Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Environ Sci Technol ; 58(22): 9548-9558, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38778038

ABSTRACT

Agricultural applications of nanotechnologies necessitate addressing safety concerns associated with nanopesticides, yet research has not adequately elucidated potential environmental risks between nanopesticides and their conventional counterparts. To address this gap, we investigated the risk of nanopesticides by comparing the ecotoxicity of nanoencapsulated imidacloprid (nano-IMI) with its active ingredient to nontarget freshwater organisms (embryonic Danio rerio, Daphnia magna, and Chironomus kiinensis). Nano-IMI elicited approximately 5 times higher toxicity than IMI to zebrafish embryos with and without chorion, while no significant difference was observed between the two invertebrates. Toxicokinetics further explained the differential toxicity patterns of the two IMI analogues. One-compartmental two-phase toxicokinetic modeling showed that nano-IMI exhibited significantly slower elimination and subsequently higher bioaccumulation potential than IMI in zebrafish embryos (dechorinated), while no disparity in toxicokinetics was observed between nano-IMI and IMI in D. magna and C. kiinensis. A two-compartmental toxicokinetic model successfully simulated the slow elimination of IMI from C. kiinensis and confirmed that both analogues of IMI reached toxicologically relevant targets at similar levels. Although nanopesticides exhibit comparable or elevated toxicity, future work is of utmost importance to properly understand the life cycle risks from production to end-of-life exposures, which helps establish optimal management measures before their widespread applications.


Subject(s)
Fresh Water , Toxicokinetics , Zebrafish , Animals , Fresh Water/chemistry , Water Pollutants, Chemical/toxicity , Daphnia/drug effects , Neonicotinoids/toxicity
2.
Stem Cell Res Ther ; 15(1): 43, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38360659

ABSTRACT

BACKGROUND: Ischemia-reperfusion injury to the central nervous system often causes severe complications. The activation of endogenous neural stem cells (NSCs) is considered a promising therapeutic strategy for nerve repair. However, the specific biological processes and molecular mechanisms of NSC activation remain unclear, and the role of N6-methyladenosine (m6A) methylation modification in this process has not been explored. METHODS: NSCs were subjected to hypoxia/reoxygenation (H/R) to simulate ischemia-reperfusion in vivo. m6A RNA methylation quantitative kit was used to measure the total RNA m6A methylation level. Quantitative real-time PCR was used to detect methyltransferase and demethylase mRNA expression levels. Methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA sequencing (RNA-seq) were conducted for NSCs in control and H/R groups, and the sequencing results were analyzed using bioinformatics. Finally, the migration ability of NSCs was identified by wound healing assays, and the proliferative capacity of NSCs was assessed using the cell counting kit-8, EdU assays and cell spheroidization assays. RESULTS: Overall of m6A modification level and Mettl14 mRNA expression increased in NSCs after H/R treatment. The m6A methylation and expression profiles of mRNAs in NSCs after H/R are described for the first time. Through the joint analysis of MeRIP-seq and RNA-seq results, we verified the proliferation of NSCs after H/R, which was regulated by m6A methylation modification. Seven hub genes were identified to play key roles in the regulatory process. Knockdown of Mettl14 significantly inhibited the proliferation of NSCs. In addition, separate analysis of the MeRIP-seq results suggested that m6A methylation regulates cell migration and differentiation in ways other than affecting mRNA expression. Subsequent experiments confirmed the migration ability of NSCs was suppressed by knockdown of Mettl14. CONCLUSION: The biological behaviors of NSCs after H/R are closely related to m6A methylation of mRNAs, and Mettl14 was confirmed to be involved in cell proliferation and migration.


Subject(s)
Hypoxia , Neural Stem Cells , Mice , Animals , Methylation , RNA, Messenger/genetics , RNA, Messenger/metabolism , Cell Differentiation/genetics , Hypoxia/metabolism
3.
Sci Total Environ ; 912: 169510, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38154638

ABSTRACT

Flowback and produced water (FPW) generated from shale gas extraction is a complex mixture consisting of injected drilling fluid, deep formation water, and byproducts of downhole reactions. Limited knowledge is available regarding the impact of discharged FPW on surface water in China. With the development of shale gas exploitation, this emphasizes an urgent need for comprehensive assessments and stringent regulations to ensure the safe disposal of shale gas extraction-related wastewater. Herein, we explored potential impacts of treated shale gas wastewater discharged into a local river in southwest China through toxicity identification evaluation (TIE). Results revealed that organics and particulates significantly contributed to the overall toxicity of the treated FPW wastewater. Through target and suspect chemical analyses, various categories of organic contaminants were detected, including alkanes, aromatic hydrocarbons, biocides, phenols, and phthalates. Furthermore, non-target analysis uncovered the presence of surfactant-related contaminants in tissues of exposed organisms, but their contribution to the observed toxicity was unclear due to the lack of effect data for these compounds. Higher toxicity was found at the discharge point compared with upstream sites; however, the toxicity was rapidly mitigated due to dilution in the receiving river, posing little impact on downstream areas. Our study highlighted the importance of monitoring toxicity and water quality of FPW effluent even though dilution could be a viable approach when the water volume in the discharge was small.

SELECTION OF CITATIONS
SEARCH DETAIL