Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Proc Natl Acad Sci U S A ; 120(1): e2211258120, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36577063

ABSTRACT

The retromer is a heteromeric protein complex that localizes to endosomal membranes and drives the formation of endosomal tubules that recycle membrane protein cargoes. In plants, the retromer plays essential and canonical functions in regulating the transport of vacuolar storage proteins and the recycle of endocytosed plasma membrane proteins (PM); however, the mechanisms underlying the regulation of assembly, protein stability, and membrane recruitment of the plant retromer complex remain to be elucidated. In this study, we identify a plant-unique endosomal regulator termed BLISTER (BLI), which colocalizes and associates with the retromer complex by interacting with the retromer core subunits VPS35 and VPS29. Depletion of BLI perturbs the assembly and membrane recruitment of the retromer core VPS26-VPS35-VPS29 trimer. Consequently, depletion of BLI disrupts retromer-regulated endosomal trafficking function, including transport of soluble vacuolar proteins and recycling of endocytosed PIN-FORMED (PIN) proteins from the endosomes back to the PM. Moreover, genetic analysis in Arabidopsis thaliana mutants reveals BLI and core retromer interact genetically in the regulation of endosomal trafficking. Taken together, we identified BLI as a plant-specific endosomal regulator, which functions in retromer pathway to modulate the recycling of endocytosed PM proteins and the trafficking of soluble vacuolar cargoes.


Subject(s)
Arabidopsis , Plant Proteins , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Transport , Endosomes/metabolism , Vacuoles/metabolism , Cell Membrane/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Arabidopsis/metabolism , Sorting Nexins/metabolism
2.
Plant Cell ; 34(6): 2242-2265, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35262735

ABSTRACT

WRINKLED1 (WRI1) is an important transcription factor that regulates seed oil biosynthesis. However, how WRI1 regulates gene expression during this process remains poorly understood. Here, we found that BLISTER (BLI) is expressed in maturing Arabidopsis thaliana seeds and acts as an interacting partner of WRI1. bli mutant seeds showed delayed maturation, a wrinkled seed phenotype, and reduced oil content, similar to the phenotypes of wri1. In contrast, BLI overexpression resulted in enlarged seeds and increased oil content. Gene expression and genetic analyses revealed that BLI plays a role in promoting the expression of WRI1 targets involved in fatty acid biosynthesis and regulates seed maturation together with WRI1. BLI is recruited by WRI1 to the AW boxes in the promoters of fatty acid biosynthesis genes. BLI shows a mutually exclusive interaction with the Polycomb-group protein CURLY LEAF (CLF) or the chromatin remodeling factor SWITCH/SUCROSE NONFERMENTING 3B (SWI3B), which facilitates gene expression by modifying nucleosomal occupancy and histone modifications. Together, these data suggest that BLI promotes the expression of fatty acid biosynthesis genes by interacting with WRI1 to regulate chromatin dynamics, leading to increased fatty acid production. These findings provide insights into the roles of the WRI1-BLI-CLF-SWI3B module in mediating seed maturation and gene expression.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Chromatin/genetics , Chromatin/metabolism , Fatty Acids/metabolism , Gene Expression Regulation, Plant , Seeds/genetics , Seeds/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
3.
Plant Physiol ; 191(3): 1871-1883, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36464768

ABSTRACT

Changes in plant auxin levels can be perceived and converted into cellular responses by auxin signal transduction. AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) proteins are auxin transcriptional inhibitors that play important roles in regulating auxin signal transduction. The stability of Aux/IAA proteins is important for transcription initiation and downstream auxin-related gene expression. Here, we report that the Aux/IAA protein IAA17 interacts with the small ubiquitin-related modifier (SUMO) E3 ligase METHYL METHANESULFONATE-SENSITIVE 21 (AtMMS21) in Arabidopsis (Arabidopsis thaliana). AtMMS21 regulated the SUMOylation of IAA17 at the K41 site. Notably, root length was suppressed in plants overexpressing IAA17, whereas the roots of K41-mutated IAA17 transgenic plants were not significantly different from wild-type roots. Biochemical data indicated that K41-mutated IAA17 or IAA17 in the AtMMS21 knockout mutant was more likely to be degraded compared with nonmutated IAA17 in wild-type plants. In conclusion, our data revealed a role for SUMOylation in the maintenance of IAA17 protein stability, which contributes to improving our understanding of the mechanisms of auxin signaling.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Signal Transduction , Sumoylation , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
4.
J Integr Plant Biol ; 63(7): 1240-1259, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33729679

ABSTRACT

Pumilio RNA-binding proteins participate in messenger RNA (mRNA) degradation and translational repression, but their roles in plant development are largely unclear. Here, we show that Arabidopsis PUMILIO PROTEIN24 (APUM24), an atypical Pumilio-homology domain-containing protein, plays an important part in regulating seed maturation, a major stage of plant development. APUM24 is strongly expressed in maturing seeds. Reducing APUM24 expression resulted in abnormal seed maturation, wrinkled seeds, and lower seed oil contents, and APUM24 knockdown resulted in lower levels of WRINKLED 1 (WRI1), a key transcription factor controlling seed oil accumulation, and lower expression of WRI1 target genes. APUM24 reduces the mRNA stability of BTB/POZMATH (BPM) family genes, thus decreasing BPM protein levels. BPM is responsible for the 26S proteasome-mediated degradation of WRI1 and has important functions in plant growth and development. The 3' untranslated regions of BPM family genes contain putative Pumilio response elements (PREs), which are bound by APUM24. Reduced BPM or increased WRI1 expression rescued the deficient seed maturation of apum24-2 knockdown mutants, and APUM24 overexpression resulted in increased seed size and weight. Therefore, APUM24 is crucial to seed maturation through its action as a positive regulator fine-tuning the BPM-WRI1 module, making APUM24 a promising target for breeding strategies to increase crop yields.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Nuclear Proteins/metabolism , Plant Breeding/methods , RNA-Binding Proteins/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant , Nuclear Proteins/genetics , RNA-Binding Proteins/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
5.
Plant Physiol ; 179(4): 1669-1691, 2019 04.
Article in English | MEDLINE | ID: mdl-30674698

ABSTRACT

The nucleo-mitochondrial dual-localized proteins can act as gene expression regulators; however, few instances of these proteins have been described in plants. Arabidopsis (Arabidopsis thaliana) PROHIBITIN 3 (PHB3) is involved in stress responses and developmental processes, but it is unknown how these roles are achieved at the molecular level in the nucleus. In this study, we show that nucleo-mitochondrial PHB3 plays an essential role in regulating genome stability and cell proliferation. PHB3 is up-regulated by DNA damage agents, and the stress-induced PHB3 proteins accumulate in the nucleus. Loss of function of PHB3 results in DNA damage and defective maintenance of the root stem cell niche. Subsequently, the expression patterns and levels of the root stem cell regulators are altered and down-regulated, respectively. In addition, the phb3 mutant shows aberrant cell division and altered expression of cell cycle-related genes, such as CycB1 and Cyclin dependent kinase 1 Moreover, the minichromosome maintenance (MCM) genes, e.g. MCM2, MCM3, MCM4, MCM5, MCM6, and MCM7, are up-regulated in the phb3 mutant. Reducing the MCM2 expression level substantially recovers the DNA damage in the phb3 mutant and partially rescues the altered cell proliferation and root deficiency of phb3 seedlings. PHB3 acts as a transcriptional coregulator that represses MCM2 expression by competitively binding to the promoter E2F-cis-acting elements with E2Fa so as to modulate primary root growth. Collectively, these findings indicate that nuclear-localized PHB3 acts as a transcriptional coregulator that suppresses MCM2 expression to sustain genome integrity and cell proliferation for stem cell niche maintenance in Arabidopsis.


Subject(s)
Arabidopsis Proteins/physiology , Arabidopsis/genetics , Genomic Instability , Meristem/genetics , Minichromosome Maintenance Complex Component 2/physiology , Minichromosome Maintenance Proteins/physiology , Arabidopsis/cytology , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cell Cycle/genetics , Cell Proliferation/genetics , DNA Damage , Gene Expression Regulation, Plant , Meristem/cytology , Meristem/growth & development , Minichromosome Maintenance Complex Component 2/genetics , Minichromosome Maintenance Complex Component 2/metabolism , Minichromosome Maintenance Proteins/genetics , Minichromosome Maintenance Proteins/metabolism , Prohibitins , Reactive Oxygen Species/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Repressor Proteins/physiology
6.
Plant Physiol ; 173(4): 2294-2307, 2017 04.
Article in English | MEDLINE | ID: mdl-28250067

ABSTRACT

Mitochondria and autophagy play important roles in the networks that regulate plant leaf senescence and cell death. However, the molecular mechanisms underlying the interactions between mitochondrial signaling and autophagy are currently not well understood. This study characterized the function of the Arabidopsis (Arabidopsis thaliana) mitochondrial AAA-protease gene FtSH4 in regulating autophagy and senescence, finding that FtSH4 mediates WRKY-dependent salicylic acid (SA) accumulation and signaling. Knockout of FtSH4 in the ftsh4-4 mutant resulted in severe leaf senescence, cell death, and high autophagy levels. The level of SA increased dramatically in the ftsh4-4 mutant. Expression of nahG in the ftsh4-4 mutant led to decreased SA levels and suppressed the leaf senescence and cell death phenotypes. The transcript levels of several SA synthesis and signaling genes, including SALICYLIC ACIDINDUCTION DEFICIENT2 (SID2), NON-RACE-SPECIFIC DISEASE RESISTANCE1 (NDR1), and NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 (NPR1), increased significantly in the ftsh4-4 mutants compared with the wild type. Loss of function of SID2, NDR1, or NPR1 in the ftsh4-4 mutant reversed the ftsh4-4 senescence and autophagy phenotypes. Furthermore, ftsh4-4 mutants had elevated levels of transcripts of several WRKY genes, including WRKY40, WRKY46, WRKY51, WRKY60, WRKY63, and WRKY75; all of these WRKY proteins can bind to the promoter of SID2 Loss of function of WRKY75 in the ftsh4-4 mutants decreased the levels of SA and reversed the senescence phenotype. Taken together, these results suggest that the mitochondrial ATP-dependent protease FtSH4 may regulate the expression of WRKY genes by modifying the level of reactive oxygen species and the WRKY transcription factors that control SA synthesis and signaling in autophagy and senescence.


Subject(s)
Arabidopsis Proteins/metabolism , Metalloproteases/metabolism , Mitochondrial Proteins/metabolism , Plant Leaves/metabolism , Salicylic Acid/metabolism , Transcription Factors/metabolism , Arabidopsis/cytology , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Autophagy/genetics , Autophagy-Related Protein 5 , Autophagy-Related Protein 8 Family , Cell Death/genetics , Intramolecular Transferases/genetics , Intramolecular Transferases/metabolism , Metalloproteases/genetics , Microscopy, Confocal , Mitochondrial Proteins/genetics , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Mutation , Plant Leaves/genetics , Plant Leaves/physiology , Promoter Regions, Genetic/genetics , Protein Binding , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction , Transcription Factors/genetics
7.
Plant Physiol ; 169(3): 2288-303, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26400990

ABSTRACT

The DELLA protein REPRESSOR OF ga1-3-LIKE2 (RGL2) plays an important role in seed germination under different conditions through a number of transcription factors. However, the functions of the structural genes associated with RGL2-regulated germination are less defined. Here, we report the role of an Arabidopsis (Arabidopsis thaliana) cell wall-localized protein, Gibberellic Acid-Stimulated Arabidopsis6 (AtGASA6), in functionally linking RGL2 and a cell wall loosening expansin protein (Arabidopsis expansin A1 [AtEXPA1]), resulting in the control of embryonic axis elongation and seed germination. AtGASA6-overexpressing seeds showed precocious germination, whereas transfer DNA and RNA interference mutant seeds displayed delayed seed germination under abscisic acid, paclobutrazol, and glucose (Glc) stress conditions. The differences in germination rates resulted from corresponding variation in cell elongation in the hypocotyl-radicle transition region of the embryonic axis. AtGASA6 was down-regulated by RGL2, GLUCOSE INSENSITIVE2, and ABSCISIC ACID-INSENSITIVE5 genes, and loss of AtGASA6 expression in the gasa6 mutant reversed the insensitivity shown by the rgl2 mutant to paclobutrazol and the gin2 mutant to Glc-induced stress, suggesting that it is involved in regulating both the gibberellin and Glc signaling pathways. Furthermore, it was found that the promotion of seed germination and length of embryonic axis by AtGASA6 resulted from a promotion of cell elongation at the embryonic axis mediated by AtEXPA1. Taken together, the data indicate that AtGASA6 links RGL2 and AtEXPA1 functions and plays a role as an integrator of gibberellin, abscisic acid, and Glc signaling, resulting in the regulation of seed germination through a promotion of cell elongation.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Plant Growth Regulators/metabolism , Signal Transduction , Abscisic Acid/metabolism , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Cell Wall/metabolism , Gene Expression Regulation, Plant/drug effects , Germination , Gibberellins/metabolism , Glucose/metabolism , Seeds/genetics , Seeds/physiology , Transcription Factors/genetics , Transcription Factors/metabolism
8.
BMC Plant Biol ; 15: 225, 2015 Sep 17.
Article in English | MEDLINE | ID: mdl-26376625

ABSTRACT

BACKGROUND: SUMOylation is an important post-translational modification of eukaryotic proteins that involves the reversible conjugation of a small ubiquitin-related modifier (SUMO) polypeptide to its specific protein substrates, thereby regulating numerous complex cellular processes. The PIAS (protein inhibitor of activated signal transducers and activators of transcription [STAT]) and SIZ (scaffold attachment factor A/B/acinus/PIAS [SAP] and MIZ) proteins are SUMO E3 ligases that modulate SUMO conjugation. The characteristic features and SUMOylation mechanisms of SIZ1 protein in monocotyledon are poorly understood. Here, we examined the functions of a homolog of Arabidopsis SIZ1, a functional SIZ/PIAS-type SUMO E3 ligase from Dendrobium. RESULTS: In Dendrobium, the predicted DnSIZ1 protein has domains that are highly conserved among SIZ/PIAS-type proteins. DnSIZ1 is widely expressed in Dendrobium organs and has a up-regulated trend by treatment with cold, high temperature and wounding. The DnSIZ1 protein localizes to the nucleus and shows SUMO E3 ligase activity when expressed in an Escherichia coli reconstitution system. Moreover, ectopic expression of DnSIZ1 in the Arabidopsis siz1-2 mutant partially complements several phenotypes and results in enhanced levels of SUMO conjugates in plants exposed to heat shock conditions. We observed that DnSIZ1 acts as a negative regulator of flowering transition which may be via a vernalization-induced pathway. In addition, ABA-hypersensitivity of siz1-2 seed germination can be partially suppressed by DnSIZ1. CONCLUSIONS: Our results suggest that DnSIZ1 is a functional homolog of the Arabidopsis SIZ1 with SUMO E3 ligase activity and may play an important role in the regulation of Dendrobium stress responses, flowering and development.


Subject(s)
Dendrobium/genetics , Gene Expression Regulation, Plant , Plant Proteins/genetics , Ubiquitin-Protein Ligases/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Dendrobium/metabolism , Heat-Shock Response , Molecular Sequence Data , Phylogeny , Plant Proteins/chemistry , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Sequence Alignment , Sequence Analysis, Protein , Sumoylation , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/metabolism
9.
J Exp Bot ; 66(19): 5691-701, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25922483

ABSTRACT

Grain shape and weight are two determining agronomic traits of rice yield. ABC1 (Activity of bc1 complex) is a newly found atypical kinase in plants. Here, we report on an ABC1 protein kinase gene, OsAGSW1 (ABC1-like kinase related to Grain size and Weight). Expression of OsAGSW1-GFP in rice revealed that OsAGSW1 is localized to the chloroplasts in rice. Analysis of OsAGSW1 promoter::ß-glucuronidase transgenic rice indicated that this gene was highly expressed in vascular bundles in shoot, hull and caryopsis. Furthermore, OsAGSW1-RNAi and overexpressed transgenic rice lines were generated. Stable transgenic lines overexpressing OsAGSW1 exhibited a phenotype with a significant increase in grain size, grain weight, grain filling rate and 1000-grain weight compared with the wild-type and RNAi transgenic plants. Microscopy analysis showed that spikelet hulls just before heading were different in the OsAGSW1-overexpressed plants compared with wild-type and OsAGSW1 RNAi rice. Further cytological analysis showed that the number of external parenchyma cells in rice hulls of OsAGSW1-overexpressed plants increased, leading to wider and longer spikelet hulls than those of the wild-type and OsAGSW1-RNAi plants. The vascular cross-sectional area in lemma, carpopodium and ovules also strikingly increased and area of both xylem and phloem were enlarged in the OsAGSW1-overexpressed plants. Thus, our results demonstrated that OsAGSW1 plays an important role in seed shape and size of rice by regulating the number of external parenchyma cells and the development of vascular bundles, providing a new insight into the functions of ABC1 genes in plants.


Subject(s)
Edible Grain/growth & development , Edible Grain/genetics , Gene Expression Regulation, Plant , Oryza/genetics , Plant Proteins/genetics , Oryza/growth & development , Oryza/metabolism , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Plants, Genetically Modified/metabolism , RNA Interference
10.
BMC Plant Biol ; 14: 153, 2014 Jun 03.
Article in English | MEDLINE | ID: mdl-24893774

ABSTRACT

BACKGROUND: MMS21 is a SUMO E3 ligase that is conserved in eukaryotes, and has previously been shown to be required for DNA repair and maintenance of chromosome integrity. Loss of the Arabidopsis MMS21 causes defective meristems and dwarf phenotypes. RESULTS: Here, we show a role for AtMMS21 during gametophyte development. AtMMS21 deficient plants are semisterile with shorter mature siliques and abortive seeds. The mms21-1 mutant shows reduced pollen number, and viability, and germination and abnormal pollen tube growth. Embryo sac development is also compromised in the mutant. During meiosis, chromosome mis-segregation and fragmentation is observed, and the products of meiosis are frequently dyads or irregular tetrads. Several transcripts for meiotic genes related to chromosome maintenance and behavior are altered. Moreover, accumulation of SUMO-protein conjugates in the mms21-1 pollen grains is distinct from that in wild-type. CONCLUSIONS: Thus, these results suggest that AtMMS21 mediated SUMOylation may stabilize the expression and accumulation of meiotic proteins and affect gametophyte development.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/cytology , Arabidopsis/enzymology , Germ Cells, Plant/growth & development , Ligases/metabolism , Meiosis , Sumoylation , Ubiquitin-Protein Ligases/metabolism , Arabidopsis/genetics , Chromosomes, Plant/genetics , Crosses, Genetic , Fertility , Gametogenesis, Plant , Gene Expression Regulation, Plant , Genes, Plant , Germ Cells, Plant/cytology , Germination , Mutation/genetics , Pollen Tube/growth & development , Pollen Tube/physiology , Pollination , RNA, Messenger/genetics , RNA, Messenger/metabolism
11.
Plant Biotechnol J ; 12(8): 1132-42, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24975689

ABSTRACT

Plant laccase (LAC) enzymes belong to the blue copper oxidase family and polymerize monolignols into lignin. Recent studies have established the involvement of microRNAs in this process; however, physiological functions and regulation of plant laccases remain poorly understood. Here, we show that a laccase gene, LAC4, regulated by a microRNA, miR397b, controls both lignin biosynthesis and seed yield in Arabidopsis. In transgenic plants, overexpression of miR397b (OXmiR397b) reduced lignin deposition. The secondary wall thickness of vessels and the fibres was reduced in the OXmiR397b line, and both syringyl and guaiacyl subunits are decreased, leading to weakening of vascular tissues. In contrast, overexpression of miR397b-resistant laccase mRNA results in an opposite phenotype. Plants overexpressing miR397b develop more than two inflorescence shoots and have an increased silique number and silique length, resulting in higher seed numbers. In addition, enlarged seeds and more seeds are formed in these miR397b overexpression plants. The study suggests that miR397-mediated development via regulating laccase genes might be a common mechanism in flowering plants and that the modulation of laccase by miR397 may be potential for engineering plant biomass production with less lignin.


Subject(s)
Arabidopsis/genetics , Gene Expression Regulation, Plant , Laccase/genetics , Lignin/biosynthesis , MicroRNAs/genetics , Arabidopsis/enzymology , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cell Wall/metabolism , Gene Expression , Laccase/metabolism , Lignin/analysis , Meristem/genetics , Meristem/growth & development , Phenotype , Plant Shoots/genetics , Plant Shoots/growth & development , Plant Vascular Bundle/genetics , Plant Vascular Bundle/growth & development , Plants, Genetically Modified , Seeds/genetics , Seeds/growth & development
12.
Plant Physiol ; 161(4): 1755-68, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23426194

ABSTRACT

Plants maintain stem cells in meristems to sustain lifelong growth; these stem cells must have effective DNA damage responses to prevent mutations that can propagate to large parts of the plant. However, the molecular links between stem cell functions and DNA damage responses remain largely unexplored. Here, we report that the small ubiquitin-related modifier E3 ligase AtMMS21 (for methyl methanesulfonate sensitivity gene21) acts to maintain the root stem cell niche by mediating DNA damage responses in Arabidopsis (Arabidopsis thaliana). Mutation of AtMMS21 causes defects in the root stem cell niche during embryogenesis and postembryonic stages. AtMMS21 is essential for the proper expression of stem cell niche-defining transcription factors. Moreover, mms21-1 mutants are hypersensitive to DNA-damaging agents, have a constitutively increased DNA damage response, and have more DNA double-strand breaks (DSBs) in the roots. Also, mms21-1 mutants exhibit spontaneous cell death within the root stem cell niche, and treatment with DSB-inducing agents increases this cell death, suggesting that AtMMS21 is required to prevent DSB-induced stem cell death. We further show that AtMMS21 functions as a subunit of the STRUCTURAL MAINTENANCE OF CHROMOSOMES5/6 complex, an evolutionarily conserved chromosomal ATPase required for DNA repair. These data reveal that AtMMS21 acts in DSB amelioration and stem cell niche maintenance during Arabidopsis root development.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/cytology , Arabidopsis/metabolism , DNA Damage , Ligases/metabolism , Plant Roots/cytology , Plant Roots/metabolism , Stem Cell Niche , Arabidopsis/embryology , Cell Death , Cell Differentiation , Cell Division , DNA Breaks, Double-Stranded , Meristem/cytology , Meristem/metabolism , Models, Biological , Mutation/genetics , Phenotype , Protein Binding , Protein Subunits/metabolism , Transcription Factors/metabolism
13.
J Integr Plant Biol ; 55(1): 83-95, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23231763

ABSTRACT

Post-translational modifications of proteins by small ubiquitin-like modifiers (SUMOs) play crucial roles in plant growth and development, and in stress responses. The MMS21 is a newly-identified Arabidopsis thaliana L. SUMO E3 ligase gene aside from the SIZ1, and its function requires further elucidation. Here, we show that MMS21 deficient plants display improved drought tolerance, and constitutive expression of MMS21 reduces drought tolerance. The expression of MMS21 was reduced by abscisic acid (ABA), polyethylene glycol (PEG) or drought stress. Under drought conditions, mms21 mutants showed the highest survival rate and the slowest water loss, and accumulated a higher level of free proline compared to wild-type (WT) and MMS21 over-expression plants. Stomatal aperture, seed germination and cotyledon greening analysis indicated that mms21 was hypersensitive to ABA. Molecular genetic analysis revealed that MMS21 deficiency led to elevated expression of a series of ABA-mediated stress-responsive genes, including COR15A, RD22, and P5CS1 The ABA and drought-induced stress-responsive genes, including RAB18, RD29A and RD29B, were inhibited by constitutive expression of MMS21. Moreover, ABA-induced accumulation of SUMO-protein conjugates was blocked in the mms21 mutant. We thus conclude that MMS21 plays a role in the drought stress response, likely through regulation of gene expression in an ABA-dependent pathway.


Subject(s)
Adaptation, Physiological , Arabidopsis Proteins/physiology , Arabidopsis/physiology , Droughts , Ligases/physiology , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Genes, Plant , Germination , Ligases/genetics , Ligases/metabolism , Mutation , Oligonucleotide Array Sequence Analysis , Seeds/physiology
14.
Front Plant Sci ; 14: 1101994, 2023.
Article in English | MEDLINE | ID: mdl-37284721

ABSTRACT

Peanut growth, development, and eventual production are constrained by biotic and abiotic stresses resulting in serious economic losses. To understand the response and tolerance mechanism of peanut to biotic and abiotic stresses, high-throughput Omics approaches have been applied in peanut research. Integrated Omics approaches are essential for elucidating the temporal and spatial changes that occur in peanut facing different stresses. The integration of functional genomics with other Omics highlights the relationships between peanut genomes and phenotypes under specific stress conditions. In this review, we focus on research on peanut biotic stresses. Here we review the primary types of biotic stresses that threaten sustainable peanut production, the multi-Omics technologies for peanut research and breeding, and the recent advances in various peanut Omics under biotic stresses, including genomics, transcriptomics, proteomics, metabolomics, miRNAomics, epigenomics and phenomics, for identification of biotic stress-related genes, proteins, metabolites and their networks as well as the development of potential traits. We also discuss the challenges, opportunities, and future directions for peanut Omics under biotic stresses, aiming sustainable food production. The Omics knowledge is instrumental for improving peanut tolerance to cope with various biotic stresses and for meeting the food demands of the exponentially growing global population.

15.
J Exp Bot ; 63(10): 3959-73, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22447966

ABSTRACT

ABC1 (activity of bc1 complex) is a newly discovered atypical kinase in plants. Here, it is reported that an ABC1 protein kinase-encoded gene, AtACDO1 (ABC1-like kinase related to chlorophyll degradation and oxidative stress), located in chloroplasts, was up-regulated by methyl viologen (MV) treatment. AtACDO1 RNAi (RNA interference) plants showed developmental defects, including yellow-green leaves and reduced contents of carotenoids and chlorophyll; the chlorophyll reduction was associated with a change in the numbers of chlorophyll-binding proteins of the photosynthetic complexes. Chlorophyllide (Chlide) a the first product of chlorophyll degradation, and pheophorbide a, a subsequent intermediate of Chlide a degradation, were increased in AtACDO1 RNAi plants. The AtACDO1 RNAi plants were more sensitive to high light and MV than wild-type plants. The AtACDO1 RNAi plants had lower transcript levels of the oxidative stress response genes FSD1, CSD1, CAT1, and UTG71C1 after MV treatment compared with wild-type or 35S::AtACDO1 plants. Taken together, the results suggest that the chloroplast AtACDO1 protein plays important roles in mediating chlorophyll degradation and maintaining the number of chlorophyll-binding photosynthetic thylakoid membranes, as well as in the photooxidative stress response.


Subject(s)
Arabidopsis/enzymology , Arabidopsis/radiation effects , Chlorophyll/metabolism , Chloroplast Proteins/metabolism , Oxidative Stress/radiation effects , Protein Kinases/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Chlorophyllides/metabolism , Chloroplast Proteins/genetics , Gene Expression Regulation, Plant , Light , Protein Kinases/genetics
16.
Plant J ; 60(4): 666-78, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19682286

ABSTRACT

hMMS21 is a SUMO E3 ligase required for the prevention of DNA damage-induced apoptosis, and acts by facilitating DNA repair in human cells. The Arabidopsis genome contains a putative MMS21 homologue capable of interacting with the SUMO E2 conjugating enzyme AtSCE1a, as indicated by a yeast two-hybrid screen and bimolecular fluorescence complementation experiments. In vitro and in vivo data demonstrated that AtMMS21 was a SUMO E3 ligase. We identified the Arabidopsis AtMMS21 null T-DNA insertion mutant mms21-1, which had a short-root phenotype, and affected cell proliferation in the apical root meristem, as indicated by impaired expression of the cell division marker CYCB1:GUS in mms21-1 roots. The mms21-1 roots had reduced responses to exogenous cytokinins, and decreased expression of the cytokinin-induced genes ARR3, ARR4, ARR5 and ARR7, compared with the wild type. Thus, our findings suggest that the AtMMS21 gene is involved in root development via cell-cycle regulation and cytokinin signalling.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Cell Proliferation , Plant Roots/cytology , Small Ubiquitin-Related Modifier Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Amino Acid Sequence , Arabidopsis/enzymology , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Cytokinins/pharmacology , Gene Expression Regulation, Plant , Molecular Sequence Data , Mutagenesis, Insertional , Plant Roots/enzymology , Plant Roots/genetics , Plant Roots/growth & development , RNA, Plant/genetics , Signal Transduction , Small Ubiquitin-Related Modifier Proteins/genetics , Ubiquitin-Protein Ligases/genetics
17.
Plant Physiol Biochem ; 155: 396-405, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32814276

ABSTRACT

The annual Zea mays ssp. mexicana L. is a member of the teosinte group and a close wild relative of maize. Thus, Zea mays ssp. mexicana L. can be effectively used in maize breeding. AtCCHA1 is a Mn2+ and/or Ca2+/H+ antiporter localized in chloroplasts in Arabidopsis. In this study, its homolog from Zea mays ssp. mexicana L., ZmmCCHA1, was isolated and characterized. The transcriptional level of ZmmCCHA1 in Zea mays ssp. mexicana L. was repressed in response to excessive Ca2+ or Mn2+. Heterologous functional complementation assays using yeast mutants showed that ZmmCCHA1 mediates Ca2+ and Mn2+ transport. The ZmmCCHA1 protein was localized in the chloroplasts when expressed in tobacco leaves. Furthermore, ectopic overexpression of ZmmCCHA1 in the Arabidopsis ccha1 mutant rescued the mutant defects on growth and the photosynthetic proteins in the thylakoid membranes. Moreover, the photosynthetic phenotypes of Arabidopsis ccha1 mutant at steady-state were greatly but not completely complemented by the overexpression of ZmmCCHA1. In addition, overexpressing the ZmmCCHA1 rescued the sensitives of PSII in the Arabidopsis ccha1 mutant to Mn2+ deficiency or high Ca2+ condition. These results indicate that the isolated ZmmCCHA1 is the homolog of AtCCHA1 and plays a conserved role in maintaining the Mn2+ and/or Ca2+ homeostasis in chloroplasts which is critical for the function of PSII in photosynthesis.


Subject(s)
Antiporters/metabolism , Chloroplast Proteins/metabolism , Plant Proteins/metabolism , Zea mays/metabolism , Arabidopsis , Calcium/metabolism , Magnesium/metabolism , Plants, Genetically Modified , Thylakoids , Nicotiana
18.
Int J Biol Macromol ; 158: 244-250, 2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32360465

ABSTRACT

Skin care biomaterials from natural compounds are increasingly needed in recent. We demonstrate a simple strategy to fabricate the dialdehyde xylan (DAX) crosslinked hydrogel with skin care potential. The hydrogel mainly consists of dialdehyde xylan, which is used as crosslinker for gelatin (G). Glycerol (Gly) and nicotinamide (NCA) are introduced here for improving the texture, antibacterial property as well as skin care functionality. The in vitro release results demonstrate that NCA can be released smoothly from the xylan-based gel, whereby the xylan-based fabricated gel can be utilized as an ideal matrix gel in skin care with loading and release function. The antibacterial ability is in the following order: Yeast > Bacillus subtilis > Staphylococcus aureus. The cytocompatibility experiments confirm the excellent viability of the gel. These merits demonstrate the fabricated hydrogel as a potential material in skin care.

19.
Plant Signal Behav ; 14(11): 1656036, 2019.
Article in English | MEDLINE | ID: mdl-31429630

ABSTRACT

Prohibitins (PHBs) are composed of an obviously conserved protein family in eukaryotic cells. Despite the extensive and in-depth research of mammalian PHB1 and PHB2, the plant prohibitins functions are not completely elucidated and little is known about their mechanism of action. This review focuses on the current knowledge about the protein subcellular localization, interaction proteins and target genes of PHB3. Furthermore, we discussed the roles of PHB3 protein in plant growth and development, plant responses to abiotic or biotic stresses and its participation in phytohormonal signaling.


Subject(s)
Arabidopsis/growth & development , Arabidopsis/metabolism , Plant Development , Repressor Proteins/metabolism , Arabidopsis/genetics , Arabidopsis Proteins , Endoplasmic Reticulum/metabolism , Genes, Plant , Golgi Apparatus/metabolism , Prohibitins , Protein Binding , Protein Transport
20.
Phys Med Biol ; 53(14): N287-96, 2008 Jul 21.
Article in English | MEDLINE | ID: mdl-18574314

ABSTRACT

The tremendous potential of chemical exchange saturation transfer (CEST) agents as an emerging class of magnetic resonance imaging contrast media has been demonstrated in recent years. In a CEST experiment, a high CEST contrast is always welcome. However, when the exchange rate is low, which may happen in exchangeable solute protons of low concentration, it is usually hard to obtain an excellent CEST efficiency. Recently, we noted that the intermolecular multiple quantum coherence signal is more sensitive to the changes of the magnetization magnitude than a conventional single quantum coherence signal. Consequently, it may be easier when used in obtaining a CEST contrast. In this note, a modified COSY (two-dimensional correlated spectroscopy) revamped with an asymmetric Z-gradient echo detection (CRAZED) sequence combined with an off-resonance saturation pulse followed by a standard spin-echo imaging sequence was designed to obtain a better CEST contrast image based on the intermolecular double quantum coherence method. An analytical expression was derived from a dipolar field theory. Experiments were performed on an agar-glucose phantom, and the results demonstrate the feasibility of our method.


Subject(s)
Contrast Media/chemistry , Magnetic Resonance Imaging/methods , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL