Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.227
Filter
Add more filters

Publication year range
1.
Brief Bioinform ; 25(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38261339

ABSTRACT

Various methods have been proposed to reconstruct admixture histories by analyzing the length of ancestral chromosomal tracts, such as estimating the admixture time and number of admixture events. However, available methods do not explicitly consider the complex admixture structure, which characterizes the joining and mixing patterns of different ancestral populations during the admixture process, and instead assume a simplified one-by-one sequential admixture model. In this study, we proposed a novel approach that considers the non-sequential admixture structure to reconstruct admixture histories. Specifically, we introduced a hierarchical admixture model that incorporated four ancestral populations and developed a new method, called HierarchyMix, which uses the length of ancestral tracts and the number of ancestry switches along genomes to reconstruct the four-way admixture history. By automatically selecting the optimal admixture model using the Bayesian information criterion principles, HierarchyMix effectively estimates the corresponding admixture parameters. Simulation studies confirmed the effectiveness and robustness of HierarchyMix. We also applied HierarchyMix to Uyghurs and Kazakhs, enabling us to reconstruct the admixture histories of Central Asians. Our results highlight the importance of considering complex admixture structures and demonstrate that HierarchyMix is a useful tool for analyzing complex admixture events.


Subject(s)
Central Asian People , Genetics, Population , Humans , Bayes Theorem , Central Asian People/genetics , Computer Simulation , Chromosomes/genetics , Genetics, Population/methods
2.
Plant Physiol ; 194(3): 1498-1511, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-37956105

ABSTRACT

Drought and heat stresses usually occur concomitantly in nature, with increasing frequency and intensity of both stresses expected due to climate change. The synergistic agricultural impacts of these compound climate extremes are much greater than those of the individual stresses. However, the mechanisms by which drought and heat stresses separately and concomitantly affect dynamic photosynthesis have not been thoroughly assessed. To elucidate this, we used tomato (Solanum lycopersicum) seedlings to measure dynamic photosynthesis under individual and compound stresses of drought and heat. Individual drought and heat stresses limited dynamic photosynthesis at the stages of diffusional conductance to CO2 and biochemistry, respectively. However, the primary limiting factor for photosynthesis shifted to mesophyll conductance under the compound stresses. Compared with the control, photosynthetic carbon gain in fluctuating light decreased by 38%, 73%, and 114% under the individual drought, heat, and compound stresses, respectively. Therefore, compound stresses caused a greater reduction in photosynthetic carbon gain in fluctuating light conditions than individual stress. These findings highlight the importance of mitigating the effects of compound climate extremes on crop productivity by targeting mesophyll conductance and improving dynamic photosynthesis.


Subject(s)
Droughts , Solanum lycopersicum , Agriculture , Carbon , Climate Change , Photosynthesis
3.
Chem Rev ; 123(1): 1-30, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36342422

ABSTRACT

The functions of interfacial synergy in heterojunction catalysts are diverse and powerful, providing a route to solve many difficulties in energy conversion and organic synthesis. Among heterojunction-based catalysts, the Mott-Schottky catalysts composed of a metal-semiconductor heterojunction with predictable and designable interfacial synergy are rising stars of next-generation catalysts. We review the concept of Mott-Schottky catalysts and discuss their applications in various realms of catalysis. In particular, the design of a Mott-Schottky catalyst provides a feasible strategy to boost energy conversion and chemical synthesis processes, even allowing realization of novel catalytic functions such as enhanced redox activity, Lewis acid-base pairs, and electron donor-acceptor couples for dealing with the current problems in catalysis for energy conversion and storage. This review focuses on the synthesis, assembly, and characterization of Schottky heterojunctions for photocatalysis, electrocatalysis, and organic synthesis. The proposed design principles, including the importance of constructing stable and clean interfaces, tuning work function differences, and preparing exposable interfacial structures for designing electronic interfaces, will provide a reference for the development of all heterojunction-type catalysts, electrodes, energy conversion/storage devices, and even super absorbers, which are currently topics of interest in fields such as electrocatalysis, fuel cells, CO2 reduction, and wastewater treatment.

4.
Nano Lett ; 24(15): 4691-4701, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38588212

ABSTRACT

Tumor cells exhibit heightened glucose (Glu) consumption and increased lactic acid (LA) production, resulting in the formation of an immunosuppressive tumor microenvironment (TME) that facilitates malignant proliferation and metastasis. In this study, we meticulously engineer an antitumor nanoplatform, denoted as ZLGCR, by incorporating glucose oxidase, LA oxidase, and CpG oligodeoxynucleotide into zeolitic imidazolate framework-8 that is camouflaged with a red blood cell membrane. Significantly, ZLGCR-mediated consumption of Glu and LA not only amplifies the effectiveness of metabolic therapy but also reverses the immunosuppressive TME, thereby enhancing the therapeutic outcomes of CpG-mediated antitumor immunotherapy. It is particularly important that the synergistic effect of metabolic therapy and immunotherapy is further augmented when combined with immune checkpoint blockade therapy. Consequently, this engineered antitumor nanoplatform will achieve a cooperative tumor-suppressive outcome through the modulation of metabolism and immune responses within the TME.


Subject(s)
Neoplasms , Tumor Microenvironment , Humans , Immunotherapy , Radioimmunotherapy , Glucose , Glucose Oxidase , Immunosuppressive Agents , Lactic Acid , Neoplasms/therapy , Cell Line, Tumor
5.
Plant Mol Biol ; 114(3): 36, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38598012

ABSTRACT

Increasing evidence indicates a strong correlation between the deposition of cuticular waxes and drought tolerance. However, the precise regulatory mechanism remains elusive. Here, we conducted a comprehensive transcriptome analysis of two wheat (Triticum aestivum) near-isogenic lines, the glaucous line G-JM38 rich in cuticular waxes and the non-glaucous line NG-JM31. We identified 85,143 protein-coding mRNAs, 4,485 lncRNAs, and 1,130 miRNAs. Using the lncRNA-miRNA-mRNA network and endogenous target mimic (eTM) prediction, we discovered that lncRNA35557 acted as an eTM for the miRNA tae-miR6206, effectively preventing tae-miR6206 from cleaving the NAC transcription factor gene TaNAC018. This lncRNA-miRNA interaction led to higher transcript abundance for TaNAC018 and enhanced drought-stress tolerance. Additionally, treatment with mannitol and abscisic acid (ABA) each influenced the levels of tae-miR6206, lncRNA35557, and TaNAC018 transcript. The ectopic expression of TaNAC018 in Arabidopsis also improved tolerance toward mannitol and ABA treatment, whereas knocking down TaNAC018 transcript levels via virus-induced gene silencing in wheat rendered seedlings more sensitive to mannitol stress. Our results indicate that lncRNA35557 functions as a competing endogenous RNA to modulate TaNAC018 expression by acting as a decoy target for tae-miR6206 in glaucous wheat, suggesting that non-coding RNA has important roles in the regulatory mechanisms responsible for wheat stress tolerance.


Subject(s)
Arabidopsis , MicroRNAs , RNA, Long Noncoding , RNA, Competitive Endogenous , RNA, Long Noncoding/genetics , Abscisic Acid/pharmacology , Arabidopsis/genetics , Mannitol , MicroRNAs/genetics , RNA, Messenger , Triticum/genetics , Waxes
6.
Anal Chem ; 96(22): 9026-9033, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38771095

ABSTRACT

Precise detection of a trace substance that intrinsically possesses weak chemical activity and less-distinctive spatial structure is of great significance, but full of challenges, as it could not be effectively recognized via either an active covalent reaction process or multiple noncovalent interactions toward its simple structure. Here, the electronic-effect-driven recognition strategy was proposed to visually sense an illicit drug, γ-hydroxybutyric acid (GHB), which was treated as an analyte model due to its inherent simple structure. In particular, a sensing system composed of two probes substituted by the nitro (-NO2) and the hydrogen (-H), was constructed with the characteristic yellow coloring and blue fluorescence, as well as high sensitivity (0.586 ng/mL), fast response (0.2 s), and specific recognition, even in the presence of 22 interferents. In addition, a portable eyeshadow box-like sensing chip was fabricated and proven to be reliable and feasible in sensing GHB disguised in liquors for self-protection in a covert manner. Hence, this work developed an electronic-effect-driven modulation strategy of the recognition interaction between the probe and the analyte and, thus, would open up a new thought for detecting the analyte with weak activity and a simple structure, as well as propel the relevant application in real scenarios.

7.
Small ; : e2401024, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38597755

ABSTRACT

Exposing different facets on metal-organic frameworks (MOFs) is highly desirable to enhance the performance for various applications, however, exploiting a concise and effective approach to achieve facet-controlled synthesis of MOFs remains challenging. Here, by modulating the ratio of metal precursors to ligands, the facet-engineered iron-based MOFs (Fe-MOFs) exhibits enhanced catalytic activity for Fenton reaction are explored, and the mechanism of facet-dependent performance is revealed in detail. Fully exposed (101) and (100) facets on spindle-shaped Fe-MOFs enable rapid oxidation of colorless o-phenylenediamine (OPD) to colored products, thereby establishing a dual-mode platform for the detection of hydrogen peroxide (H2O2) and triacetone triperoxide (TATP). Thus, a detection limit as low as 2.06 nm is achieved, and robust selectivity against a wide range of common substances (>16 types) is obtained, which is further improved by incorporating a deep learning architecture with an SE-VGG16 network model, enabling precise differentiation of oxidizing agents from captured images. The present strategy is expected will shine light on both the rational synthesis of nanomaterials with modulated morphologies and the exploitation of high-performance trace chemical sensors.

8.
J Transl Med ; 22(1): 173, 2024 02 18.
Article in English | MEDLINE | ID: mdl-38369516

ABSTRACT

Lung cancer, a prevalent and aggressive disease, is characterized by recurrence and drug resistance. It is essential to comprehend the fundamental processes and discover novel therapeutic objectives for augmenting treatment results. Based on our research findings, we have identified a correlation between methylation of cg09897064 and decreased expression of ZBP1, indicating a link to unfavorable prognosis in patients with lung cancer. Furthermore, these factors play a role in macrophage polarization, with ZBP1 upregulated in M1 macrophages compared to both M0 and M2 polarized macrophages. We observed cg09897064 methylation in M2 polarization, but not in M0 and M1 polarized macrophages. ATACseq analysis revealed closed chromatin accessibility of ZBP1 in M0 polarized macrophages, while open accessibility was observed in both M1 and M2 polarized macrophages. Our findings suggest that ZBP1 is downregulated in M0 polarized macrophages due to closed chromatin accessibility and downregulated in M2 polarized macrophages due to cg09897064 methylation. Further investigations manipulating cg09897064 methylation and ZBP1 expression through overexpression plasmids and shRNAs provided evidence for their role in modulating macrophage polarization and tumor growth. ZBP1 inhibits M2 polarization and suppresses tumor growth, while cg09897064 methylation promotes M2 polarization and macrophage-induced tumor growth. In mechanism investigations, we found that cg09897064 methylation impairs CEBPA binding to the ZBP1 promoter, leading to decreased ZBP1 expression. Clinical experiments were conducted to validate the correlation between methylation at cg09897064, ZBP1 expression, and macrophage M2 polarization. Targeting these factors may hold promise as a strategy for developing innovative checkpoint inhibitors in lung cancer treatment.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , RNA-Binding Proteins , Humans , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/metabolism , Chromatin/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Macrophages/metabolism , Methylation , RNA-Binding Proteins/genetics
9.
Appl Environ Microbiol ; : e0114824, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39082806

ABSTRACT

Veillonella spp. are nitrate-reducing bacteria with anaerobic respiratory activity that reduce nitrate to nitrite. They are obligate anaerobic, Gram-negative cocci that ferment lactate as the main carbon source and produce short-chain fatty acids (SCFAs). Commensal Veillonella reside in the human body site where lactate level is, however, limited for Veillonella growth. In this study, nitrate was shown to promote the anaerobic growth of Veillonella in the lactate-deficient media. We aimed to investigate the underlying mechanisms and the metabolism involved in nitrate respiration. Nitrate (15 mM) was demonstrated to promote Veillonella dispar growth and viability in the tryptone-yeast extract medium containing 0.5 mM L-lactate. Metabolite and transcriptomic analyses revealed nitrate enabled V. dispar to actively utilize glutamate and aspartate from the medium and secrete tryptophan. Glutamate or aspartate was further supplemented to a medium to investigate individual catabolism during nitrate respiration. Notably, nitrate was demonstrated to elevate SCFA production in the glutamate-supplemented medium, and further increase tryptophan production in the aspartate-supplemented medium. We proposed that the increased consumption of glutamate provided reducing power for nitrate respiration and aspartate served as a substrate for fumarate formation. Both glutamate and aspartate were incorporated into the central metabolic pathways via reverse tricarboxylic acid cycle and were linked with the increased production of acetate, propionate, and tryptophan. This study provides further understanding of the promoted growth and metabolic mechanisms by commensal V. dispar utilizing nitrate and specific amino acids to adapt to the lactate-deficient environment.IMPORTANCENitrate is a pivotal ecological factor influencing microbial community and metabolism. Dietary nitrate provides health benefits including anti-diabetic and anti-hypertensive effects via microbial-derived metabolites such as nitrite. Unraveling the impacts of nitrate on the growth and metabolism of human commensal bacteria is imperative to comprehend the intricate roles of nitrate in regulating microbial metabolism, community, and human health. Veillonella are lactate-utilizing, nitrate-reducing bacteria that are frequently found in the human body site where lactate levels are low and nitrate is at millimolar levels. Here, we comprehensively described the metabolic strategies employed by V. dispar to thrive in the lactate-deficient environment using nitrate respiration and catabolism of specific amino acids. The elevated production of SCFAs and tryptophan from amino acids during nitrate respiration of V. dispar further suggested the potential roles of nitrate and Veillonella in the promotion of human health.

10.
Phys Rev Lett ; 132(15): 150603, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38682974

ABSTRACT

Ground state preparation is classically intractable for general Hamiltonians. On quantum devices, shallow parametrized circuits can be effectively trained to obtain short-range entangled states under the paradigm of variational quantum eigensolver, while deep circuits are generally untrainable due to the barren plateau phenomenon. In this Letter, we give a general lower bound on the variance of circuit gradients for arbitrary quantum circuits composed of local 2-designs. Based on our unified framework, we prove the absence of barren plateaus in training finite local-depth circuits (FLDC) for the ground states of local Hamiltonians. FLDCs are allowed to be deep in the conventional circuit depth to generate long-range entangled ground states, such as topologically ordered states, but their local depths are finite, i.e., there is only a finite number of gates acting on individual qubits. This characteristic sets FLDC apart from shallow circuits: FLDC in general cannot be classically simulated to estimate local observables efficiently by existing tensor network methods in two and higher dimensions. We validate our analytical results with extensive numerical simulations and demonstrate the effectiveness of variational training using the generalized toric code model.

11.
Phys Rev Lett ; 132(24): 240402, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38949339

ABSTRACT

In the context of measurement-induced entanglement phase transitions, the influence of quantum noises, which are inherent in real physical systems, is of great importance and experimental relevance. In this Letter, we present a comprehensive theoretical analysis of the effects of both temporally uncorrelated and correlated quantum noises on entanglement generation and information protection. This investigation reveals that entanglement within the system follows q^{-1/3} scaling for both types of quantum noises, where q represents the noise probability. The scaling arises from the Kardar-Parisi-Zhang fluctuation with effective length scale L_{eff}∼q^{-1}. More importantly, the information protection timescales of the steady states are explored and shown to follow q^{-1/2} and q^{-2/3} scaling for temporally uncorrelated and correlated noises, respectively. The former scaling can be interpreted as a Hayden-Preskill protocol, while the latter is a direct consequence of Kardar-Parisi-Zhang fluctuations. We conduct extensive numerical simulations using stabilizer formalism to support the theoretical understanding. This Letter not only contributes to a deeper understanding of the interplay between quantum noises and measurement-induced phase transition but also provides a new perspective to understand the effects of Markovian and non-Markovian noises on quantum computation.

12.
Chemistry ; 30(25): e202303989, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38345999

ABSTRACT

Benzobicyclo[3.2.1]octane is a cage-like unique motif containing a bicyclo[3.2.1]octane structure fused with at least one benzene ring. It is found in various natural products that exhibit structural complexities and important biological activities. The total synthesis of natural products possessing this challenging structure has received considerable attention, and great advances have been made in this field during the past 15 years. This review summarizes thus far achieved chemical syntheses and synthetic studies of natural compounds featuring the benzobicyclo[3.2.1]octane core. It focuses on strategic approaches constructing the bridged structure, aiming to provide a useful reference for inspiring further advancements in strategies and total syntheses of natural products with such a framework.

13.
Chemistry ; 30(8): e202303519, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38018776

ABSTRACT

Three unusual ajmaline-macroline type bisindole alkaloids, alsmaphylines A-C, together with their postulated biogenetic precursors, were isolated from the stem barks and leaves of Alstonia macrophylla via the building blocks-based molecular network (BBMN) strategy. Alsmaphyline A represents a rare ajmaline-macroline type bisindole alkaloid with an S-shape polycyclic ring system. Alsmaphylines B and C are two novel ajmaline-macroline type bisindole alkaloids with N-1-C-21' linkages, and the former possesses an unconventional stacked conformation due to the presence of intramolecular noncovalent interactions. The chemical structures including absolute configurations of alsmaphylines A-C were established by comprehensive spectroscopic analyses, electronic circular dichroism (ECD) calculations, and single-crystal X-ray crystallography. In addition, a plausible biosynthetic pathway of these bisindole alkaloids as well as their ability to promote the protein synthesis on HT22 cells were discussed.


Subject(s)
Alkaloids , Alstonia , Oxindoles , Alstonia/chemistry , Ajmaline , Indole Alkaloids/chemistry , Molecular Structure , Alkaloids/chemistry
14.
Inorg Chem ; 63(20): 9288-9296, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38724469

ABSTRACT

A novel 3D europium-based cationic framework (Eu-CMOF) has been constructed solvothermally by employing a viologen derivative as an organic functional building unit. Notably, Eu-CMOF demonstrates its capability as a proficient aqueous-phase ion-exchange host, facilitating the remarkable rapid chromatographic column separation of new coccine and malachite green (NC3-/MG+), as well as new coccine and methylene blue (NC3-/MLB+), in mere 2 to 4 min. Adsorption thermodynamics and kinetics of anionic dyes demonstrate that Eu-CMOF exhibits a higher adsorption capacity for NC3-, as evaluated by the Langmuir model, reaching a value of 173 mg·g-1. The pseudo-second-order rate constant is determined to be 3.84 × 10-3 mg-1·g·min-1. Additionally, Eu-CMOF displays reversible photochromic and amine- and ammonia-induced vapochromic behaviors. Further mechanistic studies reveal that these chromic behaviors are primarily attributed to the generation of free viologen radical stimulated by Xe-light or electron-rich amine/ammonia. This research contributes to the development of advanced materials with applications in rapid chromatographic separation and stimuli-responsive chromic properties, showcasing the potential of Eu-CMOF as a versatile platform for practical applications.

15.
Fish Shellfish Immunol ; 145: 109364, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38199264

ABSTRACT

Micropterus salmoides rhabdovirus (MSRV) is one of the main pathogens of largemouth bass, leading to serious economic losses. The G protein, as the only envelope protein present on the surface of MSRV virion, contains immune-related antigenic determinants, thereby becoming the primary target for the design of MSRV vaccines. Here, we displayed the G protein on the surface of yeast cells (named EBY100/pYD1-G) and conducted a preliminary assessment of the protective efficacy of the recombinant yeast vaccine. Upon oral vaccination, a robust immune response was observed in systemic and mucosal tissue. Remarkably, following the MSRV challenge, the relative percent survival of EBY100/pYD1-G treated largemouth bass significantly increased to 66.7 %. In addition, oral administration inhibited viral replication and alleviated the pathological symptoms of MSRV-infected largemouth bass. These results suggest that EBY100/pYD1-G could be used as a potential oral vaccine against MSRV infection.


Subject(s)
Bass , Fish Diseases , Rhabdoviridae , Animals , Saccharomyces cerevisiae , Vaccination , Fungal Proteins , Vaccines, Synthetic
16.
J Chem Inf Model ; 64(9): 3640-3649, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38359459

ABSTRACT

The accurate identification and analysis of chemical structures in molecular images are prerequisites of artificial intelligence for drug discovery. It is important to efficiently and automatically convert molecular images into machine-readable representations. Therefore, in this paper, we propose an automated molecular optical image recognition model based on deep learning, called Image2InChI. Additionally, the proposed Image2InChI introduces a novel feature fusion network with attention to integrate image patch and InChI prediction. The improved SwinTransformer as an encoder and the Transformer Decoder as a decoder with patch embedding are applied to predict the image features for the corresponding InChI. The experimental results showed that the Image2InChI model achieves an accuracy of InChI (InChI acc) of 99.8%, a Morgan FP of 94.1%, an accuracy of maximum common structures (MCS acc) of 94.8%, and an accuracy of longest common subsequence (LCS acc) of 96.2%. The experiments demonstrated that the proposed Image2InChI model improves the accuracy and efficiency of molecular image recognition and provided a valuable reference about optical chemical structure recognition for InChI.


Subject(s)
Deep Learning , Image Processing, Computer-Assisted/methods , Drug Discovery/methods , Optical Imaging/methods
17.
BMC Infect Dis ; 24(1): 45, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38172766

ABSTRACT

BACKGROUND: This study aimed to assess and compare procalcitonin (PCT) and C-reactive protein (CRP) levels between COVID-19 and non-COVID-19 sepsis patients. Additionally, we evaluated the diagnostic efficiency of PCT and CRP in distinguishing between Gram-positive (GP) and Gram-negative (GN) bacterial infections. Moreover, we explored the associations of PCT with specific pathogens in this context. METHODS: The study included 121 consecutive sepsis patients who underwent blood culture testing during the COVID-19 epidemic. PCT and CRP were measured, and reverse transcriptase-polymerase chain reaction (RT-PCR) was employed for the detection of COVID-19 nucleic acid. The Mann-Whitney U-test was used to compare PCT and CRP between the COVID-19 and non-COVID-19 groups. Receiver operating characteristic (ROC) curves were generated to compare PCT and CRP levels in the GN group versus the GP group for assessing the diagnostic efficiency. The kruskal-Wallis H test was applied to assess the impact of specific pathogen groups on PCT concentrations. RESULTS: A total of 121 sepsis patients were categorized into a COVID-19 group (n = 25) and a non-COVID-19 group (n = 96). No significant differences in age and gender were observed between the COVID-19 and non-COVID-19 groups. The comparison of biomarkers between these groups showed no statistically significant differences. The optimal cut-off values for PCT and CRP in differentiating between GP and GN infections were 1.03 ng/mL and 34.02 mg/L, respectively. The area under the ROC curve was 0.689 (95% confidence interval (CI) 0.591-0.786) for PCT and 0.611 (95% CI 0.505-0.717) for CRP. The diagnostic accuracy was 69.42% for PCT and 58.69% for CRP. The study found a significant difference in PCT levels among specific groups of pathogens (P < 0.001), with the highest levels observed in Escherichia coli infections. The frequency of Staphylococcus spp. positive results was significantly higher (36.0%) in COVID-19 compared to non-COVID-19 sepsis patients (P = 0.047). CONCLUSION: Sepsis patients with COVID-19 revealed a significantly higher culture positivity for staphylococcus spp. than the non-COVID-19 group. Both PCT and CRP showed moderate diagnostic efficiency in differentiating between GP and GN bacterial infections. PCT showed potential utility in identifying E. coli infections compared to other pathogens.


Subject(s)
COVID-19 , Escherichia coli Infections , Gram-Negative Bacterial Infections , Sepsis , Humans , C-Reactive Protein/analysis , Procalcitonin , Escherichia coli/metabolism , Calcitonin , Retrospective Studies , COVID-19/diagnosis , Sepsis/microbiology , Biomarkers , ROC Curve , Gram-Negative Bacterial Infections/microbiology , Staphylococcus , COVID-19 Testing
18.
Phys Chem Chem Phys ; 26(9): 7269-7275, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38193864

ABSTRACT

On the basis of variable-temperature single-crystal X-ray diffraction, rotational energy barrier analysis, variable-temperature/frequency dielectric response, and molecular dynamics simulations, here we report a new crystalline supramolecular rotor (CH3NH3)(18-crown-6)[CuCl3], in which the (H3C-NH3)+ ion functions as a smallest dual-wheel rotator showing bisected rotation dynamics, while the host 18-crown-6 macrocycle behaves as a stator that is not strictly stationary. This study also provides a helpful insight into the dynamics of ubiquitous -CH3/-NH3 groups confined in organic or organic-inorganic hybrid solids.

19.
Bioorg Chem ; 150: 107596, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38941699

ABSTRACT

A novel series of 1,8-naphthalimide piperazinamide based benzenesulfonamides derivatives were designed and synthesized as carbonic anhydrase IX (CA IX) inhibitors and ferroptosis inducers for the treatment of triple-negative breast cancer (TNBC). The representative compound 9o exhibited more potent inhibitory activity and selective against CA IX over off-target CA II, compared with positive control SLC-0111. Molecular docking study was also performed to gain insights into the binding interactions of 9o in the binding pocket of CAIX. Moreover, compound 9o exhibited superior antitumor activities against breast cancer cells under hypoxia than that of normoxia conditions. Mechanism studies revealed that compound 9o could act as DNA intercalator and effectively suppressed cell migration, arrested the cell cycle at G1/S phase and induced apoptosis in MDA-MB-231 cells, while inducing ferroptosis accompanied by the dissipation of MMP and the elevation intracellular levels of ROS. Notably, in vivo studies demonstrated that 9o effectively inhibited tumor growth and metastasis in a highly metastatic murine breast cancer 4 T1 xenograft model. Taken together, this study suggests that compound 9o represents a potent and selective CA IX inhibitor and ferroptosis inducer for the treatment of TNBC.


Subject(s)
Antineoplastic Agents , Benzenesulfonamides , Carbonic Anhydrase IX , Carbonic Anhydrase Inhibitors , Cell Proliferation , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Ferroptosis , Naphthalimides , Sulfonamides , Triple Negative Breast Neoplasms , Humans , Carbonic Anhydrase IX/antagonists & inhibitors , Carbonic Anhydrase IX/metabolism , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrase Inhibitors/chemistry , Carbonic Anhydrase Inhibitors/chemical synthesis , Ferroptosis/drug effects , Sulfonamides/pharmacology , Sulfonamides/chemistry , Sulfonamides/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Animals , Molecular Structure , Cell Proliferation/drug effects , Structure-Activity Relationship , Mice , Female , Naphthalimides/chemistry , Naphthalimides/pharmacology , Naphthalimides/chemical synthesis , Drug Discovery , Apoptosis/drug effects , Molecular Docking Simulation , Piperazines/pharmacology , Piperazines/chemistry , Piperazines/chemical synthesis , Cell Line, Tumor , Antigens, Neoplasm
20.
Acta Pharmacol Sin ; 45(6): 1201-1213, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38491160

ABSTRACT

The angiotensin II type 2 receptor (AT2R) is a well-established component of the renin-angiotensin system and is known to counteract classical activation of this system and protect against organ damage. Pharmacological activation of the AT2R has significant therapeutic benefits, including vasodilation, natriuresis, anti-inflammatory activity, and improved insulin sensitivity. However, the precise biological functions of the AT2R in maintaining homeostasis in liver tissue remain largely unexplored. In this study, we found that the AT2R facilitates liver repair and regeneration following acute injury by deactivating Hippo signaling and that interleukin-6 transcriptionally upregulates expression of the AT2R in hepatocytes through STAT3 acting as a transcription activator binding to promoter regions of the AT2R. Subsequently, elevated AT2R levels activate downstream signaling via heterotrimeric G protein Gα12/13-coupled signals to induce Yap activity, thereby contributing to repair and regeneration processes in the liver. Conversely, a deficiency in the AT2R attenuates regeneration of the liver while increasing susceptibility to acetaminophen-induced liver injury. Administration of an AT2R agonist significantly enhances the repair and regeneration capacity of injured liver tissue. Our findings suggest that the AT2R acts as an upstream regulator in the Hippo pathway and is a potential target in the treatment of liver damage.


Subject(s)
Hippo Signaling Pathway , Interleukin-6 , Liver Regeneration , Mice, Inbred C57BL , Protein Serine-Threonine Kinases , Receptor, Angiotensin, Type 2 , Signal Transduction , Animals , Male , Mice , Acetaminophen , Adaptor Proteins, Signal Transducing/metabolism , Chemical and Drug Induced Liver Injury/metabolism , Hepatocytes/metabolism , Hepatocytes/drug effects , Interleukin-6/metabolism , Liver/metabolism , Liver/drug effects , Liver Regeneration/drug effects , Liver Regeneration/physiology , Mice, Knockout , Protein Serine-Threonine Kinases/metabolism , Receptor, Angiotensin, Type 2/metabolism , Signal Transduction/drug effects , STAT3 Transcription Factor/metabolism , YAP-Signaling Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL