Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 363
Filter
Add more filters

Publication year range
1.
Mol Cell ; 82(24): 4712-4726.e7, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36423631

ABSTRACT

Programmed cell death and caspase proteins play a pivotal role in host innate immune response combating pathogen infections. Blocking cell death is employed by many bacterial pathogens as a universal virulence strategy. CopC family type III effectors, including CopC from an environmental pathogen Chromobacterium violaceum, utilize calmodulin (CaM) as a co-factor to inactivate caspases by arginine ADPR deacylization. However, the molecular basis of the catalytic and substrate/co-factor binding mechanism is unknown. Here, we determine successive cryo-EM structures of CaM-CopC-caspase-3 ternary complex in pre-reaction, transition, and post-reaction states, which elucidate a multistep enzymatic mechanism of CopC-catalyzed ADPR deacylization. Moreover, we capture a snapshot of the detachment of modified caspase-3 from CopC. These structural insights are validated by mutagenesis analyses of CopC-mediated ADPR deacylization in vitro and animal infection in vivo. Our study offers a structural framework for understanding the molecular basis of arginine ADPR deacylization catalyzed by the CopC family.


Subject(s)
Calmodulin , Caspases , Animals , Calmodulin/genetics , Calmodulin/metabolism , Caspases/metabolism , Caspase 3/metabolism , Arginine , Catalysis , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
2.
FASEB J ; 38(7): e23534, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38597911

ABSTRACT

Satellite cells (SCs) are adult muscle stem cells responsible for muscle regeneration after acute and chronic muscle injuries. The balance between stem cell self-renewal and differentiation determines the kinetics and efficiency of skeletal muscle regeneration. This study assessed the function of Islr in SC asymmetric division. The deletion of Islr reduced muscle regeneration in adult mice by decreasing the SC pool. Islr is pivotal for SC proliferation, and its deletion promoted the asymmetric division of SCs. A mechanistic search revealed that Islr bound to and degraded secreted protein acidic and rich in cysteine (SPARC), which activated p-ERK1/2 signaling required for asymmetric division. These findings demonstrate that Islr is a key regulator of SC division through the SPARC/p-ERK1/2 signaling pathway. These data provide a basis for treating myopathy.


Subject(s)
MAP Kinase Signaling System , Osteonectin , Animals , Mice , Asymmetric Cell Division , Cell Differentiation , Osteonectin/genetics , Signal Transduction
3.
Nano Lett ; 24(5): 1510-1521, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38285667

ABSTRACT

α-PD-L1 therapy has shown encouraging results at harnessing the immune system to combat cancer. However, the treatment effect is relatively low due to the dense extracellular matrix (ECM) and tumor immunosuppressive microenvironment (TIME). Therefore, an ultrasound (US)-responsive nanosensitizer (URNS) is engineered to deliver losartan (LST) and polyethylenimine (PEI) to remolde the TME, driving "cold"-"hot" tumor transformation and enhancing the sensitivity of α-PD-L1 therapy. In the tumor site, noninvasive US can make MTNP generate ROS, which cleave ROS-sensitive bonds to dissociate MTNPtK@LST-PEI, shedding PEI and releasing LST from mesoporous spheres. The results demonstrated that URNS combined with α-PD-L1 therapy effectively inhibited tumor growth with an inhibition rate as high as 90%, which was 1.7-fold higher than that of the α-PD-L1 treatment in vivo. In summary, the URNS improves the sensitivity of α-PD-L1 therapy by remodeling the TME, which provides promising insights for optimizing cancer immunotherapy.


Subject(s)
B7-H1 Antigen , Neoplasms , Humans , Reactive Oxygen Species , Extracellular Matrix , Immunosuppressive Agents , Immunotherapy , Losartan , Polyethyleneimine , Tumor Microenvironment
4.
J Biol Chem ; 299(12): 105415, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37918803

ABSTRACT

Chikungunya virus (CHIKV) nonstructural protein 1 (nsP1) contains both the N7-guanine methyltransferase and guanylyltransferase activities and catalyzes the 5' end cap formation of viral RNAs. To further understand its catalytic activity and role in virus-host interaction, we demonstrate that purified recombinant CHIKV nsP1 can reverse the guanylyl transfer reaction and remove the m7GMP from a variety of capped RNA substrates including host mRNAs. We then provide the structural basis of this function with a high-resolution cryo-EM structure of nsP1 in complex with the unconventional cap-1 substrate RNA m7GpppAmU. We show that the 5'ppRNA species generated by decapping can trigger retinoic acid-inducible gene I-mediated interferon response. We further demonstrate that the decapping activity is conserved among the alphaviral nsP1s. To our knowledge, this is a new mechanism through which alphaviruses activate the antiviral immune response. This decapping activity could promote cellular mRNA degradation and facilitate viral gene expression, which is functionally analogous to the cap-snatching mechanism by influenza virus.


Subject(s)
Chikungunya virus , Endoribonucleases , RNA Caps , Viral Nonstructural Proteins , Humans , Chikungunya virus/metabolism , RNA Caps/genetics , RNA Caps/metabolism , RNA, Messenger/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Virus Replication , Endoribonucleases/metabolism
5.
Small ; : e2310416, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38660815

ABSTRACT

Synergistic therapy has shown greater advantages compared with monotherapy. However, the complex multiple-administration plan and potential side effects limit its clinical application. A transformable specific-responsive peptide (TSRP) is utilized to one-step achieve synergistic therapy integrating anti-tumor, anti-angiogenesis and immune response. The TSRP is composed of: i) Recognition unit could specifically target and inhibit the biological function of FGFR-1; ii) Transformable unit could self-assembly and trigger nanofibers formation; iii) Reactive unit could specifically cleaved by MMP-2/9 in tumor micro-environment; iv) Immune unit, stimulate the release of immune cells when LTX-315 (Immune-associated oncolytic peptide) exposed. Once its binding to FGFR-1, the TSRP could cleaved by MMP-2/9 to form the nanofibers on the cell membrane, with a retention time of up to 12 h. Through suppressing the phosphorylation levels of ERK 1/2 and PI3K/AKT signaling pathways downstream of FGFR-1, the TSRP significant inhibit the growth of tumor cells and the formation of angioginesis. Furthermore, LTX-315 is exposed after TSRP cleavage, resulting in Calreticulin activation and CD8+ T cells infiltration. All above processes together contribute to the increasing survival rate of tumor-bearing mice by nearly 4-folds. This work presented a unique design for the biological application of one-step synergistic therapy of bladder cancer.

6.
Chembiochem ; 25(6): e202300813, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38227784

ABSTRACT

AMPA glutamate receptors (AMPARs) play a pivotal role in excitatory neurotransmission, particularly in the hippocampus where the TARP γ-8 subunit is enriched and serves as a target for emerging anti-epileptic drugs. To enable in vivo visualization of TARP γ-8 distribution and expression by positron emission tomography (PET), this study focuses on the development of novel 18 F-labeled TARP γ-8 inhibitors and their corresponding precursors, stemming from the azabenzimidazole scaffold. The resulting radioligands [18 F]TARP-2204 and [18 F]TARP-2205 were successfully synthesized with acceptable radiochemical yield, high molar activity, and excellent radiochemical purity. In vitro autoradiography demonstrates high level of specific binding of [18 F]TARP-2205 to TARP γ-8 in both rat and nonhuman primate brain tissues. However, unexpected radiodefluorination in PET imaging studies of rodents emphasizes the need for further structural refinement. This work serves as an excellent starting point for the development of future 18 F-labeled TARP γ-8 PET tracers, offering valuable insights into medicinal chemistry design, radiosynthesis and subsequent PET evaluation.


Subject(s)
Positron-Emission Tomography , Receptors, AMPA , Rats , Animals , Receptors, AMPA/metabolism , Positron-Emission Tomography/methods , Hippocampus
7.
J Med Virol ; 96(1): e29356, 2024 01.
Article in English | MEDLINE | ID: mdl-38180237

ABSTRACT

COVID-19, caused by SARS-CoV-2, remains a global health crisis. The emergence of multiple variants with enhanced characteristics necessitates their detection and monitoring. Genome sequencing, the gold standard, faces implementation challenges due to complexity, cost, and limited throughput. The CRISPR-Cas system offers promising potential for rapid variant detection, with advantages such as speed, sensitivity, specificity, and programmability. This review provides an in-depth examination of the applications of CRISPR-Cas in mutation detection specifically for SARS-CoV-2. It begins by introducing SARS-CoV-2 and existing variant detection platforms. The principles of the CRISPR-Cas system are then clarified, followed by an exploration of three CRISPR-Cas-based mutation detection platforms, which are evaluated from different perspectives. The review discusses strategies for mutation site selection and the utilization of CRISPR-Cas, offering valuable insights for the development of mutation detection methods. Furthermore, a critical analysis of the clinical applications, advantages, disadvantages, challenges, and prospects of the CRISPR-Cas system is provided.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , CRISPR-Cas Systems , Mutation
8.
Neurochem Res ; 49(5): 1150-1165, 2024 May.
Article in English | MEDLINE | ID: mdl-38296858

ABSTRACT

Cannabis sativa has been used for improving sleep for long history. Cannabidiol (CBD) has drown much attention as a non-addictive psychoactive component in Cannabis sativa extract. However, the effects of CBD on sleep architecture and it's acting mechanism remains unclear. In the present study, we evaluated the sedative-hypnotic effect of cannabidiol (CBD), assessed the effects of CBD on sleep using a wireless physiological telemetry system. We further explored the therapeutic effects of CBD using 4-chloro-dl-phenylalanine (PCPA) induced insomnia model and changes in sleep latency, sleep duration and intestinal flora were evaluated. CBD shortened sleep latency and increases sleep duration in both normal and insomnia mice, and those effects were blocked by 5-HT1A receptor antagonist WAY100635. We determined that CBD increases 5-HT1A receptors expression and 5-HT content in the hypothalamus of PCPA-pretreated mice and affects tryptophan metabolism in the intestinal flora. These results showed that activation of 5-HT1A receptors is one of the potential mechanisms underlying the sedative-hypnotic effect of CBD. This study validated the effects of CBD on sleep and evaluated its potential therapeutic effects on insomnia.


Subject(s)
Cannabidiol , Sleep Initiation and Maintenance Disorders , Mice , Animals , Hypnotics and Sedatives/pharmacology , Hypnotics and Sedatives/therapeutic use , Serotonin/metabolism , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , Receptor, Serotonin, 5-HT1A , Sleep Initiation and Maintenance Disorders/chemically induced , Sleep Initiation and Maintenance Disorders/drug therapy , Serotonin Antagonists
9.
Biodegradation ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844743

ABSTRACT

A novel coupling process to replace the traditional multi-stage anammox process-sulfur autotrophic denitrification (SAD) coupled anaerobic ammonium oxidation (anammox) system was designed, which solved problems of nitrate produced in anammox process and low nitrate conversion rate caused by nitrite accumulation in SAD process. Different filter structures (SAD filter and anammox granular sludge) were investigated to further explore the excellent performance of the novel integrated reactor. The results of sequential batch experiments indicated that nitrite accumulation occurred during SAD, which inhibited the conversion of nitrate to dinitrogen gas. When SAD filter and anammox granular sludge were added to packed bed reactor simultaneously, the nitrate removal rate increased by 37.21% and effluent nitrite concentration decreased by 100% compared to that achieved using SAD. The stratified filter structure solved groove flow. Different proportion influence of SAD filter and anammox granular sludge on the stratified filter structure was evaluated. More suitable ratio of SAD filter to anammox granular sludge was 2:1. Proteobacteria (57.26%), Bacteroidetes (20.12%) and Chloroflexi (9.95%) were the main phyla. The dominant genera of denitrification functional bacteria were Thiobacillus (39.80%), Chlorobaculum (3.99%), norank_f_PHOs-HE36 (2.90%) and Ignavibacterium (2.64%). The dominant genus of anammox bacterium was Candidatus_Kuenenia (3.05%).

10.
Article in English | MEDLINE | ID: mdl-38782807

ABSTRACT

This study, grounded in the Process-Person-Context-Time framework, investigates the complex interplay of family environmental factors and their influence on adolescent depressive symptoms, focusing on the role of 'perceived stress'. Using network analysis, we examined data from 735 junior high students (52.1% female adolescents) from three provinces in China (Jiangsu, Shandong, and Henan), with an average age of 13.81 ± 0.92 years, ranging from 12 to 16 years, exploring the relationships between depressive symptoms, perceived stress, and seven family risk factors. The analysis identified three distinct communities. The incorporation of perceived stress led to its integration into a community that included depressive symptoms, parental restrictive monitoring, and family economic strain. Perceived stress emerged as the strongest predictor of depressive symptoms, surpassing parental restrictive monitoring. Furthermore, it overtook depressive symptoms as the node with the strongest bridging connection within its community. These findings underscore the importance of interventions targeting both family conditions and the internal processing of these stressors by adolescents, especially in challenging family environments, to mitigate the risk of depression and promote resilience.

11.
Small ; 19(44): e2300578, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37423970

ABSTRACT

Maintaining quiescence of stem cells is a potential way to decrease cell nutrition demand for restoring the organization. Herein, a biomimetic peptide to maintain quiescence of stem cells through C-X-C motif chemokine ligand 8 (CXCL8)-C-X-C motif chemokine receptor 1 (CXCR1) pathway against intervertebral disc degeneration (IVDD) is developed. First, it is confirmed that quiescence can be induced via inhibiting phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway in nucleus pulposus stem cells (NPSCs). Meanwhile, it is well known that CXCR1, a chemokine receptor, can be targeted by CXCL8, resulting in cell proliferation via activating PI3K/Akt/mTOR pathway. Second, a biomimetic peptide (OAFF) that can bind to CXCR1 and form fibrous networks on NPSCs, mimicking extracellular matrix formation is developed. The multivalent effect and long-term binding to CXCR1 on NPSCs of OAFF fibers offer forcefully competitive inhibition with natural CXCL8, which induces NPSCs quiescence and ultimately overcomes obstacle in intradiscal injection therapy. In rat caudal disc puncture model, OAFF nanofibers still maintain at 5 weeks after operation and inhibit degeneration process of intervertebral disc in terms of histopathology and imageology. In situ fibrillogenesis of biomimetic peptide on NPSCs provides promising stem cells for intradiscal injection therapy against IVDD.


Subject(s)
Intervertebral Disc Degeneration , Animals , Rats , Intervertebral Disc Degeneration/therapy , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/pathology , Biomimetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Stem Cells/metabolism , Extracellular Matrix/metabolism , TOR Serine-Threonine Kinases/metabolism , Receptors, Chemokine/metabolism , Mammals/metabolism
12.
Small ; 19(25): e2300060, 2023 06.
Article in English | MEDLINE | ID: mdl-36929045

ABSTRACT

Nanoscale drug carriers play a crucial role in reducing side effects of chemotherapy drugs. However, the mononuclear phagocyte system (MPS) and the drug protonation after nanoparticles (NPs) burst release still limit the drug delivery efficiency. In this work, a self-disguised Nanospy is designed to overcome this problem. The Nanospy is composed of: i) poly (lactic-co-glycolic acid)-polyethylene glycol (PLGA-PEG) loading doxorubicin is the core structure of the Nanospy. ii) CD47 mimic peptides (CD47p) is linked to NPs which conveyed the "don't eat me" signal. iii) 4-(2-aminoethyl) benzenesulfonamide (AEBS) as the inhibitor of Carbonic anhydrase IX (CAIX) linked to NPs. Briefly, when the Nanospy circulates in the bloodstream, CD47p binds to the regulatory protein α (SIRPα) on the surface of macrophages, which causes the Nanospy escapes from phagocytosis. Subsequently, the Nanospy enriches in tumor and the AEBS reverses the acidic microenvironment of tumor. Due to above characteristics, the Nanospy reduces liver macrophage phagocytosis by 25% and increases tumor in situ DOX concentration by 56% compared to PLGA@DOX treatment. In addition, the Nanospy effectively inhibits tumor growth with a 63% volume reduction. This work presents a unique design to evade the capture of MPS and overcomes the influence of acidic tumor microenvironment (TME) on weakly alkaline drugs.


Subject(s)
Nanoparticles , Neoplasms , Humans , Drug Delivery Systems , Drug Carriers/chemistry , Doxorubicin/chemistry , Neoplasms/drug therapy , Nanoparticles/chemistry , Peptides/therapeutic use , Drug Liberation , Polyethylene Glycols/chemistry , Tumor Microenvironment
13.
J Cardiovasc Electrophysiol ; 34(11): 2296-2304, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37702146

ABSTRACT

INTRODUCTION: Mapping and ablation through the coronary venous system (CVS) have shown potential for ventricular arrhythmias originating from the left ventricular summit (LVS). Multielectrode catheters and balloons are frequently used for mapping and venous ethanol ablation (VEA). However, there is limited data on the venous size and drainage condition in the LVS region. This study aimed to investigate the morphology, angiographic size, and drainage condition of LV summit veins via high-speed rotational angiography (RA). METHODS: We measured and analyzed the size of the great cardiac vein (GCV), the anterior interventricular vein (AIV), veins near to the LVS, and other main tributaries of CVS in 102 patients undergoing electrophysiology study. RESULTS: Rotational retrograde angiography of LVS was successfully performed in 81 patients. The diameter of GCV at the level of the Vieussens valve and the distal end of GCV (junction of GCV-AIV) was larger in males than females (6.8 ± 1.1 vs. 5.6 ± 1.2 mm, p < .001; 5.2 ± 0.9 vs. 4.6 ± 0.8, p = .002, respectively) while no significant gender differences were observed in other tributaries. The LV summit veins presented downward drainage direction in half of the patients, indicating potential anatomic adjacency with His bundle. Left anterior oblique (LAO) 45° projection might provide the practical and optimal view of the LV summit veins. CONCLUSIONS: The coronary veins of the LVS region present various anatomical morphologies and ostium sizes. We provide a systematic description and angiographic size spectrum of CVS. RA could facilitate assessing the feature of CVS comprehensively.


Subject(s)
Catheter Ablation , Tachycardia, Ventricular , Male , Female , Humans , Treatment Outcome , Catheter Ablation/adverse effects , Heart Ventricles/diagnostic imaging , Heart Ventricles/surgery , Coronary Vessels , Angiography
14.
Opt Express ; 31(16): 25993-26013, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37710471

ABSTRACT

Laser active detection technology utilizing the cat-eye effect provides rapid response, precise positioning, and long detection distances. However, current research mainly focuses on active detection within a single visible or near-infrared band, lacking quantitative analyses of the echo spot. In this paper, a four-interval theoretical model for dual band cat-eye target echo detection was constructed using matrix optics theory and Collins diffraction integration method. Dual-band echo detection experiments were conducted using 10.6 um far-infrared waves and 532 nm visible light waves, also the power, radius, and target-missing quantities of the echo spots were collected and quantitatively compared with the theoretical results. Results indicate that, due to the diffraction limit's effect on the distribution of the echo field, the echo power of far-infrared band detection is smaller than that of visible light band detection. The impact on the light spot caused by the positive and negative defocus values is asymmetric, with positive defocus having a lower impact on the echo spot than negative defocus at the same value. A weak positive defocus value that minimizes the radius of the echo spot and maximizes the echo power exists, with the value of weak positive defocus varying between detection bands. A linear relationship exists between the incident angle of the detection laser and the deviation of the echo spot. These findings provide a foundation for extracting working band details, predicting the motion trajectory of moving cat-eye targets, and achieving real-time tracking and detection recognition during laser active detection.

15.
Cardiovasc Diabetol ; 22(1): 263, 2023 09 29.
Article in English | MEDLINE | ID: mdl-37775762

ABSTRACT

BACKGROUND: The impact of insulin resistance on the prognosis of heart failure with preserved ejection fraction (HFpEF) remains unknown. This study aimed to investigate the association between the triglyceride-glucose (TyG) index, an easily calculated marker of insulin resistance, and the long-term prognosis of HFpEF. METHODS: A total of 823 patients with HFpEF were enrolled in the study. The TyG index was determined using the formula ln(fasting triglycerides [mg/dL] × fasting glucose [mg/dL]/2). The primary endpoint was all-cause death. The secondary endpoints were cardiovascular (CV) death and heart failure (HF) rehospitalization. Restricted cubic spline, multivariate Cox proportional hazard models, and competing risk models were used for analyses. RESULTS: During a median follow-up period of 3.16 years, 147 (17.8%) all-cause deaths, 139 (16.8%) CV deaths, and 222 (27.0%) HF rehospitalizations occurred. Restricted cubic spline analysis revealed a J-shaped association between the TyG index and the mortality and rehospitalization rates. In the multivariate Cox proportional hazard models, compared with those in the lowest TyG index tertile, patients in the highest tertile exhibited the greatest susceptibility to all-cause death (HR 1.53, 95% CI 1.19-1.98) and CV death (HR 1.52, 95% CI 1.19-1.96). In the competing risk model, a significant association between the TyG index and HF rehospitalization was observed (HR 1.31, 95% CI, 1.07-1.61). CONCLUSION: A high TyG index is associated with an increased risk of mortality and rehospitalization in patients with HFpEF. The TyG index may serve as a promising prognostic marker for patients with HFpEF.


Subject(s)
Heart Failure , Insulin Resistance , Humans , Risk Factors , Heart Failure/diagnosis , Biomarkers , Stroke Volume , Triglycerides , Blood Glucose , Prognosis , Glucose , Risk Assessment
16.
Endoscopy ; 55(1): 4-11, 2023 01.
Article in English | MEDLINE | ID: mdl-35554877

ABSTRACT

BACKGROUND: A computer-assisted (CAD) system was developed to assess, score, and classify the technical difficulty of common bile duct (CBD) stone removal during endoscopic retrograde cholangiopancreatography (ERCP). The efficacy of the CAD system was subsequently assessed through a multicenter, prospective, observational study. METHOD: All patients who met the inclusion criteria were included. Based on cholangiogram images, the CAD system analyzed the level of difficulty of stone removal and classified it into "difficult" and "easy" groups. Subsequently, differences in clinical endpoints, including attempts at stone extraction, stone extraction time, total operation time, and stone clearance rates were compared between the two groups. RESULTS: 173 patients with CBD stones from three hospitals were included in the study. The group classified as difficult by CAD had more extraction attempts (7.20 vs. 4.20, P < 0.001), more frequent machine lithotripsy (30.4 % vs. 7.1 %, P < 0.001), longer stone extraction time (16.59 vs. 7.69 minutes, P < 0.001), lower single-session stone clearance rate (73.9 % vs. 94.5 %, P < 0.001), and lower total stone clearance rate (89.1 % vs. 97.6 %, P = 0.019) compared with the group classified as easy by CAD. CONCLUSION: The CAD system effectively assessed and classified the degree of technical difficulty in endoscopic stone extraction during ERCP. In addition, it automatically provided a quantitative evaluation of CBD and stones, which in turn could help endoscopists to apply suitable procedures and interventional methods to minimize the possible risks associated with endoscopic stone removal.


Subject(s)
Cholangiopancreatography, Endoscopic Retrograde , Gallstones , Humans , Cholangiopancreatography, Endoscopic Retrograde/methods , Artificial Intelligence , Treatment Outcome , Gallstones/diagnostic imaging , Gallstones/surgery , Sphincterotomy, Endoscopic/methods
17.
Biomacromolecules ; 24(6): 2501-2511, 2023 06 12.
Article in English | MEDLINE | ID: mdl-37129908

ABSTRACT

Poly(glycerol-dodecanoate) (PGD) has garnered increasing attention in biomedical engineering for its degradability, shape memory, and rubber-like mechanical properties. Adjustable degradation is important for biodegradable implants and is affected by various aspects, including material properties, mechanical environments, temperature, pH, and enzyme catalysis. The crosslinking and chain length characteristics of poly(lactic acid) and poly(caprolactone) have been widely used to adjust the in vivo degradation rate. The PGD degradation rate is affected by its crosslink density in in vitro hydrolysis; however, there is no difference in vivo. We believe that this phenomenon is caused by the differences in enzymatic conditions in vitro and in vivo. In this study, it is found that the degradation products of PGD with different molar ratios of hydroxyl and carboxyl (MRH/C) exhibit varied pH values, affecting the enzyme activity and thus achieving different degradation rates. The in vivo degradation of PGD is characterized by surface erosion, and its mass decreases linearly with degradation duration. The degradation duration of PGD is linearly extrapolated from 9-18 weeks when MRH/C is in the range of 2.00-0.75, providing a protocol for adjusting the degradation durations of subsequent implants made by PGD.


Subject(s)
Biocompatible Materials , Glycerol , Biocompatible Materials/chemistry , Glycerol/chemistry , Behavior Control , Polyesters/chemistry
18.
Environ Sci Technol ; 57(40): 15087-15098, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37754765

ABSTRACT

Bacteria are often exposed to long-term starvation during transportation and storage, during which a series of enzymes and metabolic pathways are activated to ensure survival. However, why the surface color of the bacteria changes during starvation is still not well-known. In this study, we found black anammox consortia suffering from long-term starvation contained 0.86 mmol gVSS-1 cytochrome c, which had no significant discrepancy compared with the red anammox consortia (P > 0.05), indicating cytochrome c was not the key issue for chromaticity change. Conversely, we found that under starvation conditions cysteine degradation is an important metabolic pathway for the blackening of the anammox consortia for H2S production. In particular, anammox bacteria contain large amounts of iron-rich nanoparticles, cytochrome c, and other iron-sulfur clusters that are converted to produce free iron. H2S combines with free iron in bacteria to form Fe-S compounds, which eventually exist stably as FeS2, mainly in the extracellular space. Interestingly, FeS2 could be oxidized by air aeration, which makes the consortia turn red again. The unique self-protection mechanism makes the whole consortia appear black, avoiding inhibition by high concentrations of H2S and achieving Fe storage. This study expands the understanding of the metabolites of anammox bacteria as well as the bacterial survival mechanism during starvation.

19.
BMC Cardiovasc Disord ; 23(1): 516, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37875809

ABSTRACT

BACKGROUND: The vein of Marshall (VOM) ethanol infusion is increasingly performed in combination with catheter ablation in atrial fibrillation (AF). The cannulation of the VOM can sometimes be challenging. This study aimed to evaluate the double-wire technique in cases of difficult cannulation of the VOM. CASE PRESENTATION: Patients with AF scheduled for combined catheter ablation and VOM ethanol infusion were consecutively enrolled. The procedure was performed via the femoral vein. If the regular cannulation technique with one angioplasty wire failed or took more than 20 min, the double-wire technique using a stabilizing wire and a cannulation wire was performed. The unique technique was used mainly in two scenarios, when the Eustachian ridge was too prominent as a barrier for catheter manipulation or when the VOM ostium was close to the coronary sinus ostium. Of 162 patients scheduled for VOM ethanol infusion, the double-wire technique was applied in 6 (3.7%) patients and led to a 100% successful cannulation rate of the VOM. Of the six patients, two had a prominent Eustachian ridge, and four had a VOM ostium close to the coronary sinus ostium. The mean cannulation time was 33.3 ± 7.3 min. The ethanol infusion was successfully performed in 5 patients. One patient had a collateral circulation in the distal VOM, and ethanol infusion was not performed. CONCLUSIONS: The double-wire technique can facilitate VOM cannulation and ethanol infusion in challenging cases. WORD COUNT: 231.


Subject(s)
Atrial Fibrillation , Catheter Ablation , Coronary Sinus , Humans , Atrial Fibrillation/diagnosis , Atrial Fibrillation/therapy , Catheter Ablation/methods , Catheterization , Coronary Sinus/surgery , Coronary Vessels , Ethanol/administration & dosage
20.
J Nanobiotechnology ; 21(1): 45, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36755314

ABSTRACT

Although temozolomide (TMZ) provides significant clinical benefit for glioblastoma (GBM), responses are limited by the emergence of acquired resistance. Here, we demonstrate that exosomal circCABIN1 secreted from TMZ-resistant cells was packaged into exosomes and then disseminated TMZ resistance of receipt cells. CircCABIN1 could be cyclized by eukaryotic translation initiation factor 4A3 (EIF4A3) and is highly expressed in GBM tissues and glioma stem cells (GSCs). CircCABIN1 is required for the self-renewal maintenance of GSCs to initiate acquired resistance. Mechanistically, circCABIN1 regulated the expression of olfactomedin-like 3 (OLFML3) by sponging miR-637. Moreover, upregulation of OLFML3 activating the ErbB signaling pathway and ultimately contributing to stemness reprogramming and TMZ resistance. Treatment of GBM orthotopic mice xenografts with engineered exosomes targeting circCABIN1 and OLFML3 provided prominent targetability and had significantly improved antitumor activity of TMZ. In summary, our work proposed a novel mechanism for drug resistance transmission in GBM and provided evidence that engineered exosomes are a promising clinical tool for cancer prevention and therapy.


Subject(s)
Brain Neoplasms , Exosomes , Glioblastoma , MicroRNAs , Humans , Animals , Mice , Temozolomide/pharmacology , Glioblastoma/metabolism , Exosomes/metabolism , Cell Line, Tumor , Brain Neoplasms/metabolism , Signal Transduction , Drug Resistance, Neoplasm , Xenograft Model Antitumor Assays , Glycoproteins/metabolism , Glycoproteins/therapeutic use , Intercellular Signaling Peptides and Proteins/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL