Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Angew Chem Int Ed Engl ; 62(21): e202300662, 2023 05 15.
Article in English | MEDLINE | ID: mdl-36807420

ABSTRACT

Cancer is one of the deadliest diseases worldwide. Recent statistics have shown that metastases and tumor relapse are the leading causes of cancer-associated deaths. While traditional treatments are able to efficiently remove the primary tumor, secondary tumors remain poorly accessible. Capitalizing on this there is an urgent need for novel treatment modalities. Among the most promising approaches, increasing research interest has been devoted to immunogenic cell death inducing agents that are able to trigger localized cell death of the cancer cells as well as induce an immune response inside the whole organism. Preliminary studies have shown that immunogenic cell death inducing compounds could be able to overcome metastatic and relapsing tumors. Herein, the application of metal complexes as immunogenic cell death inducing compounds is systematically reviewed.


Subject(s)
Coordination Complexes , Neoplasms , Humans , Coordination Complexes/pharmacology , Coordination Complexes/therapeutic use , Immunogenic Cell Death , Neoplasms/drug therapy , Cell Death , Immunotherapy
2.
J Nanobiotechnology ; 20(1): 258, 2022 Jun 03.
Article in English | MEDLINE | ID: mdl-35659243

ABSTRACT

BACKGROUND: Cisplatin, the alkylating agent of platinum(II) (Pt(II)), is the most common antitumor drug in clinic; however, it has many side effects, therefore it is higly desired to develop low toxicity platinum(IV) (Pt(IV)) drugs. Multi-omics analysis, as a powerful tool, has been frequently employed for the mechanism study of a certain therapy at the molecular level, which might be helpful for elucidating the mechanism of platinum drugs and facilitating their clinical application. METHODS: Strating form cisplatin, a hydrophobic Pt(IV) prodrug (CisPt(IV)) with two hydrophobic aliphatic chains was synthesized, and further encapsulated with a drug carrier, human serum albumin (HSA), to form nanoparticles, namely AbPlatin(IV). The anticancer effect of AbPlatin(IV) was investigated in vitro and in vivo. Moreover, transcriptomics, metabolomics and lipidomics were performed to explore the mechanism of AbPlatin(IV). RESULTS: Compared with cisplatin, Abplatin(IV) exhibited better tumor-targeting effect and greater tumor inhibition rate. Lipidomics study showed that Abplatin(IV) might induce the changes of BEL-7404 cell membrane, and cause the disorder of glycerophospholipids and sphingolipids. In addition, transcriptomics and metabolomics study showed that Abplatin(IV) significantly disturbed the purine metabolism pathway. CONCLUSIONS: This research highlighted the development of Abplatin(IV) and the use of multi-omics for the mechanism elucidation of prodrug, which is the key to the clinical translation of prodrug.


Subject(s)
Antineoplastic Agents , Carcinoma, Hepatocellular , Liver Neoplasms , Prodrugs , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Cell Line, Tumor , Cisplatin/chemistry , Cisplatin/pharmacology , Cisplatin/therapeutic use , Humans , Liver Neoplasms/drug therapy , Platinum/chemistry , Prodrugs/chemistry , Prodrugs/pharmacology
3.
Adv Sci (Weinh) ; 11(9): e2305363, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38093659

ABSTRACT

Osteoarthritis (OA) is a chronic joint disease characterized by synovitis and joint cartilage destruction. The severity of OA is highly associated with the imbalance between M1 and M2 synovial macrophages. In this study, a novel strategy is designed to modulate macrophage polarization by reducing intracellular reactive oxygen species (ROS) levels and regulating mitochondrial function. A ROS-responsive polymer is synthesized to self-assemble with astaxanthin and autophagy activator rapamycin to form nanoparticles (NP@PolyRHAPM ). In vitro experiments show that NP@PolyRHAPM significantly reduced intracellular ROS levels. Furthermore, NP@PolyRHAPM restored mitochondrial membrane potential, increased glutathione (GSH) levels, and promoted intracellular autophagy, hence successfully repolarizing M1 macrophages into the M2 phenotype. This repolarization enhanced chondrocyte proliferation and vitality while inhibiting apoptosis. In vivo experiments utilizing an anterior cruciate ligament transection (ACLT)-induced OA mouse model revealed the anti-inflammatory and cartilage-protective effects of NP@PolyRHAPM , effectively mitigating OA progression. Consequently, the findings suggest that intra-articular delivery of ROS-responsive nanocarrier systems holds significant promise as a potential and effective therapeutic strategy for OA treatment.


Subject(s)
Osteoarthritis , Mice , Animals , Reactive Oxygen Species/therapeutic use , Osteoarthritis/drug therapy , Xanthophylls/pharmacology , Xanthophylls/therapeutic use , Macrophages
4.
Nanoscale Horiz ; 9(11): 2067-2068, 2024 Oct 21.
Article in English | MEDLINE | ID: mdl-39324218

ABSTRACT

Correction for 'Enhancing the chemotherapeutic efficacy of platinum prodrug nanoparticles and inhibiting cancer metastasis by targeting iron homeostasis' by Fang Ding et al., Nanoscale Horiz., 2020, 5, 999-1015, https://doi.org/10.1039/D0NH00148A.

5.
Adv Mater ; 36(1): e2308762, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37849029

ABSTRACT

Both cisplatin-based chemotherapy and immune checkpoint blockers (ICBs)-based immunotherapy are the first-line treatments for patients with advanced bladder cancer. Cancer cells can develop resistance to cisplatin through extensive DNA repair, while a low response rate to ICBs is mostly due to the presence of an immunosuppressive microenvironment and low PD-L1 expression. Herein, a glutathione (GSH)-responsive nanoparticle (NP2) loaded with cisplatin prodrug (Pt (IV)) and WEE1 inhibitor (MK1775) is designed. NP2 can be triggered by GSH in cancer cells, and the released MK1775 can inhibit the activity of WEE1 protein, which ultimately increases DNA damage by cisplatin. Genome-wide RNA sequencing first reveals that NP2 can inhibit DNA repair machinery by interfering with the cell cycle and significantly activate the stimulator of interferon genes pathway. Tumor growth is significantly inhibited by NP2 in vivo. As innate and adaptive immune responses are stimulated, the immunosuppressive microenvironment is modified, and the "immune cold tumor" is transformed into an "immune hot tumor". In addition, NP2 can upregulate PD-L1 expression in tumor cells, thereby increasing the response rate of PD-L1 monoclonal antibody (αPD-L1) and eliciting long-term immune responses in both primary and metastatic tumors.


Subject(s)
Prodrugs , Urinary Bladder Neoplasms , Humans , Cisplatin/pharmacology , Platinum , B7-H1 Antigen/metabolism , Prodrugs/pharmacology , Urinary Bladder Neoplasms/drug therapy , DNA Damage , Immunotherapy , Tumor Microenvironment , Cell Line, Tumor , Protein-Tyrosine Kinases , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism
6.
J Control Release ; 373: 493-506, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39033985

ABSTRACT

Despite impressive advances in immune checkpoint blockade therapy, its efficacy as a standalone treatment remains limited. The influence of chemotherapeutic agents on tumor immunotherapy has progressively come to light in recent years, positioning them as promising contenders in the realm of combination therapy options for tumor immunotherapy. Herein, we present the rational design, synthesis, and biological evaluation of the first example of a Co(III) prodrug (Co2) capable of eliciting a localized cytotoxic effect while simultaneously inducing a systemic immune response via type II immunogenic cell death (ICD). To enhance its pharmacological properties, a glutathione-sensitive polymer was synthesized, and Co2 was encapsulated into polymeric nanoparticles (NP-Co2) to improve efficacy. Furthermore, NP-Co2 activates the GRP78/p-PERK/p-eIF2α/CHOP pathway, thereby inducing ICD in cancer cells. This facilitates the transformation of "cold tumors" into "hot tumors" and augments the effectiveness of the PD-1 monoclonal antibody (αPD-1). In essence, this nanomedicine, utilizing Co(III) prodrugs to induce ICD, provides a promising strategy to enhance chemotherapy and αPD-1 antibody-mediated cancer immunotherapy.


Subject(s)
Cobalt , Endoplasmic Reticulum Chaperone BiP , Immunogenic Cell Death , Immunotherapy , Nanomedicine , Prodrugs , Prodrugs/administration & dosage , Prodrugs/chemistry , Prodrugs/pharmacology , Prodrugs/therapeutic use , Cobalt/chemistry , Cobalt/administration & dosage , Animals , Immunotherapy/methods , Immunogenic Cell Death/drug effects , Humans , Nanomedicine/methods , Cell Line, Tumor , Nanoparticles/administration & dosage , Neoplasms/therapy , Neoplasms/immunology , Neoplasms/drug therapy , Mice, Inbred C57BL , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Mice , Female , Polymers/chemistry , Polymers/administration & dosage , Mice, Inbred BALB C
7.
ACS Nano ; 18(21): 13683-13695, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38749906

ABSTRACT

Tumor metastases and reoccurrence are considered the leading causes of cancer-associated deaths. As an emerging therapeutic method, increasing research efforts have been devoted to immunogenic cell death (ICD)-inducing compounds to solve the challenge. The clinically approved chemotherapeutic Pt complexes are not or are only poorly able to trigger ICD. Herein, the axial functionalization of the Pt(II) complex cisplatin with perfluorocarbon chains into ICD-inducing Pt(IV) prodrugs is reported. Strikingly, while the Pt(II) complex as well as the perfluorocarbon ligands did not induce ICD, the Pt(IV) prodrug demonstrated unexpectantly the induction of ICD through accumulation in the endoplasmic reticulum and generation of reactive oxygen species in this organelle. To enhance the pharmacological properties, the compound was encapsulated with human serum albumin into nanoparticles. While selectively accumulating in the tumorous tissue, the nanoparticles demonstrated a strong tumor growth inhibitory effect against osteosarcoma inside a mouse model. In vivo tumor vaccine analysis also demonstrated the ability of Pt(IV) to be an ideal ICD inducer. Overall, this study reports on axially perfluorocarbon chain-modified Pt(IV) complexes for ICD induction and chemoimmunotherapy in osteosarcoma.


Subject(s)
Antineoplastic Agents , Fluorocarbons , Immunotherapy , Serum Albumin, Human , Fluorocarbons/chemistry , Fluorocarbons/pharmacology , Humans , Animals , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Serum Albumin, Human/chemistry , Cisplatin/pharmacology , Cisplatin/chemistry , Cell Line, Tumor , Nanoparticles/chemistry , Prodrugs/chemistry , Prodrugs/pharmacology , Cell Proliferation/drug effects , Platinum/chemistry , Platinum/pharmacology , Mice, Inbred BALB C , Immunogenic Cell Death/drug effects
8.
Adv Healthc Mater ; : e2402973, 2024 Oct 13.
Article in English | MEDLINE | ID: mdl-39396375

ABSTRACT

Immune checkpoint blockers (ICBs) therapy stands as the first-line treatment option for advanced renal cell carcinoma (RCC). However, its effectiveness is hindered by the immunosuppressive tumor microenvironment (TME). Sonodynamic therapy (SDT) generates tumor cell fragments that can prime the host's antitumor immunity. Nevertheless, the hypoxic microenvironment and upregulated autophagy following SDT often lead to cancer cell resistance. In response to these challenges, a hypoxia-responsive polymer (Poly(4,4'-azobisbenzenemethanol-PMDA)-mPEG5k, P-APm) encapsulating both a HIF-2α inhibitor (belzutifan) and the ultrasonic sensitize (Chlorin e6, Ce6) is designed, to create the nanoparticle APm/Ce6/HIF. APm/Ce6/HIF combined with ultrasound (US) significantly suppresses tumor growth and activates antitumor immunity in vivo. Moreover, this treatment effectively transforms the immunosuppressive microenvironment from "immune-cold" to "immune-hot", thereby enhancing the response to ICBs therapy. The findings indicate that APm/Ce6/HIF offers a synergistic approach combining targeted therapy with immunotherapy, providing new possibilities for treating RCC.

9.
Sci Adv ; 10(28): eadn0960, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38996025

ABSTRACT

Celastrol (CEL), an active compound isolated from the root of Tripterygium wilfordii, exhibits broad anticancer activities. However, its poor stability, narrow therapeutic window and numerous adverse effects limit its applications in vivo. In this study, an adenosine triphosphate (ATP) activatable CEL-Fe(III) chelate was designed, synthesized, and then encapsulated with a reactive oxygen species (ROS)-responsive polymer to obtain CEL-Fe nanoparticles (CEL-Fe NPs). In normal tissues, CEL-Fe NPs maintain structural stability and exhibit reduced systemic toxicity, while at the tumor site, an ATP-ROS-rich tumor microenvironment, drug release is triggered by ROS, and antitumor potency is restored by competitive binding of ATP. This intelligent CEL delivery system improves the biosafety and bioavailability of CEL for cancer therapy. Such a CEL-metal chelate strategy not only mitigates the challenges associated with CEL but also opens avenues for the generation of CEL derivatives, thereby expanding the therapeutic potential of CEL in clinical settings.


Subject(s)
Adenosine Triphosphate , Pentacyclic Triterpenes , Prodrugs , Reactive Oxygen Species , Pentacyclic Triterpenes/pharmacology , Pentacyclic Triterpenes/chemistry , Prodrugs/chemistry , Prodrugs/pharmacology , Adenosine Triphosphate/metabolism , Humans , Animals , Reactive Oxygen Species/metabolism , Mice , Cell Line, Tumor , Triterpenes/chemistry , Triterpenes/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Chelating Agents/chemistry , Chelating Agents/pharmacology , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Tumor Microenvironment/drug effects , Drug Liberation , Nanoparticles/chemistry , Xenograft Model Antitumor Assays , Ferric Compounds/chemistry
10.
Nanoscale ; 15(22): 9783-9791, 2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37199239

ABSTRACT

Chemo-photodynamic combination therapy has attracted great attention as a promising cancer treatment strategy. However, the therapeutic efficacy has been limited by the low selectivity and penetration of therapeutic agents into the tumor. PEGylation is an effective strategy to enhance the stability and circulation times of nanoparticles, which improves the bioavailability of encapsulated drugs. However, such PEGylation nanomedicines also decrease cellular uptake efficiency. Herein, we developed a smart nano-drug delivery system with PEG deshielding and charge reversal performance triggered by external light irradiation, which can not only enhance tumor selectivity and tumor penetration but also combine photodynamic therapy and chemotherapy for better tumor treatment effects, contributed by the use of core-shell nanoparticles with positively charged complex Pt(IV) prodrugs and photosensitizers.


Subject(s)
Nanoparticles , Neoplasms , Photochemotherapy , Prodrugs , Humans , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Prodrugs/pharmacology , Neoplasms/drug therapy , Cell Line, Tumor
11.
Adv Mater ; 35(8): e2210267, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36484099

ABSTRACT

Tumor metastases and reoccurrences are considered the leading cause of cancer-associated deaths. While highly efficient treatments for the eradication of primary tumors have been developed, the treatment of secondary or metastatic tumors remains poorly accessible. Over the past years, compounds that intervene through the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) signaling pathway against tumor metastases have emerged with potential for clinical development. While interferon stimulatory DNAs have demonstrated activation of this pathway, these compounds are associated with poor bioavailability, poor stability, and poor cancer selectivity, hindering their use for therapeutic applications. Herein, the encapsulation of a highly potent chemotherapeutic platinum(II) complex and the incorporation of interferon stimulatory DNA strands for activation of the cGAS-STING pathway into multimodal tetrahedral DNA nanostructures (84bp-TDNISD/56MESS ) for combined chemotherapy and immunotherapy is reported. It is found that 84bp-TDNISD/56MESS can work as not only a drug delivery carrier for highly potent toxins, but also an immunostimulant agent that can activate the STING pathway for antitumor immune responses. In a mouse breast cancer model, the DNA nanostructure is found to nearly fully eradicate primary as well as secondary/metastatic tumors, hence demonstrating its potential clinical translational value.


Subject(s)
Interferons , Neoplasms , Mice , Animals , Membrane Proteins/metabolism , Nucleotidyltransferases/genetics , DNA , Neoplasms/therapy , Immunotherapy
12.
Nat Commun ; 14(1): 5350, 2023 09 02.
Article in English | MEDLINE | ID: mdl-37660174

ABSTRACT

Tumor metastases are considered the leading cause of cancer-associated deaths. While clinically applied drugs have demonstrated to efficiently remove the primary tumor, metastases remain poorly accessible. To overcome this limitation, herein, the development of a theranostic nanomaterial by incorporating a chromophore for imaging and a photosensitizer for treatment of metastatic tumor sites is presented. The mechanism of action reveals that the nanoparticles are able to intervene by local generation of cellular damage through photodynamic therapy as well as by systemic induction of an immune response by immunotherapy upon inhibition of the mTOR signaling pathway which is of crucial importance for tumor onset, progression and metastatic spreading. The nanomaterial is able to strongly reduce the volume of the primary tumor as well as eradicates tumor metastases in a metastatic breast cancer and a multi-drug resistant patient-derived hepatocellular carcinoma models in female mice.


Subject(s)
Liver Neoplasms , Photochemotherapy , Female , Animals , Mice , Precision Medicine , Signal Transduction , TOR Serine-Threonine Kinases , Immunotherapy
13.
Adv Sci (Weinh) ; 10(3): e2205246, 2023 01.
Article in English | MEDLINE | ID: mdl-36442854

ABSTRACT

Camptothecin (CPT) is a potent chemotherapeutic agent for various cancers, but the broader application of CPT is still hindered by its poor bioavailability and systemic toxicity. Here, a prodrug that releases CPT in response to glutathione (GSH), which is commonly overexpressed by cancer cells is reported. Through assembling with PEGylated lipids, the prodrug is incorporated within as-assembled nanoparticles, affording CPT with a prolonged half-life in blood circulation, enhanced tumor targetingability, and improved therapeutic efficacy. Furthermore, such prodrug nanoparticles can also promote dendritic cell maturation and tumor infiltration of CD8+ T cells, providing a novel strategy to improve the therapeutic efficacy of CPT.


Subject(s)
Nanoparticles , Neoplasms , Prodrugs , Humans , Prodrugs/therapeutic use , Camptothecin/therapeutic use , CD8-Positive T-Lymphocytes , Neoplasms/drug therapy , Glutathione/therapeutic use
14.
Mater Today Bio ; 18: 100548, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36713799

ABSTRACT

USP1 (Ubiquitin-specific protease 1) is closely related to the prognosis of patients with liver cancer and plays an important role in DNA damage repair. C527 is a selective USP1 inhibitor (USP1i), which can regulate the protein ubiquitination to effectively inhibit the proliferation of cancer cells. However, its clinical application is hindered due to the poor water solubility and lack of tumor targeting. Moreover, the efficacy of single use of USP1i is still limited. Herein, a glutathione (GSH) sensitive amphiphilic polymer (poly (2-HD-co-HPMDA)-mPEG, PHHM) with disulfide bonds in the main chain was designed to encapsulate the USP1i as well as platinum (IV) prodrug (Pt (IV)-C12), resulting in the formation of composite nanoparticles, i.e., NP-Pt-USP1i. NP-Pt-USP1i can inhibit the DNA damage repair by targeting USP1 by the encapsulated USP1i, which ultimately increases the sensitivity of tumor cells to cisplatin and enhances the anti-cancer efficacy of cisplatin. Finally, an intraperitoneal tumor mice model and a patient-derived xenograft (PDX) of liver cancer mice model were established to prove that NP-Pt-USP1i could effectively inhibit the tumor growth. This work further validated the possibility of therapeutically target USP1 by USP1i in combination with DNA damaging alkylating agents, which could become a promising cancer treatment modality in the future.

15.
Adv Mater ; 35(22): e2212267, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36916030

ABSTRACT

Cuproptosis is a new cell death that depends on copper (Cu) ionophores to transport Cu into cancer cells, which induces cell death. However, existing Cu ionophores are small molecules with a short blood half-life making it hard to transport enough Cu into cancer cells. Herein, a reactive oxygen species (ROS)-sensitive polymer (PHPM) is designed, which is used to co-encapsulate elesclomol (ES) and Cu to form nanoparticles (NP@ESCu). After entering cancer cells, ES and Cu, triggered by excessive intracellular ROS, are readily released. ES and Cu work in a concerted way to not only kill cancer cells by cuproptosis, but also induce immune responses. In vitro, the ability of NP@ESCu to efficiently transport Cu and induce cuproptosis is investigated. In addition, the change in the transcriptomes of cancer cells treated with NP@ESCu is explored by RNA-Seq. In vivo, NP@ESCu is found to induce cuproptosis in the mice model with subcutaneous bladder cancer, reprograming the tumor microenvironment. Additionally, NP@ESCu is further combined with anti-programmed cell death protein ligand-1 antibody (αPD-L1). This study provides the first report of combining nanomedicine that can induce cuproptosis with αPD-L1 for enhanced cancer therapy, thereby providing a novel strategy for future cancer therapy.


Subject(s)
Nanoparticles , Neoplasms , Animals , Mice , Copper , Reactive Oxygen Species , Immunotherapy , Ionophores , Apoptosis , Tumor Microenvironment
16.
Nanoscale Adv ; 5(18): 4758-4769, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37705793

ABSTRACT

Immunoadjuvants play a key role in enhancing the efficacy of therapeutic tumor vaccines for treating malignant and recurrent cancers. However, due to the bottleneck in the rational design and mechanistic understanding of novel adjuvants, currently available immunoadjuvants in clinical practice are very limited. To boost adjuvant design and development, herein we propose a surface topography regulatory strategy for constructing novel adjuvants with improved adjuvant properties. One of the licensed adjuvants with a well-defined molecular mechanism of immune activation, cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODNs), was used as the material framework. We constructed immunostimulatory CpG nanoparticles (CpG NPs) with different surface topographies by coordination-driven self-assembly between CpG ODNs and ferrous ions. These self-assembled CpG NPs combine the biological and physical activation abilities of innate immunity and can be used as adjuvants of tumor antigens for malignant tumor immunotherapy. The experimental results showed that these CpG NPs could rapidly enter innate immune cells and remold the tumor microenvironment (TME) to enhance anti-tumor immunotherapy via (i) inducing proinflammatory cytokine production; (ii) promoting the transformation of macrophages from immunosuppressed M2 types into immunoactivated M1 types; (iii) amplifying the antigen presentation of mature dendritic cells (DCs), and (iv) activating T cells in tumor sites. Among the prepared nanostructures, pompon-shaped nanoparticles (NPpo) showed the strongest adjuvant properties and anti-tumor immunotherapeutic effect as the adjuvant of ovalbumin in melanoma-bearing mice. Overall, this work provides an effective strategy for designing novel adjuvants for activating the immunosuppressed TME to enable better cancer immunotherapy.

17.
Adv Healthc Mater ; 11(15): e2201178, 2022 08.
Article in English | MEDLINE | ID: mdl-35668035

ABSTRACT

Adoptive cell therapy by natural cells for drug delivery has achieved encouraging progress in cancer treatment over small-molecule drugs. Macrophages have a great potential in antitumor drug delivery due to their innate capability of sensing chemotactic cues and homing toward tumors. However, major challenge in current macrophage-based cell therapy is loading macrophages with adequate amounts of therapeutic, while allowing them to play a role in immunity without compromising cell functions. Herein, a potent strategy to construct a macrophage-mediated drug delivery platform loaded with a nanosphere (CpG-ASO-Pt) (CAP) composed of functional nucleic acid therapeutic (CpG-ASO) and chemotherapeutic drug cisplatin (Pt) is demonstrated. These CAP nanosphere loaded macrophages (CAP@M) are employed not only as carriers to deliver this nanosphere toward the tumor sites, but also simultaneously to guide the differentiation and maintain immunostimulatory effects. Both in vitro and in vivo experiments indicate that CAP@M is a promising nanomedicine by macrophage-mediated nanospheres delivery and synergistically immunostimulatory activities. Taken together, this study provides a new strategy to construct a macrophage-based drug delivery system for synergistic chemo-/gene-/immuno-therapy.


Subject(s)
Antineoplastic Agents , Nanoparticles , Nanospheres , Cell Line, Tumor , Drug Delivery Systems , Macrophages , Nanomedicine
18.
Adv Sci (Weinh) ; 9(8): e2104472, 2022 03.
Article in English | MEDLINE | ID: mdl-35064767

ABSTRACT

Diabetes is closely related to the occurrence of endometrial cancer (EC) and its poor prognosis. However, there is no effective clinical treatment for EC patients with diabetes (patientEC+/dia+ ). To explore new therapeutic targets, Ishikawa is cultured with high glucose (IshikawaHG ) mimicking hyperglycemia in patientEC+/dia+ . Subsequently, it is discovered that IshikawaHG exhibits glucose metabolic reprogramming characterized by increased glycolysis and decreased oxidative phosphorylation. Further, pyruvate dehydrogenase kinase 1 (PDK1) is identified to promote glycolysis of IshikawaHG by proteomics. Most importantly, JX06, a novel PDK1 inhibitor combined metformin (Met) significantly inhibits IshikawaHG proliferation though IshikawaHG is resistant to Met. Furthermore, a reduction-sensitive biodegradable polymer is adopted to encapsulate JX06 to form nanoparticles (JX06-NPs) for drug delivery. It is found that in vitro JX06-NPs have better inhibitory effect on the growth of IshikawaHG as well as patient-derived EC cells (PDC) than JX06. Additionally, it is found that JX06-NPs can accumulate to the tumor of EC-bearing mouse with diabetes (miceEC+/dia+ ) after intravenous injection, and JX06-NPs combined Met can significantly inhibit tumor growth of miceEC+/dia+ . Taken together, the study demonstrates that the combination of JX06-NPs and Met can target the cancer metabolism plasticity, which significantly inhibits the growth of EC, thereby provides a new adjuvant therapy for patientsEC+/dia+ .


Subject(s)
Diabetes Mellitus , Endometrial Neoplasms , Metformin , Nanoparticles , Animals , Cell Line, Tumor , Cell Proliferation , Disulfiram/analogs & derivatives , Endometrial Neoplasms/complications , Endometrial Neoplasms/drug therapy , Endometrial Neoplasms/metabolism , Female , Humans , Metformin/pharmacology , Metformin/therapeutic use , Mice , Morpholines
19.
Adv Mater ; 33(20): e2100599, 2021 May.
Article in English | MEDLINE | ID: mdl-33834553

ABSTRACT

A systematic combination strategy is proposed for overcoming cisplatin resistance using near-infrared (NIR)-light-triggered hyperthermia. A new photothermal polymer DAP-F is complexed with a reduction-sensitive amphiphilic polymer P1 to form F-NPs with photothermal effect. Subsequently, to build the final nanosystem F-Pt-NPs, F-NPs are combined with Pt-NPs, which are obtained by encapsulating a Pt(IV) prodrug with P1. Mild hyperthermia (43 °C), generated from F-Pt-NPs induced by an 808 nm NIR laser, have various effects such as: i) enhancing the cellular membrane permeability to promote the uptake of drugs; ii) activating cisplatin by accelerating the glutathione consumption; iii) increasing the Pt-DNA adducts formation and possibly the formation of a portion of irreparable Pt-DNA interstrand crosslinks, thereby inhibiting the repair of DNA. In vitro, it is found that even on cisplatin-resistant A549DDP cells, the IC50 of F-Pt-NPs (43 °C) is only 7.0 × 10-6 m Pt mL-1 . In vivo, on a patient-derived xenograft model of multidrug resistant lung cancer, the efficacy of the F-Pt-NPs (43 °C) treatment group shows a tumor inhibition rate of 94%. Taken together, here, an important perspective of resolving cascade drug resistance with the assistance of mild hyperthermia triggered by NIR light is presented, which can be of great significance for clinic translation.


Subject(s)
Antineoplastic Agents , Drug Delivery Systems , Animals , Cisplatin , Hyperthermia , Prodrugs
20.
J Mater Chem B ; 9(26): 5173-5194, 2021 07 07.
Article in English | MEDLINE | ID: mdl-34116565

ABSTRACT

Platinum drugs are commonly used in cancer therapy, but their therapeutic outcomes have been significantly compromised by the drug resistance of cancer cells. To this end, intensive efforts have been made to develop nanoparticle-based drug delivery systems for platinum drugs, due to their multifunctionality in delivering drugs, in modulating the tumor microenvironment, and in integrating additional genes, proteins, and small molecules to overcome chemoresistance in cancers. To facilitate the clinical application of these promising nanoparticle-based platinum drug delivery systems, this paper summarizes the common mechanisms for chemoresistance towards platinum drugs, the advantages of nanoparticles in drug delivery, and recent strategies of nanoparticle-based platinum drug delivery. Furthermore, we discuss how to design delivery platforms more effectively to overcome chemoresistance in cancers, thereby improving the efficacy of platinum-based chemotherapy.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Delivery Systems , Drug Resistance, Neoplasm/drug effects , Nanoparticles/chemistry , Neoplasms/drug therapy , Organoplatinum Compounds/pharmacology , Antineoplastic Agents/chemistry , Humans , Organoplatinum Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL