Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
1.
Bioorg Med Chem ; 112: 117880, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39216382

ABSTRACT

Berberine is a quaternary ammonium isoquinoline alkaloid derived from traditional Chinese medicines Coptis chinensis and Phellodendron chinense. It has many pharmacological activities such as hypoglycemic, hypolipidemic, anti-tumor, antimicrobial and anti-inflammatory. Through structural modifications at various sites of berberine, the introduction of different groups can change berberine's physical and chemical properties, thereby improving the biological activity and clinical efficacy, and expanding the scope of application. This paper reviews the research progress and structure-activity relationships of berberine in recent years, aiming to provide valuable insights for the exploration of novel berberine derivatives.

2.
Bioorg Chem ; 145: 107252, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38437763

ABSTRACT

Isoquinoline alkaloids are an important class of natural products that are abundant in the plant kingdom and exhibit a wide range of structural diversity and biological activities. With the deepening of research in recent years, more and more isoquinoline alkaloids have been isolated and identified and proved to contain a variety of biological activities and pharmacological effects. In this review, we introduce the research progress of isoquinoline alkaloids from 2019 to 2022, mainly in the part of biological activities, including antitumor, antimicrobial, antidiabetic, antiviral, anti-inflammatory, antioxidant, neuroprotective, hepatoprotective, analgesic, and other activities. This study provides a clear direction for the rational development and utilization of isoquinoline alkaloids, suggesting that these alkaloids have great potential in the field of drug research.


Subject(s)
Alkaloids , Anti-Infective Agents , Alkaloids/chemistry , Anti-Infective Agents/pharmacology , Antioxidants/pharmacology , Isoquinolines/pharmacology , Isoquinolines/chemistry
3.
Arch Insect Biochem Physiol ; 116(4): e22144, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39166339

ABSTRACT

Tenvermectin B (TVM-B) and five TVM-B analogs were produced by fermentation of a genetically engineered strain Streptomyces avermitilis HU02, and TVM-B is being developed as a new insecticide. Through 11 generations of resistance selection against TVM-B in the diamondback moth, Plutella xylostella, the median lethal concentration (LC50) was increased from 14.84 to 1213.73 mg L-1. The resistance to TVM-B in P. xylostella developed fast and its realized heritability was high (h2 = 0.2901 (F7), h2 = 0.4070 (F11)). However, the relative fitness was 0.6916 suggesting a fitness cost in the resistant strains. The fitness cost was partially explained by the upregulation of the detoxification enzyme activity by 2.15 folds in carboxylate esterase (CarE) and the gene expressions of ATP-binding cassette transporter gene (ABCC2) and the alpha subunit of the glutamate-gated chloride channel (GluCl) by 1.70- and 2.32 folds, respectively. The resistance was also explained by two points of mutations at the alpha subunit of the glutamate-gated chloride channel in the P. xylostella (PxGluClα) subunit in F11. However, there was little change in the binding affinity. These results provided helpful information for the mechanism study of TVM-B resistance and will be conducive to designing rational resistance management strategies in P. xylostella.


Subject(s)
Insecticide Resistance , Insecticides , Ivermectin , Moths , Animals , Moths/genetics , Moths/growth & development , Moths/metabolism , Moths/drug effects , Moths/enzymology , Insecticide Resistance/genetics , Ivermectin/analogs & derivatives , Ivermectin/pharmacology , Insecticides/pharmacology , Genetic Fitness , Chloride Channels/genetics , Chloride Channels/metabolism , Larva/growth & development , Larva/genetics , Larva/metabolism , Insect Proteins/genetics , Insect Proteins/metabolism
4.
J Environ Manage ; 364: 121456, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38875989

ABSTRACT

The development of digital finance provides new opportunities for improving energy efficiency and promoting green development. This paper calculates green total factor energy efficiency (GTFEE) using the super-efficiency SBM model and examines the impact of digital finance on GTFEE. Digital finance has a significant positive impact on GTFEE. Under a bank-dominated financial structure, the positive impact of digital finance on GTFEE is quite significant. In regions with intense banking competition, a large amount of green credit, and lower resource dependence, digital finance is conducive to enhancing GTFEE. Optimizing the allocation efficiency of production factors is an essential mechanism for digital finance to encourage improvements in GTFEE. Digital finance alleviates distortions in factor markets and enhances the matching of the marginal output and the price of capital, labor, and energy factors, thereby facilitating improvements in GTFEE. Further analysis indicates that digital finance has a significant, positive spatial spillover effect on GTFEE, enhancing GTFEE levels in both local and neighboring regions. This study enriches the research on the relationship between digital finance and energy efficiency and provides theoretical foundations and policy references for how digital finance can better serve the green transition of the economy.


Subject(s)
Conservation of Energy Resources , Conservation of Energy Resources/economics
5.
J Nat Prod ; 86(2): 357-367, 2023 02 24.
Article in English | MEDLINE | ID: mdl-36753718

ABSTRACT

Bioinformatics analysis of a whole genome sequence coupled with HPLC-DAD analysis revealed that Streptomyces sp. Hu103 has the capacity to produce skyllamycin analogues. A subsequent chemical investigation of this strain yielded four new cinnamoyl-containing cyclopeptides, anulamycins A-D (1-4), two new cinnamoyl-containing linear peptides, anulamycins E and F (5 and 6), and two known cyclopeptides, skyllamycins A (7) and B (8). Their structures including absolute configurations were elucidated by detailed analysis of NMR and HRESIMS/MS spectroscopic data and the advanced Marfey's method. Compounds 1-4 exhibited antibacterial activity comparable to those of skyllamycins A and B.


Subject(s)
Streptomyces , Streptomyces/chemistry , Lakes , Peptides, Cyclic/chemistry , Magnetic Resonance Spectroscopy , Anti-Bacterial Agents/chemistry , Molecular Structure
6.
Chem Biodivers ; 20(11): e202300998, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37755070

ABSTRACT

Based on the research strategy of "drug repurposing", a series of derivatives and marketed drugs that containing salicylic acid skeleton were tested for their antibacterial activities against phytopathogens. Salicylic acid can not only regulate some important growth metabolism of plants, but also induce plant disease resistance. The bioassay results showed that the salicylamides exhibited excellent antibacterial activity. Especially, oxyclozanide showed the best antibacterial effect against Xanthomonas oryzae, Xanthomonas axonopodis pv. citri and Pectobacterium atroseptica with MICs of 0.78, 3.12 and 12.5 µg.mL-1, respectively. In vivo experiments with rice bacterial leaf blight had further demonstrated that oxyclozanide exhibited stronger antibacterial activity than the commercial bactericide, thiodiazole copper. Oxyclozanide could induce plant defense responses through the determination of salicylic acid content and the activities of defense-related enzymes including CAT, POD, and SOD in rice. The preliminarily antibacterial mechanism study indicated that oxyclozanide exhibited the antibacterial activity by disrupting cell integrity and reducing bacterial pathogenicity. Additionally, oxyclozanide could induce plant defense responses through the determination of salicylic acid content.


Subject(s)
Oryza , Xanthomonas , Salicylamides/pharmacology , Drug Repositioning , Oxyclozanide/pharmacology , Anti-Bacterial Agents/pharmacology , Oryza/microbiology , Microbial Sensitivity Tests , Salicylic Acid/pharmacology , Plant Diseases/prevention & control , Plant Diseases/microbiology , Oxadiazoles/pharmacology
7.
J Nat Prod ; 85(4): 1167-1173, 2022 04 22.
Article in English | MEDLINE | ID: mdl-35213166

ABSTRACT

A chemical investigation of Streptomyces sp. Hu186 afforded two known quinone antibiotics, sarubicin A (1) and sarubicin B (2), together with three unusual variants, sarubicinols A-C (3-5), and two new 1,4-naphthoquinone metabolites, sarubicin B1 (6) and sarubicin B2 (7). Compounds 3-5 possess a rare 2-oxabicyclo [2.2.2] substructure and a benzoxazole ring system. Their structures were elucidated using 1D and 2D nuclear magnetic resonance and high-resolution electrospray ionization mass spectrometry data. The absolute configurations of the side-chain moieties in 4 and 5 were solved by electronic circular dichroism calculations. Compounds 1-7 showed moderate cytotoxic activity against four tumor cell lines.


Subject(s)
Antineoplastic Agents , Streptomyces , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Benzoxazoles/pharmacology , Cell Line, Tumor , Molecular Structure , Spectrometry, Mass, Electrospray Ionization , Streptomyces/chemistry
8.
Pestic Biochem Physiol ; 188: 105221, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36464329

ABSTRACT

As the most difficult to control in plant disease, phytopathogenic bacteria cause huge losses to agricultural products and economy worldwide. However, the commercially available bactericides are few and enhance pathogen resistance. To alleviate this situation, 50 flavonoids were evaluated for their antibacterial activities and mechanism of action against two intractable plant bacterial pathogens. The results of bioassays showed that most of the flavonoids exhibited moderate inhibitory effects against Xanthomonas oryzae (Xo) and Xanthomonas axonopodis pv citri (Xac). Remarkably, kaempferol showed excellent antibacterial activity against Xo in vitro (EC50 = 15.91 µg/mL) and quercetin showed the best antibacterial activity against Xac in vitro (EC50 = 14.83 µg/mL), which was better than thiodiazole copper (EC50 values against Xo and Xac were 16.79 µg/mL, 59.13 µg/mL, respectively). Subsequently, in vivo antibacterial activity assay further demonstrated kaempferol exhibited a stronger control effect on bacterial infections than thiodiazole copper. Then, the preliminary antibacterial mechanism of kaempferol was investigated by ultrastructural observations, transcriptomic, qRT-PCR analysis and biochemical index determination. These results showed that kaempferol mainly exerted bacteriostatic effects at the molecular level by affecting bacterial energy metabolism, reducing pathogenicity, and leading to disruption of cellular integrity, leakage of contents and cell death eventually.


Subject(s)
Flavonoids , Kaempferols , Flavonoids/pharmacology , Kaempferols/pharmacology , Copper , Bacteria , Anti-Bacterial Agents/pharmacology
9.
J Asian Nat Prod Res ; 24(11): 1058-1063, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35142242

ABSTRACT

Two previously undescribed cyclopentenone metabolites, (S)-2-(3-acetylamino-2-methyl)propyl-3-butyl-2-cyclopenten-1-one (1) and (S)-2-(3-acetylamino-2-ethyl)propyl-3-butyl-2-cyclopenten-1-one (2), were isolated from the fermentation broth of the strain Streptomyces sp. HU119. The structures of 1 and 2 were determined by the comprehensive spectroscopic analysis, including 1 D, 2 D NMR, MS spectral analysis and the comparison with data from the literature. The absolute configurations were elucidated by experimental and calculated optical rotations (OR). Compounds 1 and 2 displayed weak cytotoxic activity.


Subject(s)
Streptomyces , Streptomyces/chemistry , Molecular Structure , Cyclopentanes/pharmacology , Fermentation
10.
Molecules ; 27(23)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36500528

ABSTRACT

Due to the extensive use of agrochemicals resulting in the emergence of pesticide resistance and ecological environment problems, the research and development of new alternatives for crop protection is highly desirable. In order to discover potent natural product-based insecticide candidates, a series of new cholesterol ester derivatives containing cinnamic acid-like fragments at the C-7 position were synthesized. Some derivatives showed potent pesticidal activities. Against Mythimna separata Walker, compounds 2a, Id, Ig, and IIg showed 2.1-2.4-fold growth-inhibitory activity of the precursor cholesterol. Against Plutella xylostella Linnaeus, compounds Ig, IIf, and IIi exhibited 1.9-2.1-fold insecticidal activity of cholesterol. These results will pave the way for the future synthesis of cholesterol-based derivatives as agrochemicals.


Subject(s)
Insecticides , Moths , Pesticides , Animals , Pesticides/pharmacology , Cholesterol Esters , Molecular Structure , Insecticides/chemistry , Structure-Activity Relationship
11.
Bioorg Med Chem Lett ; 48: 128246, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34233221

ABSTRACT

To discover non-food renewable forest bioactive products as new potential pesticidal alternatives for crop protection, a series of C15-imines alkaloids were obtained by structural modification of matrine and oxymatrine. Compounds Id, Ih, Ii and IIg (>2-3 folds of their precursors) showed the most potent antifeedant activity against armyworm. Against red spider mite, compounds Ie, Il, IIb, IIc and IIg displayed 1.8-3.1 folds acaricidal activity of their precursors. Notably, compound IIg exhibiting the most pronounced pesticidal activities, can be used as a promising bio-sourced agrochemical agent. The study of stress responses showed that the nAChR subunit α5 and VGSC might be the targets of action of matrine, oxymatrine and IIg against red spider mite.


Subject(s)
Agrochemicals/pharmacology , Alkaloids/pharmacology , Pesticides/pharmacology , Quinolizines/pharmacology , Spodoptera/drug effects , Tetranychidae/drug effects , Agrochemicals/chemistry , Alkaloids/chemistry , Animals , Dose-Response Relationship, Drug , Molecular Structure , Pesticides/chemistry , Quinolizines/chemistry , Structure-Activity Relationship , Matrines
12.
Bioorg Med Chem Lett ; 51: 128356, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34520882

ABSTRACT

In order to increase the agricultural properties of matrine, a series of novel matrine-type alkaloidscontaining spiro-1,2,4-oxadiazoline fragment at the C-15 position were prepared. Eight target molecules were elucidated by X-ray single-crystal diffraction. The antifeedant activities of Ig and IIIh against Mythimna separata Walker were>1.7 folds of the precursor matrine. The acaricidal activities of Ij, IIe, IIg, IIi and IIIa against Tetranychus cinnabarinus Boisduval were 2.6-3.7 folds of matrine. Especially IIg (R1 = R2 = 4-Cl) and IIi (R1 = 4-Cl; R2 = 4-Br) exhibited the pronounced antifeedant and acaricidal activities. SARs showed that their pesticidal activities were related to the substitutents and their positions on the phenyl rings at the C-3 and N-4 positions of 1,2,4-oxadiazoline skeleton.


Subject(s)
Alkaloids/pharmacology , Moths/drug effects , Oxadiazoles/pharmacology , Pesticides/pharmacology , Spiro Compounds/pharmacology , Alkaloids/chemical synthesis , Alkaloids/chemistry , Animals , Dose-Response Relationship, Drug , Molecular Structure , Oxadiazoles/chemistry , Pesticides/chemical synthesis , Pesticides/chemistry , Spiro Compounds/chemistry , Structure-Activity Relationship
13.
Bioorg Med Chem Lett ; 50: 128350, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34478839

ABSTRACT

To develop new potential pesticide candidates from low value-added natural bioactive products, a series of new cholesterol-matrine conjugates (I(a-e)-IV(a-e)) were prepared from two lead compounds cholesterol and matrine. Against Mythimna separata Walker, compound IVa exhibited 3.0 and 2.6 folds promising insecticidal activity of cholesterol and matrine, respectively; against Aphis citricola Van der Goot, compound IVd showed 4.3 and 2.2 folds potent aphicidal activity of their precursors; notably, it also showed good control effects in the greenhouse; against Plutella xylostella Linnaeus at a dose of 20 µg/nymph, compound IIIe exhibited 2.8 and 2.0 folds oral toxicity of cholesterol and matrine, respectively. Compounds IIIe, IVd and IVe can be used as the leads for further structural optimization as the insecticidal and aphicidal agents.


Subject(s)
Alkaloids/chemistry , Biological Products/chemistry , Cholesterol/chemistry , Insecta/drug effects , Insecticides/chemical synthesis , Insecticides/pharmacology , Quinolizines/chemistry , Animals , Drug Design , Insecticides/chemistry , Larva/drug effects , Models, Molecular , Molecular Structure , Pupa/drug effects , Structure-Activity Relationship , Matrines
14.
Bioorg Med Chem Lett ; 40: 127962, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33741463

ABSTRACT

Osthole, a coumarin-type natural product, is isolated from Chinese traditional herbal medicine Cnidium monnieri. In order to improve the pesticidal activity of osthole, and high value-added application of the plant Cnidium monnieri, a series of new derivatives containing hydrazone/acylhydrazone/sulfonylhydrazone skeletons at the C-8 position of osthole were regioselectively semi-prepared. The steric structure of 3c was determined by the X-ray crystal structure. Against Mythimna separata Walker, benzoylhydrazone 3b (R1 = 4-CH3Ph) showed 1.6 folds potent insecticidal activity of the precursor osthole. Introduction of the acylhydrazones on the 3'-methyl-2'-butylenyl fragment at the C-8 position of osthole can improve the insecticidal activity. These will provide a foundation for future structural modifications of osthole as pesticidal agents.


Subject(s)
Coumarins/pharmacology , Hydrazones/pharmacology , Insecticides/pharmacology , Animals , Coumarins/chemical synthesis , Hydrazones/chemical synthesis , Insecticides/chemical synthesis , Molecular Structure , Moths/drug effects , Toxicity Tests
15.
J Asian Nat Prod Res ; 23(9): 837-843, 2021 Sep.
Article in English | MEDLINE | ID: mdl-32851866

ABSTRACT

Two new milbemycin metabolites, 13α-hydroxymilbemycin ß13 (1) and 26-methyl-13α-hydroxymilbemycin ß13 (2), were isolated from the fermentation broth of a genetically engineered strain Streptomyces avermitilis AVE-H39. Their structures were determined by the comprehensive spectroscopic data, including 1 D, 2 D NMR, MS spectral analysis and the comparison with data from the literature. Compounds 1 and 2 not only exhibited potent acaricidal activities against Tetranychus cinnabarinus, but also had nematocidal activity against Bursaphelenchus xylophilus.


Subject(s)
Streptomyces , Macrolides/pharmacology , Molecular Structure , Streptomyces/genetics
16.
J Asian Nat Prod Res ; 23(7): 660-665, 2021 Jul.
Article in English | MEDLINE | ID: mdl-32608247

ABSTRACT

Two new milbemycin derivatives, milbemycin M (1) and milbemycin N (2), were isolated from the culture of a genetically engineered strain Streptomyces bingchenggensis BCJ60. Their structures were elucidated through the interpretation of NMR and HR-ESI-MS spectroscopic data, as well as comparison with previous reports. The acaricidal and nematicidal activities of them against Tetranychus cinnabarinus and Bursaphelenchus xylophilus were tested. The results showed that compounds 1-2 possessed potent acaricidal and nematocidal activities.


Subject(s)
Macrolides , Streptomyces , Molecular Structure , Streptomyces/genetics
17.
Int J Mol Sci ; 22(20)2021 Oct 11.
Article in English | MEDLINE | ID: mdl-34681623

ABSTRACT

Glycyrrhiza glabra (Licorice) belongs to the Fabaceae family and its extracts have exhibited significant fungicidal activity against phytopathogenic fungi, which has mainly been attributed to the presence of phenolic compounds such as flavonoids, isoflavonoids and chalcones. In this study, a series of licorice flavonoids, isoflavonoids and chalcones were evaluated for their fungicidal activity against phytopathogenic fungi. Among them, glabridin exhibited significant fungicidal activity against ten kinds of phytopathogenic fungi. Notably, glabridin displayed the most active against Sclerotinia sclerotiorum with an EC50 value of 6.78 µg/mL and was 8-fold more potent than azoxystrobin (EC50, 57.39 µg/mL). Moreover, the in vivo bioassay also demonstrated that glabridin could effectively control S. sclerotiorum. The mechanism studies revealed that glabridin could induce reactive oxygen species accumulation, the loss of mitochondrial membrane potential and cell membrane destruction through effecting the expression levels of phosphatidylserine decarboxylase that exerted its fungicidal activity. These findings indicated that glabridin exhibited pronounced fungicidal activities against S. sclerotiorum and could be served as a potential fungicidal candidate.


Subject(s)
Antifungal Agents/chemistry , Glycyrrhiza/chemistry , Isoflavones/chemistry , Phenols/chemistry , Antifungal Agents/isolation & purification , Antifungal Agents/pharmacology , Ascomycota/drug effects , Carboxy-Lyases/genetics , Carboxy-Lyases/metabolism , Cell Membrane Permeability/drug effects , Chalcones/chemistry , Chalcones/isolation & purification , Chalcones/pharmacology , Flavonoids/chemistry , Flavonoids/isolation & purification , Flavonoids/pharmacology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Glycyrrhiza/metabolism , Isoflavones/isolation & purification , Isoflavones/pharmacology , Membrane Potential, Mitochondrial/drug effects , Phenols/isolation & purification , Phenols/pharmacology , Plant Extracts/chemistry , Reactive Oxygen Species/metabolism
18.
Bioorg Med Chem Lett ; 30(16): 127346, 2020 08 15.
Article in English | MEDLINE | ID: mdl-32631545

ABSTRACT

Besides structural modification of natural bioactive products to afford promising agrochemical candidates, investigation of their mechanisms of action against pests is also an important strategy to obtain novel potentially botanical pesticides. N-(p-Ethyl)phenylsulfonylmatrinic acid (2), derived from an natural alkaloid matrine (1), exhibited about 5.9-fold more pronounced acaricidal activity than 1 against the adult females of Tetranychus cinnabarinus Boisduval, and good control efficiency in the greenhouse. By comparison of nAChR, AChE and VGSC of treated and untreated T. cinnabarinus via RT-PCR and qRT-PCR analysis, it was found that compound 2 could activate nAChR and VGSC via up-regulation of nAChR α1, α4 and α5 subunits and VGSC expressions; compound 2 may be the AChE and AChE enzyme inhibitor. Importantly, a scheme of compound 2 interaction with nAChR, AChE and VGSC of T. cinnabarinus was proposed. It will lay the foundation for future optimization and application of matrine derivatives as agrochemicals.


Subject(s)
Alkaloids/pharmacology , Biological Products/pharmacology , Insecticides/pharmacology , Stress, Physiological/drug effects , Tetranychidae/drug effects , Alkaloids/chemistry , Animals , Biological Products/chemistry , Dose-Response Relationship, Drug , Female , Insecticides/chemistry , Molecular Structure , Structure-Activity Relationship , Tetranychidae/metabolism
19.
Plant Dis ; 104(6): 1601-1609, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32320370

ABSTRACT

Rice is used as a staple food in different areas of world, especially in China. In recent years, rice seedlings have been affected seriously by symptoms resembling bacterial palea browning (BPB) in Heilongjiang Province. To isolate and identify the pathogenic bacteria responsible for the disease, 40 bacterial strains were isolated from diseased rice seedlings collected from the four major accumulative-temperature zones of rice fields cultivated in Heilongjiang Province, and these were identified as 13 species based on morphological characteristics and 16S ribosomal RNA (rRNA) gene sequences. Inoculation of all the isolates on healthy rice seedlings showed that the nine Enterobacter cloacae isolates were the pathogens causing typical symptoms of BPB, including yellowing to pale browning, stunting, withering, drying, and death. Moreover, the nine E. cloacae isolates could also cause symptoms of bacterial disease on the seedlings of soybean (Glycine max), maize (Zea mays L.), and tomato (Solanum lycopersicum). Phylogenetic analysis based on the 16S rRNA gene sequences and phenotypic and biochemical characteristics indicated that these nine pathogenic isolates were E. cloacae. In addition, analysis of the sequences of four housekeeping genes (rpoB, gyrB, infB, and atpD) from the selected strain SD4L also assigned the strain to E. cloacae. Therefore, E. cloacae is the pathogen causing disease of rice seedlings in Heilongjiang Province, which we propose to classify as a form of BPB. To the best of our knowledge, this is the first study to identify E. cloacae as a causal agent of BPB in rice.


Subject(s)
Enterobacter cloacae , Oryza , China , Phylogeny , RNA, Ribosomal, 16S , Seedlings , Virulence
20.
Mar Drugs ; 17(5)2019 May 17.
Article in English | MEDLINE | ID: mdl-31108876

ABSTRACT

The mangrove ecosystem is a rich resource for the discovery of actinomycetes with potential applications in pharmaceutical science. Besides the genus Streptomyces, Micromonospora is also a source of new bioactive agents. We screened Micromonospora from the rhizosphere soil of mangrove plants in Fujian province, China, and 51 strains were obtained. Among them, the extracts of 12 isolates inhibited the growth of human lung carcinoma A549 cells. Strain 110B exhibited better cytotoxic activity, and its bioactive constituents were investigated. Consequently, three new isoflavonoid glycosides, daidzein-4'-(2-deoxy-α-l-fucopyranoside) (1), daidzein-7-(2-deoxy-α-l-fucopyranoside) (2), and daidzein-4',7-di-(2-deoxy-α-l-fucopyranoside) (3) were isolated from the fermentation broth of strain 110B. The structures of the new compounds were determined by spectroscopic methods, including 1D and 2D nuclear magnetic resonance (NMR) and high-resolution electrospray ionization mass spectrometry (HR-ESIMS). The result of medium-changing experiments implicated that these new compounds were microbial biotransformation products of strain M. aurantiaca 110B. The three compounds displayed moderate cytotoxic activity to the human lung carcinoma cell line A549, hepatocellular liver carcinoma cell line HepG2, and the human colon tumor cell line HCT116, whereas none of them showed antifungal or antibacterial activities.


Subject(s)
Cell Survival/drug effects , Micromonospora/chemistry , A549 Cells , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Antineoplastic Agents/pharmacology , Glycosides/chemistry , Glycosides/isolation & purification , Glycosides/pharmacology , HCT116 Cells , Hep G2 Cells , Humans , Isoflavones/chemistry , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL