Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Drug Dev Res ; 85(4): e22210, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38812444

ABSTRACT

Hepatic ischemia/reperfusion injury (IRI) remains a severe threat during liver surgery and transplantation, accounting for unfavorable clinical outcomes. Modafinil (MOD), a wakefulness-inducing compound, is increasingly disclosed to protect against IRI. However, the specific literatures covering the association between MOD and hepatic IRI are few. Here, this paper is committed to unraveling the role and response mechanism of MOD in hepatic IRI. After the establishment of hepatic IRI mice model and cell model, relevant assay kits measured the concentrations of biochemical indicators of hepatotoxicity and hematoxylin and eosin staining estimated liver morphology. Enzyme-linked immunosorbent assay, reverse-transcription quantitative polymerase chain reaction, and western blot evaluated inflammatory levels. Terminal-deoxynucleoitidyl transferase-mediated nick end labeling assay and western blot appraised apoptosis. Western blot also analyzed the expression of Toll-like receptor 9 (TLR9)/myeloid differentiation primary response gene 88 (MyD88)/p38 signaling-associated proteins. Cell counting kit-8 method judged cell viability. MOD was discovered to mitigate liver dysfunction and morphological damage, inflammatory response, apoptosis in vivo and improve cell viability, suppress inflammatory response and apoptosis in vitro. In addition, MOD inactivated TLR9/Myd88/p38 signaling both in vitro and in vivo. Further, TLR9 elevation reversed the inhibitory role of MOD in inflammatory response and cell apoptosis in vitro. Anyway, MOD blocked TLR9/Myd88/p38 signaling to exhibit anti-inflammatory and anti-apoptotic properties in hepatic IRI.


Subject(s)
Apoptosis , Liver , Myeloid Differentiation Factor 88 , Reperfusion Injury , Toll-Like Receptor 9 , Animals , Reperfusion Injury/metabolism , Reperfusion Injury/drug therapy , Toll-Like Receptor 9/metabolism , Myeloid Differentiation Factor 88/metabolism , Apoptosis/drug effects , Mice , Male , Liver/metabolism , Liver/drug effects , Liver/pathology , Signal Transduction/drug effects , Mice, Inbred C57BL , p38 Mitogen-Activated Protein Kinases/metabolism , Inflammation/metabolism , Inflammation/drug therapy , Benzhydryl Compounds/pharmacology
2.
Zhonghua Nan Ke Xue ; 26(1): 24-30, 2020 Jan.
Article in Zh | MEDLINE | ID: mdl-33345473

ABSTRACT

OBJECTIVE: To investigate the role of the pannexin-1 (Panx1) protein in the invasion and migration of testicular cancer Tcam-2 cells and its possible action mechanism. METHODS: Tcam-2 cells were treated with carbenoxolone (CBX) at 100 µmol/L and probenecid (PBN) 200 µmol/L. Then the intercellular fluorescence transmission was assessed by real-time fluorescence assay, the extracellular ATP concentration measured by chemi-luminescence immunoassay, the invasive and migratory abilities of the Tcam-2 cells detected by Transwell assay, and the expressions of the proteins Panx1, p-ERK1/2, ERK1/2, vimentin, MMP-9 and E-cadherin in the TM3 Leydig cells and testicular cancer Tcam-2 cells determined by Western blot. RESULTS: Western blot showed that the expression of the Panx1 protein was significantly higher in the testicular cancer Tcam-2 cells than in the TM3 Leydig cells (2.79 ± 0.17 vs 1.00 ± 0.06, P<0.05). The rates of intercellular fluorescence transmission in the Tcam-2 cells treated with CBX and PBN were markedly decreased as compared with the blank control group (ï¼»61.54 ± 3.30ï¼½% and ï¼»68.06 ± 4.03ï¼½% vs ï¼»99.50 ± 3.12ï¼½%, P<0.01), and so were the extracellular ATP concentrations (ï¼»57.06 ± 5.80ï¼½% and ï¼»56.42 ± 7.70ï¼½% vs ï¼»110 ± 8.16ï¼½%, P<0.01). The numbers of migrated Tcam-2 cells in the CBX and PBN groups were significantly reduced in comparison with that in the control (11.5 ± 1.11 and 8.25 ± 1.23 vs 331.00 ± 30.80, P<0.05), and so were those of the invaded ones (11.75 ± 3.77 and 11.5 ± 3.5 vs 89.00 ± 13.09, P<0.01). CBX and PBN significantly down-regulated the expression of p-ERK1/2 as compared with that in the blank control group (0.538 ± 0.05 and 0.476 ± 0.02 vs 0.98 ± 0.03, P<0.05), as well as those of vimentin (0.541 ± 0.09 and 0.705 ± 0.07, P<0.01) and MMP-9 (0.439 ± 0.08 and 0.557 ± 0.065, P<0.01) but up-regulated that of E-cadherin (3.896 ± 0.06 and 3.551 ± 0.04, P<0.01). CONCLUSIONS: The Panx1 protein is highly expressed in testicular cancer Tcam-2 cells. CBX and PBN can inhibit the function of the panneixn1 channel and reduce the invasive and migratory abilities of the Tcam-2 cells, which is associated with the decreased expression of the p-ERK1/2 protein.


Subject(s)
Cell Movement , Connexins/metabolism , Nerve Tissue Proteins/metabolism , Testicular Neoplasms/pathology , Carbenoxolone/pharmacology , Cell Line, Tumor , Humans , MAP Kinase Signaling System , Male , Matrix Metalloproteinase 9 , Probenecid/pharmacology
3.
Environ Sci Technol ; 53(3): 1471-1481, 2019 02 05.
Article in English | MEDLINE | ID: mdl-30605315

ABSTRACT

This work reports the in vivo uptake and translocation of PNPs in the one-year grown terrestrial plant, Murraya exotica ( M. exotica), as investigated by two-photon excitation and time-resolved (TPE-TR) optical imaging with a large field of view (FOV, 32 × 32 mm2) in a noninvasive and real-time manner. The PNPs (⟨ Rh⟩ = 12 ± 4.5 nm) synthesized from poly(styrene- co-maleic anhydride) (SMA) were Eu-luminescence labeled (λL ≈ 617 nm). On exposing the roots of living M. exotica plants to the colloidal suspension of SMA PNPs at different concentrations, the spatiotemporal evolution of SMA PNPs along plant stems (60 mm in length) were monitored by TPE-TR imaging, which rendered rich information on the uptake and translocation of PNPs without any interference from the autofluorescence of the plant tissues. The TPE-TR imaging combined with the high-resolution anatomy revealed an intercell-wall route in the lignified epidermis of M. exotica plants for SMA PNP uptake and translocation, as well as the similar accumulation kinetics at different positions along the plant stems. We modeled the accumulation kinetics with Gaussian distribution to account for the trapping probability of a SMA PNP by the lignified cell walls, allowing the statistical parameters, the average trapping time ( tm) and its variance (σ), to be derived for the quantification of the PNP accumulation in individual plants. The TPE-TR imaging and the analysis protocols established herein will be helpful in exploring the mechanism of plant-PNP interaction under physiological condition.


Subject(s)
Murraya , Nanoparticles , Maleic Anhydrides , Optical Imaging , Styrene
4.
Nanomaterials (Basel) ; 13(9)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37177043

ABSTRACT

In recent years, with the deepening research, metal zinc oxide (ZnO) nanomaterials have become a popular research object in the biological field, particularly in biomedicine and food safety, which is attributed to their unique physicochemical properties such as high surface area and volume ratio, luminescence effect, surface characteristics and biological activities. Herein, this review provides a detailed overview of the ZnO nanomaterial-mediated biological applications that involve anti-bacterial, anti-tumor, anti-inflammation, skin care, biological imaging and food packaging applications. Importantly, the corresponding action mechanisms of ZnO nanomaterials are pointed. Additionally, the structure and structure-dependent physicochemical properties, the common synthesis methods and the biosafety of ZnO nanoparticles are revealed in brief. Finally, the significance and future challenges of ZnO nanomaterial applications are concluded.

5.
J Environ Public Health ; 2022: 2587169, 2022.
Article in English | MEDLINE | ID: mdl-35942147

ABSTRACT

In the processing of rhythmic gymnastics resources, there are inefficiency problems such as confusion of teaching resources and lack of individuation. To improve the health access to teaching resource data, such as videos and documents, this study proposes a cloud computing-based personalized rhythmic gymnastics teaching resource classification algorithm for health promotion. First, personalized rhythmic gymnastics teaching resource database is designed based on cloud computing technology, and the teaching resources in the database are preprocessed to obtain a meta-sample set. Then, the characteristics of teaching resources are selected by the information acquisition method, and a vector space model is established to calculate the similarity of teaching resources. Finally, the distance-weighted k-NN method is used to classify the teaching resources for health promotion. The experimental results show that the classification accuracy of the proposed algorithm is high, the recall rate is high, and the F-measure value is high, which verifies the effectiveness of the algorithm.


Subject(s)
Cloud Computing , Gymnastics , Algorithms , Health Promotion
6.
Front Physiol ; 12: 666138, 2021.
Article in English | MEDLINE | ID: mdl-34122138

ABSTRACT

Liver fibrosis refers to the process underlying the development of chronic liver diseases, wherein liver cells are repeatedly destroyed and regenerated, which leads to an excessive deposition and abnormal distribution of the extracellular matrix such as collagen, glycoprotein and proteoglycan in the liver. Liver fibrosis thus constitutes the pathological repair response of the liver to chronic injury. Hepatic fibrosis is a key step in the progression of chronic liver disease to cirrhosis and an important factor affecting the prognosis of chronic liver disease. Further development of liver fibrosis may lead to structural disorders of the liver, nodular regeneration of hepatocytes and the formation of cirrhosis. Hepatic fibrosis is histologically reversible if treated aggressively during this period, but when fibrosis progresses to the stage of cirrhosis, reversal is very difficult, resulting in a poor prognosis. There are many causes of liver fibrosis, including liver injury caused by drugs, viral hepatitis, alcoholic liver, fatty liver and autoimmune disease. The mechanism underlying hepatic fibrosis differs among etiologies. The establishment of an appropriate animal model of liver fibrosis is not only an important basis for the in-depth study of the pathogenesis of liver fibrosis but also an important means for clinical experts to select drugs for the prevention and treatment of liver fibrosis. The present study focused on the modeling methods and fibrosis characteristics of different animal models of liver fibrosis, such as a chemical-induced liver fibrosis model, autoimmune liver fibrosis model, cholestatic liver fibrosis model, alcoholic liver fibrosis model and non-alcoholic liver fibrosis model. In addition, we also summarize the research and application prospects concerning new organoids in liver fibrosis models proposed in recent years. A suitable animal model of liver fibrosis and organoid fibrosis model that closely resemble the physiological state of the human body will provide bases for the in-depth study of the pathogenesis of liver fibrosis and the development of therapeutic drugs.

7.
Nan Fang Yi Ke Da Xue Xue Bao ; 40(3): 413-417, 2020 Mar 30.
Article in Zh | MEDLINE | ID: mdl-32376570

ABSTRACT

OBJECTIVE: To study the behavioral characteristics of memory maintenance and regression in a mouse model of combined learning and memory training with fluoxetine treatment and explore the neural basis for learning and memory in the barrel area of the brain. METHODS: Twenty-six 16-day-old C57 mice were randomized into two equal groups and were given daily intraperitoneal injection of saline (control) or fluoxetine. The mice were subjected to stimulation of the right whiskers using a multi-sensory stimulation simulator and were given simultaneously olfactory stimulation with butyl acetate. In the initial 10 days of the experiment, the mice were given corresponding drug treatment followed by whisker and olfactory stimulations on a daily basis; from day 11 to day 17, only the drugs were administered without the stimulations; on day 18, both the drugs and stimulations were administered. The daily performance of the mice was recorded and analyzed. In the field potential experiment, the left barrel cortex of the mouse brain was selected to record the frequency of field potential signals in response to whisker stimulation. RESULTS: In the behavioral test, the mice treated with fluoxetine showed greater increments of the frequency and angle of whisker deflection than the control mice (P < 0.01). Compared with the peak levels that occurred on the 10th day, the swing angle and frequency of the whisker deflection decreased on the 17th day decreased in both groups, and the reduction was more obvious in the control group (P < 0.05). During the training on the 18th day, the whisker movement of the mice increased rapidly to the peak level and showed significant differences between the two groups (P < 0.05). In the field potential experiment on the 10th and 17th day, the frequencies of field potential signal in response to whisker stimulation was significantly higher in fluoxetine group than in the control group (P < 0.05). CONCLUSIONS: Combined training of the mice results in the formation of combined memory. Fluoxetine can enhance combined learning and memory abilities and prolong such memories in mice by promoting the function of the barrel cortex cells.


Subject(s)
Learning , Somatosensory Cortex , Animals , Fluoxetine , Mice , Neurons , Vibrissae
8.
Bioengineered ; 10(1): 218-228, 2019 12.
Article in English | MEDLINE | ID: mdl-31138017

ABSTRACT

Intercropping can introduce greater plant diversity and functional complementarity in an arable crop system but inter- and intracompetition can between intercropped crops. The rhizo-box was established of apple-white clover intercropped system to examine the competitive relationship between intercropped crops on the Loess Plateau. The results showed that the competitive relationship between intercropped crops was dynamic and changed with the crop competitiveness. Crop competitiveness was characterized by root development, although intercropping inhibited the development and nutrient accumulation aboveground of apple trunks and branches, intercropped apples still maintained a larger root system than under monoculture and the root morphology of intercropped apples changed significantly. White clover had lower competitiveness than apple at the beginning of the year, which was reflected in the inhibited development in May. However in July and October, intercropped white clover had more biomass and nutrient accumulation than under monoculture.


Subject(s)
Crops, Agricultural/growth & development , Crops, Agricultural/metabolism , Malus/growth & development , Malus/metabolism , Biomass , Medicago/growth & development , Medicago/metabolism , Plant Roots/growth & development , Plant Roots/metabolism
9.
Bioengineered ; 10(1): 207-217, 2019 12.
Article in English | MEDLINE | ID: mdl-31169443

ABSTRACT

Groundcover management can significantly affect soil microbial metabolic activities, especially carbon metabolism, in apple orchards. However, there have been few studies on the effects of groundcover on the seasonality of soil microbial carbon metabolism. We, therefore, studied soil microbial carbon metabolism in an apple orchard on China's Loess Plateau under four single species cover crops (the grass Dactylis glomerata L., and the legumes Trifolium repens, Coronilla varia L., Lotus corniculatus L.) during spring, summer and fall. Cover cropping significantly, but differentially, promoted soil microbial carbon metabolism in spring and fall. However, cover cropping leads to a significant reduction of soil moisture in spring and summer due to the competition of soil moisture between the cover crops and apple trees, which probably lead to the changes in types of carbon substances metabolizing by soil microbes in summer. Besides, cover crop significantly enhanced soil organic carbon contents between three seasons while clean cultivation had slight, non-significant effects. The promotion of soil microbial metabolic activities was probably an important mechanism for the carbon accumulation, and we postulate that leguminous cover plants may have significantly different effects, mediated through their root exudates, from grasses on soil carbon contents.


Subject(s)
Carbon/metabolism , Malus , Soil Microbiology , Seasons , Soil
SELECTION OF CITATIONS
SEARCH DETAIL