) in Acetes chinensis. In this paper, the specific activity of PPO was increased from 21.2 to 643.4 U/mg by a four-step purification. The results showed that IR treatment had greater effect on the enzyme activity and conformation of PPO than hot air (HA) treatment. After IR treatment at 70°C, the relative enzyme activity of PPO was 9.28%, the surface hydrophobicity index increased by 80.42%, and the content of sulfhydryl group decreased to 96.99% of the control group. The results of circular dichroism (CD) and Fourier transform infrared spectroscopy (FTIR) showed that the α-helix of PPO treated by IR decreased and the random coil increased. The intrinsic fluorescence intensity of PPO decreased after IR treatment, indicating that the tertiary structure of PPO was destroyed. Scanning electron microscopy (SEM) results showed that the surface microstructure of PPO after IR treatment became clear and compact. In conclusion, IR treatment can completely destroy the secondary structure and tertiary structure of PPO and cause enzyme inactivation. This study provides a treatment for reducing the activity of PPO from A. chinensis during the production and processing. PRACTICAL APPLICATION: This study shows that IR treatment has a better inhibitory effect on the activity of PPO than HA treatment. It provides a better treatment method for inactivating the activity of PPO from Acetes chinensis during the production and processing.


Subject(s)
Catechol Oxidase , Decapoda , Food Handling , Animals , Catechol Oxidase/chemistry , Catechol Oxidase/metabolism , Catechol Oxidase/radiation effects , Circular Dichroism , Decapoda/enzymology , Food Handling/methods , Protein Conformation/radiation effects , Protein Structure, Secondary , Spectroscopy, Fourier Transform Infrared
20.
Food Chem ; 339: 128094, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33152882

ABSTRACT

The aim of this work is to evaluate the effect of dextrose equivalent (DE) of maltodextrins (MD) on the stability of whey protein and maltodextrin stabilized oil-in-water (o/w) emulsions. Emulsions with DE 15 maltodextrin (MD 15) exhibited better stability under light acidic (pH 6), neutral and alkaline (pH 8-9) conditions, as well as during temperature ramps (20-60 °C). After 15-days of storage, MD 15 emulsion showed increase in polydispersity and decrease in the average droplet size. The apparent viscosity of the emulsions decreased with increasing DE. The shear stresses of all emulsions fitted well with the power law model (R2 > 0.9), while MD 15 showed the most stable k and n indexes. The brightness and whiteness of emulsion decreased with increases in DE. In conclusion, emulsions with MD 15 exhibited better stability, which suggests their good potential for use in the preparation of energy drinks.


Subject(s)
Emulsions/chemistry , Polysaccharides/chemistry , Whey Proteins/chemistry , Temperature , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL