Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 232
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 632(8024): 429-436, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38987599

ABSTRACT

Tumours can obtain nutrients and oxygen required to progress and metastasize through the blood supply1. Inducing angiogenesis involves the sprouting of established vessel beds and their maturation into an organized network2,3. Here we generate a comprehensive atlas of tumour vasculature at single-cell resolution, encompassing approximately 200,000 cells from 372 donors representing 31 cancer types. Trajectory inference suggested that tumour angiogenesis was initiated from venous endothelial cells and extended towards arterial endothelial cells. As neovascularization elongates (through angiogenic stages SI, SII and SIII), APLN+ tip cells at the SI stage (APLN+ TipSI) advanced to TipSIII cells with increased Notch signalling. Meanwhile, stalk cells, following tip cells, transitioned from high chemokine expression to elevated TEK (also known as Tie2) expression. Moreover, APLN+ TipSI cells not only were associated with disease progression and poor prognosis but also hold promise for predicting response to anti-VEGF therapy. Lymphatic endothelial cells demonstrated two distinct differentiation lineages: one responsible for lymphangiogenesis and the other involved in antigen presentation. In pericytes, endoplasmic reticulum stress was associated with the proangiogenic BASP1+ matrix-producing pericytes. Furthermore, intercellular communication analysis showed that neovascular endothelial cells could shape an immunosuppressive microenvironment conducive to angiogenesis. This study depicts the complexity of tumour vasculature and has potential clinical significance for anti-angiogenic therapy.


Subject(s)
Endothelial Cells , Neoplasms , Neovascularization, Pathologic , Single-Cell Analysis , Humans , Antigen Presentation , Cell Communication , Cell Differentiation , Cell Lineage , Disease Progression , Endoplasmic Reticulum Stress , Endothelial Cells/cytology , Endothelial Cells/immunology , Endothelial Cells/metabolism , Lymphangiogenesis , Neoplasms/blood supply , Neoplasms/classification , Neoplasms/drug therapy , Neoplasms/pathology , Neovascularization, Pathologic/pathology , Pericytes/pathology , Pericytes/cytology , Pericytes/metabolism , Prognosis , Receptors, Notch/metabolism , Signal Transduction , Tumor Microenvironment , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Animals , Zebrafish
2.
Nature ; 632(8026): 782-787, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39143208

ABSTRACT

Hot-carrier transistors are a class of devices that leverage the excess kinetic energy of carriers. Unlike regular transistors, which rely on steady-state carrier transport, hot-carrier transistors modulate carriers to high-energy states, resulting in enhanced device speed and functionality. These characteristics are essential for applications that demand rapid switching and high-frequency operations, such as advanced telecommunications and cutting-edge computing technologies1-5. However, the traditional mechanisms of hot-carrier generation are either carrier injection6-11 or acceleration12,13, which limit device performance in terms of power consumption and negative differential resistance14-17. Mixed-dimensional devices, which combine bulk and low-dimensional materials, can offer different mechanisms for hot-carrier generation by leveraging the diverse potential barriers formed by energy-band combinations18-21. Here we report a hot-emitter transistor based on double mixed-dimensional graphene/germanium Schottky junctions that uses stimulated emission of heated carriers to achieve a subthreshold swing lower than 1 millivolt per decade beyond the Boltzmann limit and a negative differential resistance with a peak-to-valley current ratio greater than 100 at room temperature. Multi-valued logic with a high inverter gain and reconfigurable logic states are further demonstrated. This work reports a multifunctional hot-emitter transistor with significant potential for low-power and negative-differential-resistance applications, marking a promising advancement for the post-Moore era.

3.
Brief Bioinform ; 24(3)2023 05 19.
Article in English | MEDLINE | ID: mdl-37080761

ABSTRACT

Advancing spatially resolved transcriptomics (ST) technologies help biologists comprehensively understand organ function and tissue microenvironment. Accurate spatial domain identification is the foundation for delineating genome heterogeneity and cellular interaction. Motivated by this perspective, a graph deep learning (GDL) based spatial clustering approach is constructed in this paper. First, the deep graph infomax module embedded with residual gated graph convolutional neural network is leveraged to address the gene expression profiles and spatial positions in ST. Then, the Bayesian Gaussian mixture model is applied to handle the latent embeddings to generate spatial domains. Designed experiments certify that the presented method is superior to other state-of-the-art GDL-enabled techniques on multiple ST datasets. The codes and dataset used in this manuscript are summarized at https://github.com/narutoten520/SCGDL.


Subject(s)
Deep Learning , Transcriptome , Bayes Theorem , Gene Expression Profiling , Cell Communication
4.
Bioinformatics ; 40(1)2024 01 02.
Article in English | MEDLINE | ID: mdl-38243703

ABSTRACT

MOTIVATION: Spatial clustering is essential and challenging for spatial transcriptomics' data analysis to unravel tissue microenvironment and biological function. Graph neural networks are promising to address gene expression profiles and spatial location information in spatial transcriptomics to generate latent representations. However, choosing an appropriate graph deep learning module and graph neural network necessitates further exploration and investigation. RESULTS: In this article, we present GRAPHDeep to assemble a spatial clustering framework for heterogeneous spatial transcriptomics data. Through integrating 2 graph deep learning modules and 20 graph neural networks, the most appropriate combination is decided for each dataset. The constructed spatial clustering method is compared with state-of-the-art algorithms to demonstrate its effectiveness and superiority. The significant new findings include: (i) the number of genes or proteins of spatial omics data is quite crucial in spatial clustering algorithms; (ii) the variational graph autoencoder is more suitable for spatial clustering tasks than deep graph infomax module; (iii) UniMP, SAGE, SuperGAT, GATv2, GCN, and TAG are the recommended graph neural networks for spatial clustering tasks; and (iv) the used graph neural network in the existent spatial clustering frameworks is not the best candidate. This study could be regarded as desirable guidance for choosing an appropriate graph neural network for spatial clustering. AVAILABILITY AND IMPLEMENTATION: The source code of GRAPHDeep is available at https://github.com/narutoten520/GRAPHDeep. The studied spatial omics data are available at https://zenodo.org/record/8141084.


Subject(s)
Algorithms , Gene Expression Profiling , Neural Networks, Computer , Software , Cluster Analysis
5.
FASEB J ; 38(17): e70045, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39259551

ABSTRACT

Epithelial ovarian cancer is the deadliest gynecologic malignancy, characterized by high metastasis. Transforming growth factor-ß1 (TGF-ß1) drives epithelial- mesenchymal transformation (EMT), a key process in tumor metastasis. Tumor necrosis factor-α-induced protein 8 (TNFAIP8)-like 2 (TIPE2) acts as a negative regulator of innate and adaptive immunity and involves in various cancers. However, its relationship with TGF-ß1 in ovarian cancer and its role in reversing TGF-ß1-induced EMT remain unclear. This study examined TIPE2 mRNA and protein expression using quantitative RT-PCR (qRT-PCR), western blot and immunohistochemistry. The effects of TIPE2 overexpression and knockdown on the proliferation, migration and invasion of epithelial ovarian cancer cells were assessed through 5-ethynyl-2-deoxyuridine, colony-forming, transwell migration and invasion assays. The relationship between TIPE2 and TGF-ß1 was investigated using qRT-PCR and enzyme-linked immunosorbent assay, while the interaction between TIPE2 and Smad2 was identified via co-immunoprecipitation. The results revealed that TIPE2 protein was significantly down-regulated in epithelial ovarian cancer tissues and correlated with the pathological type of tumor, patients' age, tumor differentiation degree and FIGO stage. TIPE2 and TGF-ß1 appeared to play an opposite role to each other during the progression of human ovarian cancer cells. Furthermore, TIPE2 inhibited the metastasis and EMT of ovarian cancer cells by combining with Smad2 in vitro or in an intraperitoneal metastasis model. Consequently, these findings suggest that TIPE2 plays a crucial inhibitory role in ovarian cancer metastasis by modulating the TGF-ß1/Smad2/EMT signaling pathway and may serve as a potential target for ovarian cancer, providing important direction for future diagnostic and therapeutic strategies.


Subject(s)
Carcinoma, Ovarian Epithelial , Cell Movement , Epithelial-Mesenchymal Transition , Intracellular Signaling Peptides and Proteins , Ovarian Neoplasms , Smad2 Protein , Transforming Growth Factor beta1 , Smad2 Protein/metabolism , Smad2 Protein/genetics , Humans , Female , Transforming Growth Factor beta1/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Carcinoma, Ovarian Epithelial/metabolism , Carcinoma, Ovarian Epithelial/pathology , Carcinoma, Ovarian Epithelial/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/genetics , Cell Line, Tumor , Animals , Mice , Neoplasm Invasiveness , Cell Proliferation , Gene Expression Regulation, Neoplastic , Mice, Nude , Mice, Inbred BALB C , Signal Transduction
6.
J Neuroinflammation ; 21(1): 143, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822367

ABSTRACT

The dysregulation of pro- and anti-inflammatory processes in the brain has been linked to the pathogenesis of major depressive disorder (MDD), although the precise mechanisms remain unclear. In this study, we discovered that microglial conditional knockout of Pdcd4 conferred protection against LPS-induced hyperactivation of microglia and depressive-like behavior in mice. Mechanically, microglial Pdcd4 plays a role in promoting neuroinflammatory responses triggered by LPS by inhibiting Daxx-mediated PPARγ nucleus translocation, leading to the suppression of anti-inflammatory cytokine IL-10 expression. Finally, the antidepressant effect of microglial Pdcd4 knockout under LPS-challenged conditions was abolished by intracerebroventricular injection of the IL-10 neutralizing antibody IL-10Rα. Our study elucidates the distinct involvement of microglial Pdcd4 in neuroinflammation, suggesting its potential as a therapeutic target for neuroinflammation-related depression.


Subject(s)
Co-Repressor Proteins , Interleukin-10 , Mice, Knockout , Microglia , Neuroinflammatory Diseases , PPAR gamma , Signal Transduction , Animals , Male , Mice , Adaptor Proteins, Signal Transducing/deficiency , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/deficiency , Co-Repressor Proteins/genetics , Co-Repressor Proteins/metabolism , Depression/metabolism , Depression/etiology , Interleukin-10/metabolism , Interleukin-10/deficiency , Interleukin-10/genetics , Lipopolysaccharides/toxicity , Mice, Inbred C57BL , Microglia/metabolism , Microglia/drug effects , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Neuroinflammatory Diseases/metabolism , PPAR gamma/metabolism , PPAR gamma/genetics , Signal Transduction/physiology , Signal Transduction/drug effects
7.
Ann Rheum Dis ; 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39237131

ABSTRACT

OBJECTIVES: Dermatomyositis (DM) has been consistently linked to the type I interferon (IFN-I) pathway. However, the precise pathogenesis remains incompletely elucidated. We aimed to explore potential molecular mechanisms and identify promising therapeutic targets in DM. METHODS: We employed bioinformatics analysis to investigate molecular signatures, aiming to shed light on the pathogenesis of DM. The expression of protein kinase R (PKR) in DM muscle tissues was determined by real-time quantitative PCR, western blot and immunohistochemistry (IHC) analysis. We then assessed the sensitivity and specificity of sarcoplasmic PKR expression by IHC in a consecutive DM cohort and other diseases in this retrospective study. Furthermore, IFN-ß was used to stimulate myoblasts and myotubes, and the relationship between PKR and IFN-ß-induced pathogenic molecules was investigated in vitro. RESULTS: Bioinformatics analysis indicated two primary pathological processes: viral infection and the IFN-I signalling pathway. We subsequently verified that PKR was notably expressed in the cytoplasm of myofibers in DM patients. The sensitivity and specificity of sarcoplasmic PKR expression in DM were 84.6% and 97.6%, respectively. In vitro studies revealed that IFN-ß upregulates the expression of PKR, along with several molecules associated with DM muscle damage. Conversely, inhibiting PKR has been shown to downregulate IFN-ß-induced pathogenic molecules in both myoblasts and myotubes. CONCLUSIONS: We observed that PKR exhibits specific expression in the cytoplasm of DM muscle and inhibiting PKR ameliorates IFN-ß-induced muscle damage in vitro. These findings provide insights into the diagnostic and therapeutic roles of PKR in DM.

8.
Article in English | MEDLINE | ID: mdl-39029922

ABSTRACT

OBJECTIVE: The aim of the study was to investigate the characteristics and prognosis of patients with immune-mediated necrotizing myopathy (IMNM) based on clinical, serological and pathological classification. METHODS: A total of 138 patients with IMNM who met the 2018 European Neuromuscular Center criteria for IMNM including 62 anti-SRP, 32 anti-HMGCR-positive and 44 myositis specific antibody-negative were involved in the study. All patients were followed up and evaluated remission and relapse. Clustering analysis based on clinical, serological, and pathological parameters was used to define subgroups. RESULTS: Clustering analysis classified IMNM into three clusters. Cluster 1 patients (n = 35) had the highest CK levels, the shortest disease course, severe muscle weakness, and more inflammation infiltration in muscle biopsy. Cluster 2 patients (n = 79) had the lowest CK level and moderate inflammation infiltrate. Cluster 3 patients (n = 24) had the youngest age of onset, the longest disease course and the least frequency of inflammatory infiltration. Patients in cluster 3 had the longest time-to-remission (median survival time: 61[18.3, 103.7] vs 20.5[16.2, 24.9] and 27[19.6, 34.3] months) and shortest relapse-free time than those in cluster 1 and 2 (median remission time 95%CI: 34[19.9, 48.0] vs 73[49.0, 68.7] and 73[48.4, 97.6] months). Patients with age of onset >55 years, more regeneration of muscle fibers, more CD4+T infiltration, and MAC deposition had more favorable outcomes regarding time to achieving remission. CONCLUSIONS: Stratification combining clinical, serological, and pathological features could distinguish phenotypes and prognosis of IMNM. The pathological characteristics may impact the long-term prognosis of patients with IMNM.

9.
Respir Res ; 25(1): 222, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811943

ABSTRACT

OBJECTIVE: To investigate the association of serum anti-Jo-1 antibody levels with the disease activity and prognosis in anti-Jo-1-positive patients with antisynthetase syndrome (ASS). METHODS: This study included 115 anti-Jo-1-positive patients with ASS who were admitted to China-Japan Friendship Hospital between 2009 and 2019. Anti-Jo-1 antibody serum levels at initial admission and follow-up were determined by enzyme-linked immunosorbent assay (ELISA). Global and organ disease activity was assessed at baseline and follow-up according to the International Myositis Assessment and Clinical Studies guidelines. RESULTS: Among enrolled patients, 70 (60.9%) patients initially presented with interstitial lung disease (ILD), and 46 (40%) patients presented with with muscle weakness at initial admission. At baseline, patients with ILD had lower levels of anti-Jo-1 antibodies than those without ILD (p = 0.012). Baseline anti-Jo-1 antibody levels were higher in patients with muscle weakness, skin involvement, and arthritis (all p < 0.05) compared to those without these manifestations. Baseline anti-Jo-1 antibody levels were positively correlated with skin visual analogue scale (VAS) scores (r = 0.25, p = 0.006), but not with disease activity in other organs. However, changes in anti-Jo-1 antibody levels were significantly positively correlated with the changes in PGA (ß = 0.002, p = 0.001), muscle (ß = 0.003, p < 0.0001), and pulmonary (ß = 0.002, p = 0.013) VAS scores, but not with skin and joint VAS scores. Older age of onset (hazard ratio [HR] 1.069, 95% confidence interval [CI]:1.010-1.133, p = 0.022) and higher C-reactive protein (CRP) levels (HR 1.333, 95% CI: 1.035-1.717, p = 0.026) were risk factors for death. CONCLUSION: Anti-Jo-1 titers appear to correlate more with disease activity changes over time rather than with organ involvement at baseline, which provides better clinical guidance for assessing the disease course using anti-Jo-1 levels.


Subject(s)
Antibodies, Antinuclear , Myositis , Humans , Myositis/blood , Myositis/immunology , Myositis/diagnosis , Male , Female , Middle Aged , Prognosis , Adult , Antibodies, Antinuclear/blood , Follow-Up Studies , Aged , Retrospective Studies , Biomarkers/blood , Lung Diseases, Interstitial/immunology , Lung Diseases, Interstitial/blood , Lung Diseases, Interstitial/diagnosis
10.
Pharmacol Res ; 202: 107136, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38460778

ABSTRACT

CREB-regulated transcription coactivator 1 (CRTC1), a pivotal synaptonuclear messenger, regulates synaptic plasticity and transmission to prevent depression. Despite exhaustive investigations into CRTC1 mRNA reductions in the depressed mice, the regulatory mechanisms governing its transcription remain elusive. Consequently, exploring rapid but non-toxic CRTC1 inducers at the transcriptional level is important for resisting depression. Here, we demonstrate the potential of D-arabinose, a unique monosaccharide prevalent in edible-medicinal plants, to rapidly enter the brain and induce CRTC1 expression, thereby eliciting rapid-acting and persistent antidepressant responses in chronic restrain stress (CRS)-induced depressed mice. Mechanistically, D-arabinose induces the expressions of peroxisome proliferator-activated receptor gamma (PPARγ) and transcription factor EB (TFEB), thereby activating CRTC1 transcription. Notably, we elucidate the pivotal role of the acetyl-CoA synthetase short-chain family member 2 (ACSS2) as an obligatory mediator for PPARγ and TFEB to potentiate CRTC1 transcription. Furthermore, D-arabinose augments ACSS2-dependent CRTC1 transcription by activating AMPK through lysosomal AXIN-LKB1 pathway. Correspondingly, the hippocampal down-regulations of ACSS2, PPARγ or TFEB alone failed to reverse CRTC1 reductions in CRS-exposure mice, ultimately abolishing the anti-depressant efficacy of D-arabinose. In summary, our study unveils a previously unexplored role of D-arabinose in activating the ACSS2-PPARγ/TFEB-CRTC1 axis, presenting it as a promising avenue for the prevention and treatment of depression.


Subject(s)
Arabinose , PPAR gamma , Mice , Animals , PPAR gamma/genetics , PPAR gamma/metabolism , Arabinose/pharmacology , Arabinose/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Brain/metabolism
11.
Fish Shellfish Immunol ; 142: 109178, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37863126

ABSTRACT

The enzyme nitric oxide synthase 2 or inducible NOS (NOS2), reactive oxygen species (ROS) and nitric oxide (NO) are important participants in various inflammatory and immune responses. However, the functional significances of the correlations among piscine NOS2, ROS and NO during pathogen infection remain unclear. In teleost, there are two nos2 genes (nos2a and nos2b). It has been previously reported that zebrafish nos2a behaves as a classical inducible NOS, and nos2b exerts some functions similar to mammalian NOS3. In the present study, we reported the functional characterization of zebrafish nos2a during bacterial infection. We found that zebrafish nos2a promoted bacterial proliferation, accompanied by an increased susceptibility to Edwardsiella piscicida infection. The nagative regulation of zebrafish nos2a during E. piscicida infection was characterized by the impaired ROS levels, the induced NO production and the decreased expressions of proinflammatory cytokines, antibacterial genes and oxidant factors. Furthermore, although both inducing ROS and inhibiting NO production significantly inhibited bacterial proliferation, only inhibiting NO production but not inducing ROS significantly increased resistance to E. piscicida infection. More importantly, ROS supplementation and inhibition of NO completely abolished this detrimental consequence mediated by zebrafish nos2a during E. piscicida infection. All together, these results firstly demonstrate that the innate response mediated by zebrafish nos2a in promoting bacterial proliferation is dependent on the lower ROS level and higher NO production. The present study also reveals that inhibition of NO can be effective in the protection against E. piscicida infection.


Subject(s)
Edwardsiella , Enterobacteriaceae Infections , Animals , Cytokines , Zebrafish , Nitric Oxide/metabolism , Reactive Oxygen Species/metabolism , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Cell Proliferation , Edwardsiella/physiology , Mammals/metabolism
12.
Ann Clin Microbiol Antimicrob ; 22(1): 41, 2023 May 18.
Article in English | MEDLINE | ID: mdl-37202758

ABSTRACT

PURPOSE: Bloodstream infection (BSI) caused by Carbapenem-Resistant Enterobacteriaceae (CRE) are associated with poor outcomes in hematological patients. The aim of this study was to identify risk factors for mortality and evaluate the value of epidemiological feature of carbapenemases in guiding antimicrobial treatment options. METHODS: Hematological patients with monomicrobial CRE BSI between January 2012 and April 2021 were included. The primary outcome was all-cause mortality 30 days after BSI onset. RESULTS: A total of 94 patients were documented in the study period. Escherichia coli was the most common Enterobacteriaceae, followed by Klebsiella pneumoniae. 66 CRE strains were tested for carbapenemase genes, and 81.8% (54/66) were positive, including NDM (36/54), KPC (16/54), IMP (1/54). Besides, one E. coli isolate was found to express both NDM and OXA-48-like genes. Overall, 28 patients received an antimicrobial treatment containing ceftazidime-avibactam (CAZ-AVI), of which 21 cases were combined with aztreonam. The remaining 66 patients were treated with other active antibiotics (OAAs). The 30-day mortality rate was 28.7% (27/94) for all patients, and was only 7.1% ((2/28) for patients treated with CAZ-AVI. In multivariate analysis, the presence of septic shock at BSI onset (OR 10.526, 95% CI 1.376-76.923) and pulmonary infection (OR 6.289, 95% CI 1.351-29.412) were independently risk factors for 30-day mortality. Comparing different antimicrobial regimens, CAZ-AVI showed a significant survive benefit than OAAs (OR 0.068, 95% CI 0.007-0.651). CONCLUSION: CAZ-AVI-containing regimen is superior to OAAs for CRE BSI. As the predominance of blaNDM in our center, we recommend the combination with aztreonam when choose CAZ-AVI.


Subject(s)
Carbapenem-Resistant Enterobacteriaceae , Enterobacteriaceae Infections , Sepsis , Humans , Aztreonam , Escherichia coli/genetics , Ceftazidime , Anti-Bacterial Agents/therapeutic use , Klebsiella pneumoniae/genetics , Enterobacteriaceae Infections/drug therapy , Drug Combinations , Sepsis/drug therapy , Risk Factors , Microbial Sensitivity Tests
13.
Int J Mol Sci ; 24(9)2023 May 08.
Article in English | MEDLINE | ID: mdl-37176157

ABSTRACT

The transformation efficiency (TE) was improved by a series of special chemical and physical methods using immature embryos from the cultivar Fielder, with the PureWheat technique. To analyze the reaction of immature embryos infected, which seemed to provide the necessary by Agrobacterium tumefaciens in PureWheat, a combination of scanning electron microscopy (SEM), complete transcriptome analysis, and metabolome analysis was conducted to understand the progress. The results of the SEM analysis revealed that Agrobacterium tumefaciens were deposited under the damaged cortex of immature embryos as a result of pretreatment and contacted the receptor cells to improve the TE. Transcriptome analysis indicated that the differentially expressed genes were mainly enriched in phenylpropanoid biosynthesis, starch and sucrose metabolism, plant-pathogen interaction, plant hormone signal transduction, and the MAPK (Mitogen-activated protein kinase) signaling pathway. By analyzing the correlation between differentially expressed genes and metabolites, the expression of many genes and the accumulation of metabolites were changed in glucose metabolism and the TCA cycle (Citrate cycle), as well as the amino acid metabolism; this suggests that the infection of wheat embryos with Agrobacterium is an energy-demanding process. The shikimate pathway may act as a hub between glucose metabolism and phenylpropanoid metabolism during Agrobacterium infection. The downregulation of the F5H gene and upregulation of the CCR gene led to the accumulation of lignin precursors through phenylpropanoid metabolism. In addition, several metabolic pathways and oxidases were found to be involved in the infection treatment, including melatonin biosynthesis, benzoxazinoid biosynthesis, betaine biosynthesis, superoxide dismutase, and peroxidase, suggesting that wheat embryos may be under the stress of Agrobacterium and, thus, undergo an oxidative stress response. These findings explore the physiological and molecular changes of immature embryos during the co-culture stage of the PureWheat technique and provide insights for Agrobacterium-mediated transgenic wheat experiments.


Subject(s)
Agrobacterium tumefaciens , Triticum , Agrobacterium tumefaciens/genetics , Triticum/metabolism , Transcriptome , Plants, Genetically Modified/genetics , Gene Expression Profiling , Glucose/metabolism
14.
Brain Behav Immun ; 102: 98-109, 2022 05.
Article in English | MEDLINE | ID: mdl-35181439

ABSTRACT

Hyper-inflammatory reaction plays a crucial role in the pathophysiology of depression and anxiety disorders. However, the mechanisms underlying inflammation-induced anxiety changes remain poorly understood. Here, we showed that in the lipopolysaccharide (LPS)-induced anxiety model, Interleukin (IL)-33, a member of the IL-1 family, was up-regulated in the basolateral amygdala, and IL-33 deficiency prevent anxiety-like behavior. Overexpression of IL-33 in amygdalar astrocytes led to anxiety-like response via repressing brain-derived neurotrophic factor (BDNF) expression. Mechanically, IL-33 suppressed BDNF expression through NF-κB pathway to impair GABAergic transmission in the amygdala and NF-κB inhibitor abolished the effect of IL-33 on anxiety. Administration of an inverse GABAA receptor agonist increased the anxiety of IL-33- deficient mice. These results reveal that inflammatory response can activate anxiogenic circuits by suppressing BDNF and GABAergic neurons transmission, suggesting that IL-33 in basolateral amygdalar is a linker between inflammation and anxiety.


Subject(s)
Basolateral Nuclear Complex , Brain-Derived Neurotrophic Factor , Interleukin-33 , NF-kappa B , Animals , Anxiety/metabolism , Basolateral Nuclear Complex/metabolism , Basolateral Nuclear Complex/pathology , Brain-Derived Neurotrophic Factor/biosynthesis , Brain-Derived Neurotrophic Factor/metabolism , Inflammation/metabolism , Inflammation/pathology , Interleukin-33/metabolism , Mice , NF-kappa B/metabolism , Neuroinflammatory Diseases/metabolism
15.
Mol Psychiatry ; 26(6): 2316-2333, 2021 06.
Article in English | MEDLINE | ID: mdl-32203159

ABSTRACT

Brain-derived neurotrophic factor (BDNF) is a growth factor that plays vital roles in the neuron survival, growth, and neuroplasticity. Alteration to BDNF expression is associated with major depressive disorder. However, the BDNF translational machinery in depression remains unknown. Herein, we pointed that Pdcd4, a suppressor oncogene, acted as an endogenous inhibitor for the translation of BDNF, and selectively repressed the translation of BDNF splice variant IIc mRNA in an eIF4A-dependent manner. Chronic restraint stress (CRS) up-regulated Pdcd4 expression in hippocampus via decreasing mTORC1-mediated proteasomes degradation pathway, which resulted in the reduction of BDNF protein expression. Moreover, over-expression of Pdcd4 in the hippocampus triggered spontaneous depression-like behaviors under the non-stressed conditions in mice, while systemic or neuron-specific knockout of Pdcd4 reverses CRS-induced depression-like behaviors. Importantly, administration of Pdcd4 siRNA or an interfering peptide that interrupts the Pdcd4-eIF4A complex substantially promoted BDNF expression and rescued the behavioral disorders which were caused by CRS. Overall, we have discovered a previously unrecognized role of Pdcd4 in controlling BDNF mRNA translation, and provided a new method that boosting BDNF expression through blocking the function of Pdcd4 in depression, indicating that Pdcd4 might be a new potential target for depressive disorder therapy.


Subject(s)
Brain-Derived Neurotrophic Factor , Depressive Disorder, Major , Animals , Apoptosis , Apoptosis Regulatory Proteins , Brain-Derived Neurotrophic Factor/genetics , Depression/genetics , Depressive Disorder, Major/genetics , Eukaryotic Initiation Factor-4A/genetics , Mice , RNA-Binding Proteins
16.
BMC Musculoskelet Disord ; 23(1): 425, 2022 May 06.
Article in English | MEDLINE | ID: mdl-35524238

ABSTRACT

OBJECTIVE: Immune-mediated necrotising myopathy (IMNM) is a subset of idiopathic inflammatory myopathies (IIM) characterized by significantly elevated creatine kinase level, muscle weakness and predominant muscle fibre necrosis in muscle biopsy. This study aimed to investigate the clinical and pathological characteristics of patients with IMNM in a single-centre muscle biopsy cohort. METHODS: A total of 860 patients who had muscle biopsy reports in our centre from May 2008 to December 2017 were enrolled in this study. IMNM was diagnosed according to the 2018 European Neuromuscular Centre (ENMC) clinicopathological diagnostic criteria for IMNM. RESULTS: The muscle biopsy cohort consisted of 531 patients with IIM (61.7%), 253 patients with non-IIM (29.4%), and 76 undiagnosed patients (8.8%). IIM cases were classified as IMNM (68[7.9%]), dermatomyositis (346[40.2%]), anti-synthetase syndrome (82[9.5%]), polymyositis (32[3.7%]), and sporadic inclusion body myositis (3[0.3%]). Limb girdle muscular dystrophy (LGMD) 2B and lipid storage myopathy (LSM) are the two most common non-IIM disorders in our muscle biopsy cohort. IMNM patients had a higher onset age (41.57 ± 14.45 vs 21.66 ± 7.86 and 24.56 ± 10.78, p < .0001), shorter duration (21.79 ± 26.01 vs 66.69 ± 67.67 and 24.56 ± 10.78, p < .0001), and more frequent dysphagia (35.3% vs. 3.4 and 6.3%, p = .001) than LGMD 2B and LSM patients. Muscle biopsy from IMNM showed more frequent muscle fibre necrosis (95.6% vs 72.4 and 56.3%, p < .0001), overexpression of major histocompatibility complex-I on sarcolemma (83.8% vs 37.9 and 12.9%, p < .0001), and CD4+ T cell endomysia infiltration (89.7% vs 53.6 and 50%, p < .0001) compared with those from LGMD 2B and LSM patients. CONCLUSIONS: It is easy to distinguish IMNM from other IIM subtypes according to clinical symptoms and myositis specific antibodies profiles. However, distinguishing IMNM from disorders clinically similar to non-IIM needs combined clinical, serological and pathological features.


Subject(s)
Autoimmune Diseases , Muscular Dystrophies, Limb-Girdle , Myositis , Autoantibodies , Autoimmune Diseases/diagnosis , Biopsy , Humans , Lipid Metabolism, Inborn Errors , Muscle, Skeletal/pathology , Muscular Dystrophies , Myositis/diagnosis , Myositis/pathology , Necrosis/pathology
17.
Lab Invest ; 101(6): 760-774, 2021 06.
Article in English | MEDLINE | ID: mdl-33753880

ABSTRACT

Endometrial carcinoma is one of the most common malignancies in the female reproductive system. Interleukin-37 (IL-37) is a newly discovered anti-inflammatory factor belonging to the IL-1 family. IL-37 has five different isoforms, and IL-37b is the most biologically functional subtype. In recent years, the protective roles of IL-37 in different cancers, including lung and liver cancers, have been successively reported. IL-37 also plays an important role in some gynecological diseases such as endometriosis, adenomyosis, and cervical cancer. However, the role and mechanism of IL-37b, especially the mature form of IL-37b, in endometrial carcinoma have not been elucidated. The present study demonstrated that IL-37 protein was downregulated in endometrial carcinoma cells compared with the control endometrium. IL-37b did not affect the proliferation and colony-forming ability of endometrial cancer cells. A mature form of IL-37b (IL-37bΔ1-45) effectively suppressed the migration and invasion of endometrial cancer cells by decreasing the expression of matrix metalloproteinase 2 (MMP2) via Rac1/NF-κB signal pathway. However, it did not affect epithelial-mesenchymal transition (EMT) or filamentous actin (F-actin) depolymerization of endometrial cancer cells. IL-37bΔ1-45 attenuated tumor metastasis in a peritoneal metastatic xenograft model of endometrial cancer. To sum up, these results suggested IL-37b could be involved in the pathogenesis of endometrial carcinoma and provide a novel target for the diagnosis and treatment of endometrial carcinoma.


Subject(s)
Carcinoma, Endometrioid/drug therapy , Endometrial Neoplasms/drug therapy , Interleukin-1/therapeutic use , Signal Transduction/drug effects , Actins/metabolism , Adult , Aged , Animals , Carcinoma, Endometrioid/metabolism , Cell Line, Tumor , Endometrial Neoplasms/metabolism , Epithelial-Mesenchymal Transition/drug effects , Estrogens , Female , Humans , Interleukin-1/metabolism , Interleukin-1/pharmacology , Matrix Metalloproteinase 2/metabolism , Mice, Inbred BALB C , Mice, Nude , Middle Aged , NF-kappa B/metabolism , Progesterone , Xenograft Model Antitumor Assays , rac1 GTP-Binding Protein/metabolism
18.
Mol Biol Rep ; 48(3): 2561-2571, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33829356

ABSTRACT

Selection of suitable promoters is crucial for the efficient expression of exogenous genes in transgenic animals. Although one of the most effective promoters, the ß-actin promoter, has been widely studied in fish species, it still remains unknown in the economical important African catfish (Clarias gariepinus). In this study, the ß-actin promoter of African catfish (cgß-actinP) was cloned and characterized. In addition, recombinant plasmid pcgß-actinP-EGFP with enhanced green fluorescent protein (GFP) gene as the reporter gene was constructed to verify the transcriptional activity. We obtained a cgß-actinP fragment length of 1405 bp, consisting 104 bp of the 5' proximal promoter, 96 bp of the first exon, and 1205 bp of the first intron. Similar to those of other fish species, cgß-actinP contains three key transcription regulatory elements (CAAT box, CArG motif, and TATA box). GFP-specific fluorescent signals were detected in chicken embryonic fibroblasts cells (DF-1 cells) transfected with pcgß-actinP-EGFP, which was approximately 1.11 times of the positive control. In addition, GFP was effectively expressed in zebrafish larvae microinjected with linearized cgß-actinP-EGFP, with expression rate reaching approximately 49.84%. Our data indicate that cgß-actinP could be a potential candidate promoter in the practice of constructing "all fish" transgenic fish.


Subject(s)
Actins/genetics , Catfishes/genetics , Promoter Regions, Genetic , Transcription, Genetic , Actins/metabolism , Animals , Animals, Genetically Modified , Base Sequence , Catfishes/metabolism , Cell Line , Cloning, Molecular , Embryo, Nonmammalian/metabolism , Gene Expression , Green Fluorescent Proteins/metabolism , Zebrafish/embryology , Zebrafish/genetics
19.
Arch Phys Med Rehabil ; 102(9): 1775-1787, 2021 09.
Article in English | MEDLINE | ID: mdl-33454279

ABSTRACT

OBJECTIVE: To evaluate the effectiveness of botulinum toxin A (BTX-A) in the treatment of hemiplegic shoulder pain. DATA SOURCES: PubMed, EMBASE, Elsevier, Springer, Cochrane Library, Physiotherapy Evidence Database, CNKI, and VIP were researched from the earliest records to September 1, 2020. STUDY SELECTION: Randomized controlled trials that compared shoulder BTX-A injections vs a control intervention in patients with a history of hemiplegic shoulder pain after stroke were selected. Among the 620 records screened, 9 trials with 301 eligible patients were included. DATA EXTRACTION: Outcome data were pooled according to follow-up intervals (1, 2, 4, and 12 wk). The primary evaluation indices were pain reduction (visual analog scale [VAS] score) and range of motion (ROM) improvement. The second evaluation indices were upper limb functional improvement, spasticity improvement, and incidence of adverse events. Cochrane risk-of-bias was used to assess the methodological quality of studies independently by 2 evaluators. DATA SYNTHESIS: Meta-analysis revealed a statistically significant decrease in the VAS score in the BTX group vs the control group at 1, 4, and 12 weeks postinjection (wk 1: standardized mean difference [SMD], 0.91; 95% confidence interval [CI], 0.27 to 1.54; wk 4: SMD, 1.63; 95% CI, 0.76 to 2.51; wk 12: SMD, 1.96; 95% CI, 1.44 to 2.47). Furthermore, the meta-analysis demonstrated a statistically significant increase in abduction at 1, 4, and 12 weeks postinjection (wk 1: SMD, 3.71; 95% CI, 0 to 7.41; wk 4: SMD, 8.8; 95% CI, 2.22 to 15.37; wk 12: SMD, 19.59; 95% CI, 9.05 to 30.13) and external rotation at 1, 2, 4 weeks postinjection (wk 1: SMD, 5.67; 95% CI, 0.88 to 10.47; wk 2: SMD, 9.62; 95% CI, 5.57 to 13; wk 4: SMD, 6.89; 95% CI, 2.45 to 11.33) in the BTX group. CONCLUSIONS: BTX-A injection provided greater analgesic effects and increased shoulder abduction and external rotation ROM compared with steroid or placebo injection for the treatment of HSP.


Subject(s)
Botulinum Toxins, Type A/therapeutic use , Hemiplegia/drug therapy , Muscle Spasticity/drug therapy , Shoulder Pain/drug therapy , Humans , Injections, Intramuscular , Neuromuscular Agents/therapeutic use , Pain Measurement , Randomized Controlled Trials as Topic , Range of Motion, Articular
20.
Cancer Sci ; 111(9): 3174-3183, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32539182

ABSTRACT

Programmed cell death-ligand 1 (PD-L1) expressed on cancer cells can cause immune escape of non-small-cell lung cancer (NSCLC). Elucidation of the regulatory mechanisms of the PD-L1 expression is a prerequisite for establishing new tumor immunotherapy strategies. Ubiquitin C-terminal hydrolase L1 (UCHL1) is a regulator of cellular signaling transduction that is aberrantly expressed in NSCLC. However, it is not known whether UCHL1 regulates the expression of PD-L1 in NSCLC cells. In the present study, we found that UCHL1 promotes the expression of PD-L1 in NSCLC cell lines. In addition, UCHL1 expressed in NSCLC cells inhibited activation of Jurkat cells through upregulation of PD-L1 expression in in vitro experiments. Moreover, UCHL1 upregulates PD-L1 expression through facilitating activation of the AKT-P65 signaling pathway. In conclusion, these results indicated that UCHL1 promoted PD-L1 expression in NSCLC cells. This finding implied that inhibition of UCHL1 might suppress immune escape of NSCLC through downregulation of PD-L1 expression in NSCLC cells.


Subject(s)
B7-H1 Antigen/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Gene Expression Regulation, Neoplastic , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Ubiquitin Thiolesterase/metabolism , B7-H1 Antigen/metabolism , Biomarkers, Tumor , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Humans , Immunomodulation , Lung Neoplasms/pathology , Proto-Oncogene Proteins c-akt/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Transcription Factor RelA/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL