Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 594
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 120(41): e2221653120, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37788309

ABSTRACT

Fatty acid oxidation (FAO) fuels many cancers. However, knowledge of pathways that drive FAO in cancer remains unclear. Here, we revealed that valosin-containing protein (VCP) upregulates FAO to promote colorectal cancer growth. Mechanistically, nuclear VCP binds to histone deacetylase 1 (HDAC1) and facilitates its degradation, thus promoting the transcription of FAO genes, including the rate-limiting enzyme carnitine palmitoyltransferase 1A (CPT1A). FAO is an alternative fuel for cancer cells in environments exhibiting limited glucose availability. We observed that a VCP inhibitor blocked the upregulation of FAO activity and CPT1A expression triggered by metformin in colorectal cancer (CRC) cells. Combined VCP inhibitor and metformin prove more effective than either agent alone in culture and in vivo. Our study illustrates the molecular mechanism underlying the regulation of FAO by nuclear VCP and demonstrates the potential therapeutic utility of VCP inhibitor and metformin combination treatment for colorectal cancer.


Subject(s)
Colorectal Neoplasms , Metformin , Humans , Valosin Containing Protein/genetics , Valosin Containing Protein/metabolism , Neoplastic Processes , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Fatty Acids/metabolism , Metformin/pharmacology , Carnitine O-Palmitoyltransferase/metabolism , Oxidation-Reduction
2.
Plant Physiol ; 194(4): 2709-2723, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38206193

ABSTRACT

Plants and their associated microbes live in complicated, changeable, and unpredictable environments. They usually interact with each other in many ways through multidimensional, multiscale, and multilevel coupling manners, leading to challenges in the coexistence of randomness and determinism or continuity and discreteness. Gaining a deeper understanding of these diverse interaction mechanisms can facilitate the development of data-mining theories and methods for complex systems, coupled modeling for systems with different spatiotemporal scales and functional properties, or even a universal theory of information and information interactions. In this study, we use a "closed-loop" model to present a plant-microbe interaction system and describe the probable functions of microbial natural products. Specifically, we report a rhizosphere species, Streptomyces ginsengnesis G7, which produces polyketide lydicamycins and other active metabolites. Interestingly, these distinct molecules have the potential to function both as antibiotics and as herbicides for crop protection. Detailed laboratory experiments conducted in Arabidopsis (Arabidopsis thaliana), combined with a comprehensive bioinformatics analysis, allow us to rationalize a model for this specific plant-microbe interaction process. Our work reveals the benefits of exploring otherwise neglected resources for the identification of potential functional molecules and provides a reference to better understand the system biology of complex ecosystems.


Subject(s)
Arabidopsis , Microbiota , Panax , Streptomyces , Rhizosphere , Plants/metabolism , Soil Microbiology
3.
EMBO Rep ; 24(2): e55503, 2023 02 06.
Article in English | MEDLINE | ID: mdl-36440617

ABSTRACT

Myeloid cell development in bone marrow is essential for the maintenance of peripheral immune homeostasis. However, the role of intracellular protein trafficking pathways during myeloid cell differentiation is currently unknown. By mining bioinformatics data, we identify trafficking protein particle complex subunit 1 (TRAPPC1) as continuously upregulated during myeloid cell development. Using inducible ER-TRAPPC1 knockout mice and bone marrow chimeric mouse models, we demonstrate that TRAPPC1 deficiency causes severe monocyte and neutrophil defects, accompanied by a selective decrease in common myeloid progenitors (CMPs) and subsequent cell subsets in bone marrow. TRAPPC1-deleted CMPs differentiate poorly into monocytes and neutrophils in vivo and in vitro, in addition to exhibiting enhanced endoplasmic reticulum stress and apoptosis via a Ca2+ -mitochondria-dependent pathway. Cell cycle arrest and senescence of TRAPPC1-deleted CMPs are mediated by the activation of pancreatic endoplasmic reticulum kinase and the upregulation of cyclin-dependent kinase inhibitor p21. This study reveals the essential role of TRAPPC1 in the maintenance and differentiation of CMPs and highlights the significance of protein processing and trafficking processes in myeloid cell development.


Subject(s)
Bone Marrow , Myeloid Progenitor Cells , Vesicular Transport Proteins , Animals , Mice , Bone Marrow/metabolism , Cell Differentiation , Mice, Knockout , Monocytes , Myeloid Progenitor Cells/metabolism , Neutrophils , Vesicular Transport Proteins/metabolism
4.
Nano Lett ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949785

ABSTRACT

The ion permeability and selectivity of membranes are crucial in nanofluidic behavior, impacting industries ranging from traditional to advanced manufacturing. Herein, we demonstrate the engineering of ion-conductive membranes featuring angstrom-scale ion-transport channels by introducing ionic polyamidoamine (PAMAM) dendrimers for ion separation. The exterior quaternary ammonium-rich structure contributes to significant electrostatic charge exclusion due to enhanced local charge density; the interior protoplasmic channels of PAMAM dendrimer are assembled to provide additional degrees of free volume. This facilitates the monovalent ion transfer while maintaining continuity and efficient ion screening. The dendrimer-assembled hybrid membrane achieves high monovalent ion permeance of 2.81 mol m-2 h-1 (K+), reaching excellent mono/multivalent selectivity up to 20.1 (K+/Mg2+) and surpassing the permselectivities of state-of-the-art membranes. Both experimental results and simulating calculations suggest that the impressive ion selectivity arises from the significant disparity in transport energy barrier between mono/multivalent ions, induced by the "exterior-interior" synergistic effects of bifunctional membrane channels.

5.
Br J Cancer ; 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951697

ABSTRACT

BACKGROUND: DNMT3A is a crucial epigenetic regulation enzyme. However, due to its heterogeneous nature and frequent mutation in various cancers, the role of DNMT3A remains controversial. Here, we determine the role of DNMT3A in non-small cell lung cancer (NSCLC) to identify potential treatment strategies. METHODS: To investigate the role of loss-of-function mutations of DNMT3A in NSCLC, CRISPR/Cas9 was used to induce DNMT3A-inactivating mutations. Epigenetic inhibitor library was screened to find the synthetic lethal partner of DNMT3A. Both pharmacological inhibitors and gene manipulation were used to evaluate the synthetic lethal efficacy of DNMT3A/KDM1A in vitro and in vivo. Lastly, MS-PCR, ChIP-qPCR, dual luciferase reporter gene assay and clinical sample analysis were applied to elucidate the regulation mechanism of synthetic lethal interaction. RESULTS: We identified DNMT3A is a tumour suppressor gene in NSCLC and KDM1A as a synthetic lethal partner of DNMT3A deletion. Both chemical KDM1A inhibitors and gene manipulation can selectively reduce the viability of DNMT3A-KO cells through inducing cell apoptosis in vitro and in vivo. We clarified that the synthetic lethality is not only limited to the death mode, but also involved into tumour metastasis. Mechanistically, DNMT3A deficiency induces KDM1A upregulation through reducing the methylation status of the KDM1A promoter and analysis of clinical samples indicated that DNMT3A expression was negatively correlated with KDM1A level. CONCLUSION: Our results provide new insight into the role of DNMT3A in NSCLC and elucidate the mechanism of synthetic lethal interaction between KDM1A and DNMT3A, which might represent a promising approach for treating patients with DNMT3A-deficient tumours.

6.
Small ; : e2401308, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773889

ABSTRACT

Incorporating ultralow loading of nanoparticles into polymers has realized increases in dielectric constant and breakdown strength for excellent energy storage. However, there are still a series of tough issues to be dealt with, such as organic solvent uses, which face enormous challenges in scalable preparation. Here, a new strategy of dual in situ synthesis is proposed, namely polymerization of polyethylene terephthalate (PET) synchronizes with growth of calcium borate nanoparticles, making polyester nanocomposites from monomers directly. Importantly, this route is free of organic solvents and surface modification of nanoparticles, which is readily accessible to scalable synthesis of polyester nanocomposites. Meanwhile, uniform dispersion of as ultralow as 0.1 wt% nanoparticles and intense bonding at interfaces have been observed. Furthermore, the PET-based nanocomposite displays obvious increases in both dielectric constant and breakdown strength as compared to the neat PET. Its maximum discharged energy density reaches 15 J cm-3 at 690 MV m-1 and power density attains 218 MW cm-3 under 150 Ω resistance at 300 MV m-1, which is far superior to the current dielectric polymers that can be produced at large scales. This work presents a scalable, safe, low-cost, and environment-friendly route toward polymer nanocomposites with superior capacitive performance.

7.
New Phytol ; 241(4): 1866-1876, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38124293

ABSTRACT

Image-based high-throughput phenotyping promises the rapid determination of functional traits in large plant populations. However, interpretation of some traits - such as those related to photosynthesis or transpiration rates - is only meaningful if the irradiance absorbed by the measured leaves is known, which can differ greatly between different parts of the same plant and within canopies. No feasible method currently exists to rapidly measure absorbed irradiance in three-dimensional plants and canopies. We developed a method and protocols to derive absorbed irradiance at any visible part of a canopy with a thermal camera, by fitting a leaf energy balance model to transient changes in leaf temperature. Leaves were exposed to short light pulses (30 s) that were not long enough to trigger stomatal opening but strong enough to induce transient changes in leaf temperature that was proportional to the absorbed irradiance. The method was successfully validated against point measurements of absorbed irradiance in plant species with relatively simple architecture (sweet pepper, cucumber, tomato, and lettuce). Once calibrated, the model was used to produce absorbed irradiance maps from thermograms. Our method opens new avenues for the interpretation of plant responses derived from imaging techniques and can be adapted to existing high-throughput phenotyping platforms.


Subject(s)
Cucumis sativus , Plant Leaves , Plant Leaves/physiology , Photosynthesis/physiology , Plants , Phenotype
8.
Opt Lett ; 49(13): 3697-3700, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38950245

ABSTRACT

In this paper, the Fourier spectrum of an image in microsphere-assisted microscopy (MAM) and the wavenumber decomposition of the Poynting vector of the dipole model are compared for the first time to study the super-resolution performance within several wavelengths in MAM. Firstly, an experiment using microsphere-assisted microscopy is performed, and the fast Fourier transformation (FFT) spectra of the images along the distance are studied. Then the Poynting vector in the point dipole field is theoretically investigated based on the spectral decomposition of dyadic Green's function. Our study finds that the result of decomposition of the Poynting vector corresponds with the propagation results of components with different transverse wavenumbers kρ in an experiment. Even when kρ reaches 1.7k0, the waves can still arrive outside one wavelength. Our work is the first effort (to our knowledge) to associate the Fourier spectrum and the decomposition of the Poynting vector together, and it may contribute to the quantitative exploration of super-resolution performance in MAM in the future.

9.
Soft Matter ; 20(17): 3666-3675, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38623704

ABSTRACT

Hydrogel-based flexible electronic devices serve as a next-generation bridge for human-machine interaction and find extensive applications in clinical therapy, military equipment, and wearable devices. However, the mechanical mismatch between hydrogels and human tissues, coupled with the failure of conformal interfaces, hinders the transmission of information between living organisms and flexible devices, which resulted in the instability and low fidelity of signals, especially in the acquisition of electromyographic (EMG) and electrocardiographic (ECG) signals. In this study, we designed an ion-conductive hydrogel (ICHgel) utilizing multiple physical interactions, successfully applied for human motion monitoring and the collection of epidermal physiological signals. By incorporating fumed silica (F-SiO2) nanoparticles and calcium chloride into an interpenetrating network (IPN) composed of polyvinyl alcohol (PVA) and polyacrylamide (AAm)/acrylic acid (AA) chains, the ICHgel exhibited exceptional tunable stretchability (>1450% strain) and conductivity (10.58 ± 0.85 S m-1). Additionally, the outstanding adhesion of the ICHgel proved to be a critical factor for effective communication between epidermal tissues and flexible devices. Demonstrating its capability to acquire stable electromechanical signals, the ICHgel was attached to different parts of the human body. More importantly, as a flexible electrode, the ICHgel outperformed commercial Ag/AgCl electrodes in the collection of ECG and EMG signals. In summary, the synthesized ICHgel with its outstanding conformal interface capabilities and mechanical adaptability paves the way for enhanced human-machine interaction, fostering the development of flexible electronic devices.


Subject(s)
Acrylates , Electric Conductivity , Hydrogels , Humans , Hydrogels/chemistry , Wearable Electronic Devices , Acrylic Resins/chemistry , Polyvinyl Alcohol/chemistry , Electromyography , Electrocardiography , Adhesives/chemistry , Silicon Dioxide/chemistry , Electrodes
10.
Environ Sci Technol ; 58(6): 2902-2911, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38294202

ABSTRACT

Conventional biological nutrient removal processes rely on external aeration and produce significant carbon dioxide (CO2) emissions. This study constructed a phototrophic simultaneous nitrification-denitrification phosphorus removal (P-SNDPR) system to treat low carbon to nitrogen (C/N) ratios wastewater and investigated the impact of sludge retention time (SRT) on nutrient removal performance, nitrogen conversion pathway, and microbial structure. Results showed that the P-SNDPR system at SRT of 15 days had the highest nutrient removal capacity, achieving over 85% and 98% removal of nitrogen and phosphorus, respectively, meanwhile maintaining minimal CO2 emissions. Nitrogen removal was mainly through assimilation at SRTs of 5 and 10 days, and nitrification-denitrification at SRTs of 15 and 20 days. Stable partial nitrification was facilitated by photoinhibition and low DO levels. Flow cytometry sorting technique results revealed SRT drove community structural changes in translational activity (BONCAT+) microbes, where BONCAT+ microbes were mainly simultaneous nitrogen and phosphorus removal bacteria (Candidatus Accumulibacter), denitrifying bacteria (Candidatus Competibacter and Plasticicumulans), ammonia-oxidizing bacteria (Nitrosomonas), and microalgae (Chlorella and Dictyosphaerium). The P-SNDPR system represents a novel, carbon-neutral process for efficient nutrient removal from low C/N ratio wastewater without aeration and external carbon source additions.


Subject(s)
Chlorella , Wastewater , Nitrification , Denitrification , Phosphorus/metabolism , Nitrogen/chemistry , Nitrogen/metabolism , Carbon Dioxide , Chlorella/metabolism , Waste Disposal, Fluid/methods , Bioreactors/microbiology , Sewage/microbiology
11.
Mol Biol Rep ; 51(1): 650, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734811

ABSTRACT

BACKGROUND: Vitiligo is a common autoimmune skin disease. Capsaicin has been found to exert a positive effect on vitiligo treatment, and mesenchymal stem cells (MSCs) are also confirmed to be an ideal cell type. This study aimed to explore the influence of capsaicin combined with stem cells on the treatment of vitiligo and to confirm the molecular mechanism of capsaicin combined with stem cells in treating vitiligo. METHODS AND RESULTS: PIG3V cell proliferation and apoptosis were detected using CCK-8 and TUNEL assays, MitoSOX Red fluorescence staining was used to measure the mitochondrial ROS level, and JC-1 staining was used to detect the mitochondrial membrane potential. The expression of related genes and proteins was detected using RT‒qPCR and Western blotting. Coimmunoprecipitation was used to analyze the protein interactions between HSP70 and TLR4 or between TLR4 and mTOR. The results showed higher expression of HSP70 in PIG3V cells than in PIG1 cells. The overexpression of HSP70 reduced the proliferation of PIG3V cells, promoted apoptosis, and aggravated mitochondrial dysfunction and autophagy abnormalities. The expression of HSP70 could be inhibited by capsaicin combined with MSCs, which increased the levels of Tyr, Tyrp1 and DCT, promoted the proliferation of PIG3V cells, inhibited apoptosis, activated autophagy, and improved mitochondrial dysfunction. In addition, capsaicin combined with MSCs regulated the expression of TLR4 through HSP70 and subsequently affected the mTOR/FAK signaling pathway CONCLUSIONS: Capsaicin combined with MSCs inhibits TLR4 through HSP70, and the mTOR/FAK signaling pathway is inhibited to alleviate mitochondrial dysfunction and autophagy abnormalities in PIG3V cells.


Subject(s)
Apoptosis , Capsaicin , Cell Proliferation , HSP70 Heat-Shock Proteins , Melanocytes , Mitochondria , Signal Transduction , TOR Serine-Threonine Kinases , Toll-Like Receptor 4 , Vitiligo , Humans , Apoptosis/drug effects , Autophagy/drug effects , Capsaicin/pharmacology , Cell Line , Cell Proliferation/drug effects , HSP70 Heat-Shock Proteins/drug effects , HSP70 Heat-Shock Proteins/metabolism , Melanocytes/metabolism , Melanocytes/drug effects , Membrane Potential, Mitochondrial/drug effects , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Signal Transduction/drug effects , Toll-Like Receptor 4/drug effects , Toll-Like Receptor 4/metabolism , TOR Serine-Threonine Kinases/drug effects , TOR Serine-Threonine Kinases/metabolism , Vitiligo/metabolism , Vitiligo/drug therapy , Focal Adhesion Kinase 1/drug effects , Focal Adhesion Kinase 1/metabolism
12.
BMC Endocr Disord ; 24(1): 77, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831300

ABSTRACT

OBJECTIVE: This study aimed to analyze the factors influencing glycemic control in patients with type 2 diabetes mellitus (T2DM). METHODS: Baseline data, encompassing basic information, lifestyle habits, and treatment of 305 T2DM patients from March 2021 to January 2023, were collected and analyzed using SPSS 26.0 software. RESULTS: Univariate and multivariate logistic regression analyses identified insulin therapy (OR = 2.233; 95%Cl = 1.013-4.520; P = 0.026) and regular clinic visits (OR = 0.567; 95%Cl = 0.330-0.973; P = 0.040) as independent factors influencing glycemic control. No observed interactions between the two variables were noted. CONCLUSION: History of insulin therapy and regular clinic visits were significantly and independently associated with glycated hemoglobin control in T2DM patients. Tailored interventions based on individual circumstances are recommended to optimize glycemic control.


Subject(s)
Blood Glucose , Diabetes Mellitus, Type 2 , Glycated Hemoglobin , Glycemic Control , Hypoglycemic Agents , Humans , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/blood , Cross-Sectional Studies , Female , Male , China/epidemiology , Middle Aged , Blood Glucose/analysis , Blood Glucose/metabolism , Glycated Hemoglobin/analysis , Hypoglycemic Agents/therapeutic use , Aged , Insulin/therapeutic use , Insulin/administration & dosage , Adult , Prognosis
13.
Photodermatol Photoimmunol Photomed ; 40(3): e12970, 2024 May.
Article in English | MEDLINE | ID: mdl-38685665

ABSTRACT

OBJECTIVE: Both piperine and a 308-nm excimer laser have significant curative effects on vitiligo. This study mainly explored the molecular mechanism of a 308-nm excimer combined with piperine in regulating melanocyte proliferation. METHODS: Epidermal melanocytes were cultured in piperine solution, and the cells were irradiated by an XTRAC excimer laser treatment system at 308-nm output monochromatic light. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were for detecting the expression levels of genes or proteins. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and Transwell method was for assessing cell viability and migration capacity. The content of melanin was also detected. RESULTS: The combination of the 308-nm excimer laser and piperine enhanced the cell proliferation, migration, and melanin production of melanocytes and upregulated the level of miR-328, and restraint of miR-328 reversed the influence of the 308-nm excimer laser and piperine. Secreted frizzled-related protein 1 (SFRP1) is a direct target gene of miR-328, and miR-328 can inhibit the expression of SFRP1 and elevate the protein level of the Wnt/ß-catenin signaling pathway. CONCLUSION: The 308-nm excimer laser combined with piperine may be more efficient than piperine alone in the remedy of vitiligo, and the miR-328/SFRP1 and Wnt/ß-catenin pathways are participated in the proliferation, migration, and melanin synthesis of melanocytes.


Subject(s)
Benzodioxoles , Cell Movement , Cell Proliferation , Melanins , Piperidines , Humans , Alkaloids/pharmacology , Benzodioxoles/pharmacology , Cell Movement/drug effects , Cell Proliferation/drug effects , Melanins/biosynthesis , Melanocytes/metabolism , Melanocytes/drug effects , Membrane Proteins/metabolism , Membrane Proteins/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Piperidines/pharmacology , Polyunsaturated Alkamides/pharmacology , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Lasers , Vitiligo/drug therapy , Vitiligo/therapy
14.
Oral Dis ; 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38462960

ABSTRACT

OBJECTIVES: To explore the effects of cathepsin K (CTSK) inhibition on type H vessel formation and alveolar bone resorption within periodontitis. METHODS: Conditioned media derived from preosteoclasts pretreated with the CTSK inhibitor odanacatib (ODN), ODN supplemented small interfering RNA targeting PDGF-BB (si-PDGF-BB), or PBS were prepared, to assess their proangiogenic effects on endothelial cells (HUVECs). A series of angiogenic-related assays were conducted to evaluate HUVEC proliferation, migration, and tube formation abilities in vitro. In addition, qRT-PCR and Western blot assays were employed to examine the expression levels of genes/proteins related to PDGF-BB/PDGFR-ß axis components. A mouse periodontitis model was established to evaluate the effects of CTSK inhibition on type H vessel formation. RESULTS: CTSK inhibition promoted PDGF-BB secretion from preosteoclasts and proliferation, migration, and tube formation activities of HUVECs in vitro. However, the conditioned medium from preosteoclasts pretreated by si-PDGF-BB impaired the angiogenic activities of HUVECs. This promoted angiogenesis function by CTSK inhibition may be mediated by the PDGF-BB/PDGFR-ß axis. Functionally, in vivo studies demonstrated that CTSK inhibition significantly accelerated type H vessel formation and alleviated bone loss within periodontitis. CONCLUSION: CTSK inhibition promotes type H vessel formation and attenuates alveolar bone resorption within periodontitis via PDGF-BB/PDGFR-ß axis.

15.
Skin Res Technol ; 30(2): e13612, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38348763

ABSTRACT

OBJECTIVE: In this study, the safety and efficacy of scalp repair serum microneedles combined with oral drug administration and topical medication were investigated for the treatment of moderate to severe androgenetic alopecia. METHODS: Twenty patients, consisting of 4 males and 16 females, who sought treatment for moderate to severe androgenetic alopecia at our hair medicine research center alopecia specialty clinic between August and December 2022 were randomly selected for the study. Male patients underwent oral administration of finasteride topical application of 5% minoxidil, and biweekly scalp repair serum microneedle therapy. Female patients were administered spironolactone or Diane-35 orally and applied 2% minoxidil topically, paired with biweekly scalp repair serum microneedle therapy sessions. After seven treatments, the scalp repair serum microneedle was discontinued, but oral administration and topical applications were continued, followed by a 1-month follow-up. Using a hair dermoscopy, hair follicles in a fixed region on the top of the head were manually counted per unit area to evaluate the hair restoration status of the patients quantitatively. RESULTS: All 20 patients completed 3 months of combined therapy and a 1-month follow-up. On average, the patients experienced an increase of 42.6 hairs, with an efficiency rate of 100%. Significant differences were observed in hair count between any two of the first seven treatments (p < 0.001). A significant negative correlation was discovered between the initial pre-treatment hair count and the total improvement of hair (p < 0.001), indicating that the greater the degree of hair loss before treatment, the more pronounced the improvement. CONCLUSION: Scalp repair serum microneedle combined therapy in moderate to severe androgenetic alopecia significantly reduces the number of microneedle treatments required, enhances treatment efficacy, and improves therapeutic outcomes.


Subject(s)
Minoxidil , Scalp , Humans , Male , Female , Minoxidil/therapeutic use , Alopecia/drug therapy , Alopecia/chemically induced , Hair , Treatment Outcome
16.
Nephrology (Carlton) ; 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637907

ABSTRACT

AIM: Saliva can reflect an individual's physiological status or susceptibility to systemic disease. However, little attention has been given to salivary analysis in children with idiopathic nephrotic syndrome (INS). We aimed to perform a comprehensive analysis of saliva from INS children. METHODS: A total of 18 children (9 children with INS and 9 normal controls) were recruited. Saliva was collected from each INS patient in the acute and remission phases. 16S rRNA gene sequencing, widely targeted metabolomics, and 4D-DIA proteomics were performed. RESULTS: Actinobacteria and Firmicutes were significantly enriched in the pretreatment group compared with the normal control group, while Bacteroidota and Proteobacteria were significantly decreased. A total of 146 metabolites were identified as significantly different between INS children before treatment and normal controls, which covers 17 of 23 categories. KEGG enrichment analysis revealed three significantly enriched pathways, including ascorbate and aldarate metabolism, pentose and glucuronate interconversions, and terpenoid backbone biosynthesis (P < 0.05). A total of 389 differentially expressed proteins were selected between INS children before treatment and normal controls. According to the KEGG and GO enrichment analyses of the KOGs, abnormal ribosome structure and function and humoral immune disorders were the most prominent differences between INS patients and normal controls in the proteomic analysis. CONCLUSION: Oral microbiota dysbiosis may modulate the metabolic profile of saliva in children with INS. It is hypothesized that children with INS might have "abnormal ribosome structure and function" and "humoral immune disorders".

17.
Skin Res Technol ; 30(1): e13550, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38174801

ABSTRACT

OBJECTIVE: To summarize and analysis the application of biologic agents in patients with psoriasis in the real world. METHODS: Relying on collected data from June 2020 to September 2021 in the database of China Psoriasis Standardized Diagnosis and Treatment Center, 2529 cases of psoriasis patients treated with biologic agents in 188 different tertiary hospitals across China were retrospective analyzed. The collected information mainly includes demographic data (age, gender, psoriasis history), curative effectiveness of used biologics drug withdrawal and its reason. According to the collected information, condition of the usage for each category of biologics and influencing factor of biologics replacement were analyzed. RESULT: A total of 2529 patients were analyzed, which included 1626 male (64.29%) and 903 female (35.71%) with an average age of 42.12 ± 14.70 (17 âˆ¼ 85) years old; 2336 (92.37%) patients were aged from 19 to 60 years old. Within these patients, 2362 of them (93.40%) had a psoriasis area and severity index (PASI) score, and 1776 of these patients had moderate to severe cases (75.19%). According to the patient's self-evaluation of the past efficacy of biological agents, secukinumab was chosen by the most people to have the highest efficacy (1140 cases, 93.60%). The main reason for the withdrawal of secukinumab is that the disease is already well controlled at the time of withdrawal (67 cases, 38.95%); for TNF- α inhibitor is the poor curative effect; for ustekinumab and ixekizumab were the non-affordable price. CONCLUSIONS: In the current biotherapy of psoriasis in China, the efficacy of secukinumab is thought by most people to be the highest. Secukinumab is the first choice when the needs of changing biologics appear.


Subject(s)
Biological Products , Psoriasis , Humans , Male , Female , Adult , Middle Aged , Aged, 80 and over , Young Adult , Antibodies, Monoclonal/therapeutic use , Biological Products/therapeutic use , Retrospective Studies , Ustekinumab/therapeutic use , Psoriasis/drug therapy , Severity of Illness Index , Treatment Outcome
18.
Acta Biochim Biophys Sin (Shanghai) ; 56(6): 866-878, 2024 06 25.
Article in English | MEDLINE | ID: mdl-38606479

ABSTRACT

Approximately 20% of colorectal cancer (CRC) patients are first diagnosed with metastatic colorectal cancer (mCRC) because they develop symptoms at an advanced stage. Despite advancements in treatment, patients with metastatic disease still experience inferior survival rates. Our objective is to investigate the association between long noncoding RNAs (lncRNAs) and prognosis and to explore their role in mCRC. In this study, we find that elevated expression of PCAT6 is independently linked to unfavourable survival outcomes in The Cancer Genome Atlas (TCGA) data, and this finding is further confirmed in CRC samples obtained from Fudan University Shanghai Cancer Center. Cell lines and xenograft mouse models are used to examine the impact of PCAT6 on tumor metastasis. Knockdown of PCAT6 is observed to impede the metastatic phenotype of CRC, as evidenced by functional assays, demonstrating the suppression of epithelial-mesenchymal transition (EMT) and stemness. Our findings show the significance of PCAT6 in mCRC and its potential use as a prognostic biomarker.


Subject(s)
Colorectal Neoplasms , Epithelial-Mesenchymal Transition , Neoplastic Stem Cells , RNA, Long Noncoding , Animals , Female , Humans , Male , Mice , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/mortality , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Mice, Nude , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Prognosis , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Untranslated/genetics
19.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Article in English | MEDLINE | ID: mdl-34001600

ABSTRACT

G-quadruplexes (G4s) formed by guanine-rich nucleic acids play a role in essential biological processes such as transcription and replication. Besides the >1.5 million putative G-4-forming sequences (PQSs), the human genome features >640 million single-nucleotide variations (SNVs), the most common type of genetic variation among people or populations. An SNV may alter a G4 structure when it falls within a PQS motif. To date, genome-wide PQS-SNV interactions and their impact have not been investigated. Herein, we present a study on the PQS-SNV interactions and the impact they can bring to G4 structures and, subsequently, gene expressions. Based on build 154 of the Single Nucleotide Polymorphism Database (dbSNP), we identified 5 million gains/losses or structural conversions of G4s that can be caused by the SNVs. Of these G4 variations (G4Vs), 3.4 million are within genes, resulting in an average load of >120 G4Vs per gene, preferentially enriched near the transcription start site. Moreover, >80% of the G4Vs overlap with transcription factor-binding sites and >14% with enhancers, giving an average load of 3 and 7.5 for the two regulatory elements, respectively. Our experiments show that such G4Vs can significantly influence the expression of their host genes. These results reveal genome-wide G4Vs and their impact on gene activity, emphasizing an understanding of genetic variation, from a structural perspective, of their physiological function and pathological implications. The G4Vs may also provide a unique category of drug targets for individualized therapeutics, health risk assessment, and drug development.


Subject(s)
DNA-Binding Proteins/ultrastructure , G-Quadruplexes , Genome, Human/genetics , Nucleic Acid Conformation , DNA-Binding Proteins/genetics , Gene Expression Regulation/genetics , Humans , Polymorphism, Single Nucleotide/genetics , Promoter Regions, Genetic/genetics , Protein Binding/genetics , Regulatory Sequences, Nucleic Acid/genetics , Transcription Initiation Site , Transcriptional Activation/genetics
20.
Sensors (Basel) ; 24(2)2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38257705

ABSTRACT

Thin-walled aluminum alloy parts are widely used in the aerospace field because of their favorable characteristics that cater to various applications. However, they are easily deformed during milling, leading to a low pass rate of workpieces. On the basis of on-machine measurement (OMM) and surrogate stiffness models (SSMs), we developed an iterative optimization compensation method in this study to overcome the machining deformation of thin-walled parts. In the error compensation process, the time-varying factors of workpiece stiffness and the impact of prediction model errors were considered. First, we performed machining deformation simulation and information extraction on the key nodes of the machined surface, and an SSM containing the stiffness information of discrete nodes of each cutting layer was established. Subsequently, the machining errors were monitored through intermittent OMM to suppress the adverse impact of prediction model errors. Further, an interlayer correction coefficient was introduced in the compensation process to iteratively correct the prediction model error of each node in the SSM along the depth direction, and a correction coefficient between parts was introduced to realize the iterative correction of the prediction model for the same node position between different parts. Finally, the feasibility of the proposed method was verified through multiple sets of actual machining experiments on thin-walled parts with added pads.

SELECTION OF CITATIONS
SEARCH DETAIL