ABSTRACT
DExD/H-box helicases are crucial regulators of RNA metabolism and antiviral innate immune responses; however, their role in bacteria-induced inflammation remains unclear. Here, we report that DDX5 interacts with METTL3 and METTL14 to form an m6A writing complex, which adds N6-methyladenosine to transcripts of toll-like receptor (TLR) 2 and TLR4, promoting their decay via YTHDF2-mediated RNA degradation, resulting in reduced expression of TLR2/4. Upon bacterial infection, DDX5 is recruited to Hrd1 at the endoplasmic reticulum in an MyD88-dependent manner and is degraded by the ubiquitin-proteasome pathway. This process disrupts the DDX5 m6A writing complex and halts m6A modification as well as degradation of TLR2/4 mRNAs, thereby promoting the expression of TLR2 and TLR4 and downstream NF-κB activation. The role of DDX5 in regulating inflammation is also validated in vivo, as DDX5- and METTL3-KO mice exhibit enhanced expression of inflammatory cytokines. Our findings show that DDX5 acts as a molecular switch to regulate inflammation during bacterial infection and shed light on mechanisms of quiescent inflammation during homeostasis.
Subject(s)
Adenine , Bacterial Infections , Toll-Like Receptor 2 , Animals , Mice , Adenine/analogs & derivatives , Inflammation/genetics , Methyltransferases/genetics , Toll-Like Receptor 2/genetics , Toll-Like Receptor 4/geneticsABSTRACT
Genomic instability is one of the hallmarks of cancer. While loss of histone demethylase KDM6A increases the risk of tumorigenesis, its specific role in maintaining genomic stability remains poorly understood. Here, we propose a mechanism in which KDM6A maintains genomic stability independently on its demethylase activity. This occurs through its interaction with SND1, resulting in the establishment of a protective chromatin state that prevents replication fork collapse by recruiting of RPA and Ku70 to nascent DNA strand. Notably, KDM6A-SND1 interaction is up-regulated by KDM6A SUMOylation, while KDM6AK90A mutation almost abolish the interaction. Loss of KDM6A or SND1 leads to increased enrichment of H3K9ac and H4K8ac but attenuates the enrichment of Ku70 and H3K4me3 at nascent DNA strand. This subsequently results in enhanced cellular sensitivity to genotoxins and genomic instability. Consistent with these findings, knockdown of KDM6A and SND1 in esophageal squamous cell carcinoma (ESCC) cells increases genotoxin sensitivity. Intriguingly, KDM6A H101D & P110S, N1156T and D1216N mutations identified in ESCC patients promote genotoxin resistance via increased SND1 association. Our finding provides novel insights into the pivotal role of KDM6A-SND1 in genomic stability and chemoresistance, implying that targeting KDM6A and/or its interaction with SND1 may be a promising strategy to overcome the chemoresistance.
Subject(s)
Drug Resistance, Neoplasm , Genomic Instability , Histone Demethylases , Humans , Genomic Instability/genetics , Drug Resistance, Neoplasm/genetics , Histone Demethylases/metabolism , Histone Demethylases/genetics , Cell Line, Tumor , Mutation , Histones/metabolism , Esophageal Neoplasms/genetics , Esophageal Neoplasms/metabolism , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Sumoylation , Endonucleases/metabolism , Endonucleases/genetics , DNA Replication , Chromatin/metabolism , Chromatin/genetics , Ku Autoantigen/metabolism , Ku Autoantigen/geneticsABSTRACT
Endothelial to mesenchymal transition (EndMT) has been reported to cause pulmonary vascular remodeling of pulmonary hypertension (PH). We have demonstrated that SOX17, a member of the SRY-Box (SOX) transcription factor family, affects pulmonary artery vascular homeostasis through exosomes in an autocrine and paracrine manner. However, the role of SOX17 in mediating EndMT of pulmonary arterial endothelial cells (PAECs) in PH and its underlying intracellular mechanisms are not yet clarified. Here, we show that in the remodeling pulmonary vascular of idiopathic PH patients and Sugen 5416/hypoxia (Sugen/hypoxia)-induced PH rats, the downregulation of SOX17 expression was accompanied by a significant pulmonary arterial EndMT and TGF-ß/Smad2/3 signaling activation. In primary HPAECs, the expression of SOX17 was inhibited by canonical TGF-ß signaling. SOX17 overexpression reversed TGF-ß- and hypoxia-induced EndMT. It is suggested that SOX17 is required for HPAECs to acquire TGF-ß-mediated EndMT. Mechanistically, SOX17 prevented TGF-ß-induced EndMT of PAECs through trans-suppressing ROCK1 expression by binding to the specific promoter region of ROCK1, thereby inhibiting the phosphorylation of MYPT1 and MLC. Further, we found that Tie2-Cre rats with endothelial cell-specific SOX17 overexpression were prevented from Sugen/hypoxia-induced EndMT and pulmonary vascular remodeling. In keeping with the in vitro data, compared with the Tie2-Cre rats treated by Sugen/hypoxia, the rats with SOX17 overexpression showed decreased expression of ROCK1 as well as the MYPT1 and MLC phosphorylation. Overall, our studies demonstrate a novel TGF-ß/SOX17/ROCK1 pathway regulating EndMT of PAECs and propose SOX17 as a potential target for exploring therapeutics to alleviate pulmonary vascular remodeling in PH.
ABSTRACT
Translational regulation is one of the decisive steps in gene expression, and its dysregulation is closely related to tumorigenesis. Eukaryotic translation initiation factor 3 subunit i (eIF3i) promotes tumor growth by selectively regulating gene translation, but the underlying mechanisms are largely unknown. Here, we show that eIF3i is significantly increased in colorectal cancer (CRC) and reinforces the proliferation of CRC cells. Using ribosome profiling and proteomics analysis, several genes regulated by eIF3i at the translation level were identified, including D-3-phosphoglycerate dehydrogenase (PHGDH), a rate-limiting enzyme in the de novo serine synthesis pathway that participates in metabolic reprogramming of tumor cells. PHGDH knockdown significantly represses CRC cell proliferation and partially attenuates the excessive growth induced by eIF3i overexpression. Mechanistically, METTL3-mediated N6-methyladenosine modification on PHGDH mRNA promotes its binding with eIF3i, ultimately leading to a higher translational rate. In addition, knocking down eIF3i and PHGDH impedes tumor growth in vivo. Collectively, this study not only uncovered a novel regulatory mechanism for PHGDH translation but also demonstrated that eIF3i is a critical metabolic regulator in human cancer.
Subject(s)
Colorectal Neoplasms , Eukaryotic Initiation Factor-3 , Gene Expression Regulation, Neoplastic , Phosphoglycerate Dehydrogenase , Humans , Cell Line, Tumor , Cell Proliferation/genetics , Cell Survival/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/physiopathology , Methyltransferases/metabolism , Phosphoglycerate Dehydrogenase/genetics , Phosphoglycerate Dehydrogenase/metabolism , RNA, Messenger/metabolism , Eukaryotic Initiation Factor-3/genetics , Eukaryotic Initiation Factor-3/metabolism , Up-Regulation , Gene Knockdown Techniques , Gene Expression Regulation, Neoplastic/genetics , Animals , Mice , Mice, Inbred BALB C , Female , HeterograftsABSTRACT
The environmental deterioration caused by dye wastewater discharge has received considerable attention in recent decades. One of the most promising approaches to addressing the aforementioned environmental issue is the development of photocatalysts with high solar energy consumption efficiency for the treatment of dye-contaminated water. In this study, a novel low-cost π-π biomass-derived black carbon modified g-C3N4 coupled FeIn2S4 composite (i.e., FeInS/BC-CN) photocatalyst is successfully designed and fabricated that reveals significantly improved photocatalytic performance for the degradation of Eosin Yellow (EY) dye in aqueous solution. Under dark and subsequent visible light irradiation, the amount optimized composite reveals 99% removal performance for EY dye, almost three-fold compared to that of the pristine FeInS and BC-CN counterparts. Further, it is confirmed by means of the electron spin resonance spectrometry, quenching experiments, and density functional theory (DFT) calculations, that the hydroxyl radicals (â¢OH) and superoxide radicals (â¢O2 -) are the dominant oxidation species involved in the degradation process of EY dye. In addition, a systematic photocatalytic degradation route is proposed based on the resultant degradation intermediates detectedduring liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis. This work provides an innovative idea for the development of advanced photocatalysts to mitigate water pollution.
ABSTRACT
BACKGROUND: Breast cancer is a serious threat to women's health with high morbidity and mortality. The development of more effective therapies for the treatment of breast cancer is strongly warranted. Growing evidence suggests that targeting glucose metabolism may be a promising cancer treatment strategy. We previously identified a new glyceraldehyde-3-phosphate dehydrogenase (GAPDH) inhibitor, DC-5163, which shows great potential in inhibiting tumor growth. Here, we evaluated the anticancer potential of DC-5163 in breast cancer cells. METHODS: The effects of DC-5163 on breast cancer cells were investigated in vitro and in vivo. Seahorse, glucose uptake, lactate production, and cellular ATP content assays were performed to examine the impact of DC-5163 on cellular glycolysis. Cell viability, colony-forming ability, cell cycle, and apoptosis were assessed by CCK8 assay, colony formation assay, flow cytometry, and immunoblotting respectively. The anticancer activity of DC-5163 in vivo was evaluated in a mouse breast cancer xenograft model. RESULTS: DC-5163 suppressed aerobic glycolysis and reduced energy supply of breast cancer cells, thereby inhibiting breast cancer cell growth, inducing cell cycle arrest in the G0/G1 phase, and increasing apoptosis. The therapeutic efficacy was assessed using a breast cancer xenograft mouse model. DC-5163 treatment markedly suppressed tumor growth in vivo without inducing evident systemic toxicity. Micro-PET/CT scans revealed a notable reduction in tumor 18F-FDG and 18F-FLT uptake in the DC-5163 treatment group compared to the DMSO control group. CONCLUSIONS: Our results suggest that DC-5163 is a promising GAPDH inhibitor for suppressing breast cancer growth without obvious side effects. 18F-FDG and 18F-FLT PET/CT can noninvasively assess the levels of glycolysis and proliferation in tumors following treatment with DC-5163.
ABSTRACT
Thioredoxin (TXN) is essential for preserving balance and controlling the intracellular redox state. Most studies have focused on the function of TXN in redox reactions, which is critical for tumor progression. Here, we showed that TXN promotes hepatocellular carcinoma (HCC) stemness properties in a non-redox-dependent manner, which has rarely been reported in previous studies. TXN exhibited upregulated expression in human HCC specimens, which was associated with a poor prognosis. Functional studies showed that TXN promoted HCC stemness properties and facilitated HCC metastasis both in vitro and in vivo. Mechanistically, TXN promoted the stemness of HCC cells by interacting with BTB and CNC homology 1 (BACH1) and stabilized BACH1 expression by inhibiting its ubiquitination. BACH1 was positively correlated with TXN expression and was significantly upregulated in HCC. In addition, BACH1 promotes HCC stemness by activating the AKT/mammalian target of rapamycin (mTOR) pathway. Furthermore, we found that the specific inhibition of TXN in combination with lenvatinib in mice significantly improved the treatment of metastatic HCC. In summary, our data demonstrate that TXN plays a crucial role in HCC stemness and BACH1 plays an integral part in regulating this process by activating the AKT/mTOR pathway. Thus, TXN is a promising target for metastatic HCC therapy.
Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Humans , Mice , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Liver Neoplasms/metabolism , Mammals/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Thioredoxins/genetics , Thioredoxins/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolismABSTRACT
Pneumonia, an acute inflammatory lesion of the lung, is the leading cause of death in children agedâ¯<â¯5 years. We aimed to study the function and mechanism of Golgi phosphoprotein 3 (GOLPH3) in infantile pneumonia. Lipopolysaccharide (LPS)-induced acute lung injury (ALI) mice and injury of MLE-12 cells were used as the pneumonia model in vitro. After GOLPH3 was knocked down, the histopathological changes of lung tissues were assessed by hematoxylin-eosin (H&E) staining. The Wet/Dry ratio of lung tissues was calculated. The enzyme-linked immunosorbent assay (ELISA) method was used to detecte the contents of inflammatory factors in bronchoalveolar lavage fluid (BALF). The damaged DNA in apoptotic cells in lung tissues was tested by Terminal deoxynucleotidyl transferase-mediated dUTP Nick end labeling (TUNEL) staining. Immunofluorescence staining analyzed LC3II and Golgi matrix protein 130 (GM130) expression in lung tissues and MLE-12 cells. The apoptosis of MLE-12 cells was measured by flow cytometry analysis. Additionally, the expression of proteins related to apoptosis, autophagy and Golgi stress was examined with immunoblotting. Results indicated that GOLPH3 knockdown alleviated lung tissue pathological changes in LPS-triggered ALI mice. LPS-induced inflammation and apoptosis in lung tissues and MLE-12 cells were remarkably alleviated by GOLPH3 deficiency. Besides, GOLPH3 depletion suppressed autophagy and Golgi stress in lung tissues and MLE-12 cells challenged with LPS. Moreover, Rapamycin (Rap), an autophagy inhibitor, counteracted inflammation and apoptosis inhibited by GOLPH3 silencing in LPS-induced MLE-12 cells. Furthermore, brefeldin A (BFA) pretreatment apparently abrogated the inhibitory effect of GOLPH3 knockdown on autophagy in MLE-12 cells exposed to LPS. To be concluded, GOLPH3 knockdown exerted lung protective effect against LPS-triggered inflammation and apoptosis by inhibiting Golgi stress mediated autophagy.
Subject(s)
Acute Lung Injury , Apoptosis , Autophagy , Golgi Apparatus , Inflammation , Membrane Proteins , Animals , Male , Mice , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Acute Lung Injury/genetics , Acute Lung Injury/pathology , Apoptosis/drug effects , Autophagy/drug effects , Cell Line , Gene Knockdown Techniques , Golgi Apparatus/metabolism , Inflammation/metabolism , Inflammation/pathology , Inflammation/genetics , Lipopolysaccharides , Membrane Proteins/genetics , Membrane Proteins/metabolism , Membrane Proteins/deficiencyABSTRACT
The development of efficient and sustainable methods for reducing carbon dioxide (CO2) and converting it into valuable hydrocarbons has gained significant attention. In this study, researchers focused on Ti4+-doped metal-organic framework (MOF-74) photocatalysts. The incorporation of Ti4+ ions into the MOF-74 structure was achieved through a one-pot hydrothermal method. By replacing Zn2+ ions with Ti4+ ions in a substitutional manner, researchers have aimed to enhance the photocatalytic activity of the CO2 reduction. The obtained Ti4+-doped MOF-74 photocatalysts exhibited a significantly improved performance in the reduction of CO2 into carbon monoxide (CO). The doping of Ti4+ ions induced energy bands below the conduction band minimum (CBM) of MOF-74, extending the visible response range and enabling the photocatalysts to utilize a broader spectrum of light for catalytic reactions. This extension of the visible response range enables photocatalysts to utilize a broader spectrum of light for catalytic reactions. The incorporation of Ti4+ ions not only extends the visible response range but also suppresses charge carrier recombination. This work provides valuable insights into the design principles of MOF-based photocatalysts and paves the way for their practical implementation in addressing the energy crisis and reducing greenhouse gas emissions.
ABSTRACT
The prevalence and distribution of chlorinated paraffins (CPs) have been extensively studied in various matrices and organisms; however, there is a lack of information about insects, particularly in honeybees. To address this gap, we studied young honeybee workers exposed to short- and medium-chain CPs (SCCPs and MCCPs) at an environmentally relevant concentration of 10 mg/L for 7 days, followed by a 7-day elimination period. Results indicated that CPs could transfer into the head after oral consumption and SCCPs and MCCPs exhibited clear bioaccumulation trends: midgut > hindgut > head. An evaluation of congener group distribution patterns demonstrated that the dominant congener groups in all target tissues were C11-13Cl7-8 and C14Cl7-8 for SCCPs and MCCPs, respectively, consistent with the treated CP standards. In honeybees, a significant negative relationship was observed for the log concentration of MCCP congener groups and their logâ¯KOW, but not with their logâ¯KOA. Conversely, no such correlation was found for SCCPs. These findings suggest that honeybees have a high potential to bioaccumulate MCCPs, particularly those with a low logâ¯KOW, and exhibit weak selectivity for SCCPs.
Subject(s)
Paraffin , Animals , Bees , Paraffin/metabolism , Hydrocarbons, Chlorinated/metabolism , Administration, OralABSTRACT
The cannabinoid receptor 2 (CB2) is a receptor mainly expressed in immune cells and believed to be immunosuppressive in infective or inflammatory models. However, its role in sepsis has not been fully elucidated. In this study, we delineate the function and mechanism of CB2 in the cecal ligation and puncture-induced septic model in mice. The activation of CB2 signaling with HU308 led to decreased survival rates and more severe lung injury in septic mice, and lower IL-10 levels in peritoneal lavage fluid were observed in the CB2 agonist group. The mice with conditional knockout of CB2-encoding gene CNR2 in CD4+ T cells (CD4 Cre CNR2fl/fl) improved survival, enhanced IL-10 production, and ameliorated pulmonary damage in the sepsis model after CB2 activation. In addition, double-knockout of the CNR2 gene (Lyz2 Cre CD4 Cre CNR2fl/fl) decreased the susceptibility to sepsis compared with Lyz2 Cre CNR2fl/fl mice. Mechanistically, the blockade of IL-10 with the anti-IL-10 Ab abolished its protection in CD4 Cre CNR2fl/fl mice. In accordance with the animal study, in vitro results revealed that the lack of CNR2 in CD4+ cells elevated IL-10 production, and CB2 activation inhibited CD4+ T cell-derived IL-10 production. Furthermore, in the clinical environment, septic patients expressed enhanced CB2 mRNA levels compared with healthy donors in PBMCs, and their CB2 expression was inversely correlated with IL-10. These results suggested that the activation of CD4+ T cell-derived CB2 increased susceptibility to sepsis through inhibiting IL-10 production.
Subject(s)
CD4-Positive T-Lymphocytes , Interleukin-10 , Receptor, Cannabinoid, CB2 , Sepsis , Animals , Ligation , Mice , Mice, Inbred C57BL , Receptor, Cannabinoid, CB2/genetics , Sepsis/pathologyABSTRACT
HER2-positive (HER2+) metastatic breast cancer (mBC) is highly aggressive and a major threat to human health. Despite the significant improvement in patients' prognosis given the drug development efforts during the past several decades, many clinical questions still remain to be addressed such as efficacy when combining different therapeutic modalities, best treatment sequences, interindividual variability as well as resistance and potential coping strategies. To better answer these questions, we developed a mechanistic quantitative systems pharmacology model of the pathophysiology of HER2+ mBC that was extensively calibrated and validated against multiscale data to quantitatively predict and characterize the signal transduction and preclinical tumor growth kinetics under different therapeutic interventions. Focusing on the second-line treatment for HER2+ mBC, e.g., antibody-drug conjugates (ADC), small molecule inhibitors/TKI and chemotherapy, the model accurately predicted the efficacy of various drug combinations and dosing regimens at the in vitro and in vivo levels. Sensitivity analyses and subsequent heterogeneous phenotype simulations revealed important insights into the design of new drug combinations to effectively overcome various resistance scenarios in HER2+ mBC treatments. In addition, the model predicted a better efficacy of the new TKI plus ADC combination which can potentially reduce drug dosage and toxicity, while it also shed light on the optimal treatment ordering of ADC versus TKI plus capecitabine regimens, and these findings were validated by new in vivo experiments. Our model is the first that mechanistically integrates multiple key drug modalities in HER2+ mBC research and it can serve as a high-throughput computational platform to guide future model-informed drug development and clinical translation.
Subject(s)
Breast Neoplasms , Receptor, ErbB-2 , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Humans , Female , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/antagonists & inhibitors , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , Immunoconjugates/therapeutic use , Immunoconjugates/pharmacology , Network Pharmacology , Models, Biological , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/administration & dosage , Mice , Cell Line, Tumor , Neoplasm MetastasisABSTRACT
Chlorinated paraffins (CPs) are hazardous to humans, and dietary intake acts as the primary pathway for human exposure to CPs. Takeout food is popular worldwide, but the presence of CPs in takeout food and its packaging is unclear. In this study, the concentrations and distributions of short- and median-chain CPs (SCCPs and MCCPs, respectively) were measured in 97 samples of four categories of takeout food and 33 samples of three types of takeout packaging. The SCCP and MCCP median concentrations for the takeout food samples were 248 and 339, 77.2 and 98.2, 118 and 258, 42.9 and 64.4 ng/g wet weight in meat, starch, half meat/half starch, and vegetables, respectively. Takeout food contained higher concentrations of SCCPs than MCCPs. The dominant SCCP and MCCP congener groups in takeout food were C10Cl6-7 and C14Cl7-8, respectively. The CP concentrations in takeout food were lower than those in packaging. The SCCP and MCCP median concentrations, respectively, in packaging were 9750 and 245 ng/g in polypropylene, 2830 and 135 ng/g in paper, and 2060 and 119 ng/g in aluminum foil. The concentrations of SCCPs and MCCPs were comparable in aluminum foil, whereas the concentrations of SCCPs were higher than those of MCCPs in polypropylene and paper. Correlations between CP concentrations in the takeout food and packaging indicated that CPs in packaging were potentially an important source of CPs in the takeout food. A dietary exposure risk assessment showed the takeout food posed a low risk for human exposure to CPs; however, high-frequency consumption may pose a health risk. This study clarified the current contamination situation in takeout food in Beijing, China. The resulting data could be used to prevent human exposure to CPs through dietary intake and to facilitate the market's control over the quality of takeout food.
Subject(s)
Dietary Exposure , Food Contamination , Food Packaging , Paraffin , Dietary Exposure/analysis , Food Contamination/analysis , Paraffin/analysis , Humans , Risk Assessment , Beijing , Hydrocarbons, Chlorinated/analysis , ChinaABSTRACT
Chlorinated paraffins (CPs) in poultry feed and the farm environment might bioaccumulate in poultry eggs. Unlike chickens, which are mostly raised in cages, ducks are commonly raised free range. This would expose ducks to CPs in the environment. However, information on the presence of CPs on duck farms is scarce. In the present study, samples of duck eggs, duck feathers, poultry feed, and soil were collected from 25 duck farms in South China. Forty-eight congener groups of short- and medium-chain CPs (SCCPs and MCCPs) were detected in the samples. Interestingly, relatively high concentrations of SCCPs and MCCPs were found in the duck feathers. The median concentrations of SCCPs and MCCPs in the duck eggs, feathers, feed and soil were: 46 and 18 ng/g wet weight, 2460 and 992 ng/g, 103 and 47 ng/g, and 24 and 10 ng/g dry weight, respectively. The dominant groups of SCCPs and MCCPs were C10Cl6-7 and C14Cl7-8, respectively. The close relationship between duck feathers and poultry feed indicated that the duck feathers might act as a bioindicator for the exposure of ducks to CPs. The margin of exposure approach was used to assess the health risk, with the results showing that the consumption of duck eggs posed a low risk to different age groups from exposure to SCCPs and MCCPs.
Subject(s)
Ducks , Hydrocarbons, Chlorinated , Animals , Paraffin/analysis , Farms , Dietary Exposure , Environmental Monitoring/methods , Hydrocarbons, Chlorinated/analysis , Chickens , China , SoilABSTRACT
BACKGROUND: Hypoxemia represents the most prevalent adverse event during flexible bronchoscopy procedures aimed at foreign body retrieval in pediatric patients; if not expeditiously managed, it carries the potential for cardiac or respiratory arrest. The specific risk factors contributing to the occurrence of hypoxemia during foreign body FB removal via bronchoscopy have yet to be definitively established. METHODS: This retrospective study included a cohort of 266 pediatric subjects from January 1, 2015, to December 31, 2022, who underwent flexible bronchoscopy for the purpose of FB extraction. In this cohort, the supraglottic airway was used to connect the anesthesia apparatus during the removal procedure. RESULTS: In total, 45 of the pediatric patients (16.9%) experienced episodes of hypoxemia during the FB removal procedure. Multivariate analysis revealed that the following factors were significantly associated with the occurrence of hypoxemia: an operation time exceeding 60 min (odds ratio [OR] 8.55; 95% confidence interval [CI] 3.82-19.13), a maximum diameter exceeding 7 mm (OR 5.03; 95% CI, 2.24-11.29), and the presence of radiological evidence indicating pneumonia (OR 2.69; 95% CI, 1.27-5.69). CONCLUSION: During flexible bronchoscopy procedures aimed at FB removal in pediatric patients, there is an increased susceptibility to hypoxemia. Factors including extended operation duration, larger FB dimensions, and radiographic evidence suggestive of pneumonia significantly contribute to a heightened risk of hypoxemia.
Subject(s)
Bronchoscopy , Foreign Bodies , Hypoxia , Humans , Bronchoscopy/adverse effects , Retrospective Studies , Foreign Bodies/complications , Female , Male , Hypoxia/etiology , Child , Child, Preschool , Risk Factors , Infant , Operative Time , AdolescentABSTRACT
Feeding is essential for animal survival and reproduction and is regulated by both internal states and external stimuli. However, little is known about how internal states influence the perception of external sensory cues that regulate feeding behavior. Here, we investigated the neuronal and molecular mechanisms behind nutritional state-mediated regulation of gustatory perception in control of feeding behavior in the brown planthopper and Drosophila. We found that feeding increases the expression of the cholecystokinin-like peptide, sulfakinin (SK), and the activity of a set of SK-expressing neurons. Starvation elevates the transcription of the sugar receptor Gr64f and SK negatively regulates the expression of Gr64f in both insects. Interestingly, we found that one of the two known SK receptors, CCKLR-17D3, is expressed by some of Gr64f-expressing neurons in the proboscis and proleg tarsi. Thus, we have identified SK as a neuropeptide signal in a neuronal circuitry that responds to food intake, and regulates feeding behavior by diminishing gustatory receptor gene expression and activity of sweet sensing GRNs. Our findings demonstrate one nutritional state-dependent pathway that modulates sweet perception and thereby feeding behavior, but our experiments cannot exclude further parallel pathways. Importantly, we show that the underlying mechanisms are conserved in the two distantly related insect species.
Subject(s)
Feeding Behavior/physiology , Taste Perception/genetics , Animals , Brain/metabolism , Carbohydrate Metabolism/physiology , Carbohydrates/physiology , Cholecystokinin/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/physiology , Feeding Behavior/psychology , Gene Expression/genetics , Gene Expression Regulation/genetics , Hemiptera/genetics , Hemiptera/physiology , Neurons/metabolism , Neuropeptides/metabolism , Receptors, Cell Surface/genetics , Starvation/metabolism , Sugars/metabolism , Taste/physiology , Taste Perception/physiologyABSTRACT
Fuzheng Huayu recipe (FZHYR) is a Chinese patent medicine for the treatment of fibrosis. The effects of FZHYR on pulmonary fibrosis and macrophage polarization were investigated in vitro. FZHYR inhibited pulmonary inflammation and fibrosis and M2 polarization of macrophages in bleomycin-induced pulmonary fibrosis (BPF) of rat model. Differentially expressed genes were screened by high-throughput mRNA sequencing and GSEA showed that oxidative phosphorylation (OXPHOS) was correlated with BPF. FZHYR inhibited expressions of Ndufa2 and Ndufa6 in lung tissues of BPF rats. These findings suggest that OXPHOS pathway serves as a possible target for pulmonary fibrosis therapy by FZHYR.
ABSTRACT
Proprotein convertase subtilisin/kexin type 9 (PCSK9) has attracted lots of attention in preventing the clearance of plasma low-density lipoprotein cholesterol (LDL-C). PCSK9 inhibitors are developed to primarily reduce the cardiovascular risk by lowering LDL-C level. Recently, a number of pleiotropic extrahepatic functions of PCSK9 beyond the regulation of cholesterol metabolism, particularly its effects on central nervous system (CNS) diseases have been increasingly identified. Emerging clinical evidence have revealed that PCSK9 may play a significant role in neurocognition, depression, Alzheimer's disease, and stroke. The focus of this review is to elucidate the functions of PCSK9 and highlight the effects of PCSK9 in CNS diseases, with the aim of identifying the potential risks that may arise from low PCSK9 level (variant or inhibitor) in the clinical practice.
Subject(s)
Central Nervous System Diseases , Proprotein Convertase 9 , Humans , Proprotein Convertase 9/metabolism , Cholesterol, LDL/metabolism , Subtilisins , Central Nervous System Diseases/drug therapyABSTRACT
Anastasis is a recently described process in which cells recover after late-stage apoptosis activation. The functional consequences of anastasis for cells and tissues are not clearly understood. Using Drosophila, rat and human cells and tissues, including analyses of both males and females, we present evidence that glia undergoing anastasis in the primary astrogliopathy Alexander disease subsequently express hallmarks of senescence. These senescent glia promote non-cell autonomous death of neurons by secreting interleukin family cytokines. Our findings demonstrate that anastasis can be dysfunctional in neurologic disease by inducing a toxic senescent population of astroglia.SIGNIFICANCE STATEMENT Under some conditions cells otherwise destined to die can be rescued just before death in a process called anastasis, or "rising from the dead." The fate and function of cells undergoing a near death experience is not well understood. Here, we find that in models and patient cells from Alexander disease, an important brain disorder in which glial cells promote neuronal dysfunction and death, anastasis of astrocytic glia leads to secretion of toxic signaling molecules and neurodegeneration. These studies demonstrate a previously unexpected deleterious consequence of rescuing cells on the brink of death and suggest therapeutic strategies for Alexander disease and related disorders of glia.
Subject(s)
Alexander Disease , Animals , Apoptosis/physiology , Cell Death Reversal , Drosophila , Female , Humans , Male , Neuroglia , Neurons , RatsABSTRACT
Developing efficient and robust metal-nitrogen-carbon electrocatalysts for oxygen reduction reaction (ORR) is of great significance for the application of hydrogen-oxygen fuel cells and metal-air batteries. Herein, a coordination engineering strategy is developed to improve the ORR kinetics and stability of cobalt-nitrogen-carbon (Co-N-C) electrocatalysts by grafting the oxygen-rich graphene quantum dots (GQDs) onto the zeolite imidazole frameworks (ZIFs) precursors. The optimized oxygen-rich GQDs-functionalized Co-N-C (G-CoNOC) electrocatalyst demonstrates an increased mass activity, nearly two times higher than that of pristine defective Co-N-C electrocatalyst, and retains a stability of 90.0% after 200 h, even superior to the commercial Pt/C. Comprehensive investigations demonstrate that the GQDs coordination can not only decrease carbon defects of Co-N-C electrocatalysts, improving the electron transfer efficiency and resistance to the destructive free radicals from H2 O2 , but also optimize the electronic structure of atomic Co active site to achieve a desired adsorption energy of OOH- , leading to enhanced ORR kinetics and stability by promoting further H2 O2 reduction, as confirmed by theoretical calculations and experimental results. Such a coordination engineering strategy provides a new perspective for the development of highly active noble-metal-free electrocatalysts for ORR.