ABSTRACT
The Sc2.0 project is building a eukaryotic synthetic genome from scratch. A major milestone has been achieved with all individual Sc2.0 chromosomes assembled. Here, we describe the consolidation of multiple synthetic chromosomes using advanced endoreduplication intercrossing with tRNA expression cassettes to generate a strain with 6.5 synthetic chromosomes. The 3D chromosome organization and transcript isoform profiles were evaluated using Hi-C and long-read direct RNA sequencing. We developed CRISPR Directed Biallelic URA3-assisted Genome Scan, or "CRISPR D-BUGS," to map phenotypic variants caused by specific designer modifications, known as "bugs." We first fine-mapped a bug in synthetic chromosome II (synII) and then discovered a combinatorial interaction associated with synIII and synX, revealing an unexpected genetic interaction that links transcriptional regulation, inositol metabolism, and tRNASerCGA abundance. Finally, to expedite consolidation, we employed chromosome substitution to incorporate the largest chromosome (synIV), thereby consolidating >50% of the Sc2.0 genome in one strain.
Subject(s)
Chromosomes, Artificial, Yeast , Genome, Fungal , Saccharomyces cerevisiae , Base Sequence , Chromosomes/genetics , Saccharomyces cerevisiae/genetics , Synthetic BiologyABSTRACT
DNA synthesis technology has progressed to the point that it is now practical to synthesize entire genomes. Quite a variety of methods have been developed, first to synthesize single genes but ultimately to massively edit or write from scratch entire genomes. Synthetic genomes can essentially be clones of native sequences, but this approach does not teach us much new biology. The ability to endow genomes with novel properties offers special promise for addressing questions not easily approachable with conventional gene-at-a-time methods. These include questions about evolution and about how genomes are fundamentally wired informationally, metabolically, and genetically. The techniques and technologies relating to how to design, build, and deliver big DNA at the genome scale are reviewed here. A fuller understanding of these principles may someday lead to the ability to truly design genomes from scratch.
Subject(s)
DNA/genetics , Gene Editing/methods , Gene Transfer Techniques , Genes, Synthetic , Genetic Engineering/methods , Genome , CRISPR-Cas Systems , DNA/chemistry , DNA/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Humans , Oligonucleotides/chemical synthesis , Oligonucleotides/metabolism , Plasmids/chemistry , Plasmids/metabolism , Poliovirus/genetics , Poliovirus/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Spheroplasts/genetics , Spheroplasts/metabolismABSTRACT
Genomic context critically modulates regulatory function but is difficult to manipulate systematically. The murine insulin-like growth factor 2 (Igf2)/H19 locus is a paradigmatic model of enhancer selectivity, whereby CTCF occupancy at an imprinting control region directs downstream enhancers to activate either H19 or Igf2. We used synthetic regulatory genomics to repeatedly replace the native locus with 157-kb payloads, and we systematically dissected its architecture. Enhancer deletion and ectopic delivery revealed previously uncharacterized long-range regulatory dependencies at the native locus. Exchanging the H19 enhancer cluster with the Sox2 locus control region (LCR) showed that the H19 enhancers relied on their native surroundings while the Sox2 LCR functioned autonomously. Analysis of regulatory DNA actuation across cell types revealed that these enhancer clusters typify broader classes of context sensitivity genome wide. These results show that unexpected dependencies influence even well-studied loci, and our approach permits large-scale manipulation of complete loci to investigate the relationship between regulatory architecture and function.
Subject(s)
CCCTC-Binding Factor , Enhancer Elements, Genetic , Insulin-Like Growth Factor II , RNA, Long Noncoding , SOXB1 Transcription Factors , Animals , Mice , CCCTC-Binding Factor/metabolism , CCCTC-Binding Factor/genetics , Insulin-Like Growth Factor II/genetics , Insulin-Like Growth Factor II/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Locus Control Region/genetics , Genomic Imprinting , Genomics/methodsABSTRACT
Whether synthetic genomes can power life has attracted broad interest in the synthetic biology field. Here, we report de novo synthesis of the largest eukaryotic chromosome thus far, synIV, a 1,454,621-bp yeast chromosome resulting from extensive genome streamlining and modification. We developed megachunk assembly combined with a hierarchical integration strategy, which significantly increased the accuracy and flexibility of synthetic chromosome construction. Besides the drastic sequence changes, we further manipulated the 3D structure of synIV to explore spatial gene regulation. Surprisingly, we found few gene expression changes, suggesting that positioning inside the yeast nucleoplasm plays a minor role in gene regulation. Lastly, we tethered synIV to the inner nuclear membrane via its hundreds of loxPsym sites and observed transcriptional repression of the entire chromosome, demonstrating chromosome-wide transcription manipulation without changing the DNA sequences. Our manipulation of the spatial structure of synIV sheds light on higher-order architectural design of the synthetic genomes.
Subject(s)
Cell Nucleus , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Chromosomes/genetics , Genome, Fungal , Synthetic Biology/methodsABSTRACT
The loss of the tail is among the most notable anatomical changes to have occurred along the evolutionary lineage leading to humans and to the 'anthropomorphous apes'1-3, with a proposed role in contributing to human bipedalism4-6. Yet, the genetic mechanism that facilitated tail-loss evolution in hominoids remains unknown. Here we present evidence that an individual insertion of an Alu element in the genome of the hominoid ancestor may have contributed to tail-loss evolution. We demonstrate that this Alu element-inserted into an intron of the TBXT gene7-9-pairs with a neighbouring ancestral Alu element encoded in the reverse genomic orientation and leads to a hominoid-specific alternative splicing event. To study the effect of this splicing event, we generated multiple mouse models that express both full-length and exon-skipped isoforms of Tbxt, mimicking the expression pattern of its hominoid orthologue TBXT. Mice expressing both Tbxt isoforms exhibit a complete absence of the tail or a shortened tail depending on the relative abundance of Tbxt isoforms expressed at the embryonic tail bud. These results support the notion that the exon-skipped transcript is sufficient to induce a tail-loss phenotype. Moreover, mice expressing the exon-skipped Tbxt isoform develop neural tube defects, a condition that affects approximately 1 in 1,000 neonates in humans10. Thus, tail-loss evolution may have been associated with an adaptive cost of the potential for neural tube defects, which continue to affect human health today.
Subject(s)
Alternative Splicing , Evolution, Molecular , Hominidae , T-Box Domain Proteins , Tail , Animals , Humans , Mice , Alternative Splicing/genetics , Alu Elements/genetics , Disease Models, Animal , Genome/genetics , Hominidae/anatomy & histology , Hominidae/genetics , Introns/genetics , Neural Tube Defects/genetics , Neural Tube Defects/metabolism , Phenotype , Protein Isoforms/deficiency , Protein Isoforms/genetics , Protein Isoforms/metabolism , T-Box Domain Proteins/deficiency , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , Tail/anatomy & histology , Tail/embryology , Exons/geneticsABSTRACT
Genetically engineered mouse models (GEMMs) help us to understand human pathologies and develop new therapies, yet faithfully recapitulating human diseases in mice is challenging. Advances in genomics have highlighted the importance of non-coding regulatory genome sequences, which control spatiotemporal gene expression patterns and splicing in many human diseases1,2. Including regulatory extensive genomic regions, which requires large-scale genome engineering, should enhance the quality of disease modelling. Existing methods set limits on the size and efficiency of DNA delivery, hampering the routine creation of highly informative models that we call genomically rewritten and tailored GEMMs (GREAT-GEMMs). Here we describe 'mammalian switching antibiotic resistance markers progressively for integration' (mSwAP-In), a method for efficient genome rewriting in mouse embryonic stem cells. We demonstrate the use of mSwAP-In for iterative genome rewriting of up to 115 kb of a tailored Trp53 locus, as well as for humanization of mice using 116 kb and 180 kb human ACE2 loci. The ACE2 model recapitulated human ACE2 expression patterns and splicing, and notably, presented milder symptoms when challenged with SARS-CoV-2 compared with the existing K18-hACE2 model, thus representing a more human-like model of infection. Finally, we demonstrated serial genome writing by humanizing mouse Tmprss2 biallelically in the ACE2 GREAT-GEMM, highlighting the versatility of mSwAP-In in genome writing.
Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Disease Models, Animal , Genetic Engineering , Genome , Tumor Suppressor Protein p53 , Animals , Humans , Mice , Alleles , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/genetics , COVID-19/virology , DNA/genetics , Drug Resistance, Microbial/genetics , Genetic Engineering/methods , Genome/genetics , Mouse Embryonic Stem Cells/metabolism , SARS-CoV-2/metabolism , Serine Endopeptidases/genetics , Tumor Suppressor Protein p53/geneticsABSTRACT
The nature of interchain π-system contacts, and their relationship to hole transport, are elucidated for the high-mobility, noncrystalline conjugated polymer C16-IDTBT by the application of scanning tunneling microscopy, molecular dynamics, and quantum chemical calculations. The microstructure is shown to favor an unusual packing motif in which paired chains cross-over one another at near-perpendicular angles. By linking to mesoscale microstructural features, revealed by coarse-grained molecular dynamics and previous studies, and performing simulations of charge transport, it is demonstrated that the high mobility of C16-IDTBT can be explained by the promotion of a highly interconnected transport network, stemming from the adoption of perpendicular contacts at the nanoscale, in combination with fast intrachain transport.
ABSTRACT
The nucleolus is the most prominent membraneless compartment within the nucleus-dedicated to the metabolism of ribosomal RNA. Nucleoli are composed of hundreds of ribosomal DNA (rDNA) repeated genes that form large chromosomal clusters, whose high recombination rates can cause nucleolar dysfunction and promote genome instability. Intriguingly, the evolving architecture of eukaryotic genomes appears to have favored two strategic rDNA locations-where a single locus per chromosome is situated either near the centromere (CEN) or the telomere. Here, we deployed an innovative genome engineering approach to cut and paste to an ectopic chromosomal location-the ~1.5 mega-base rDNA locus in a single step using CRISPR technology. This "megablock" rDNA engineering was performed in a fused-karyotype strain of Saccharomyces cerevisiae. The strategic repositioning of this locus within the megachromosome allowed experimentally mimicking and monitoring the outcome of an rDNA migratory event, in which twin rDNA loci coexist on the same chromosomal arm. We showed that the twin-rDNA yeast readily adapts, exhibiting wild-type growth and maintaining rRNA homeostasis, and that the twin loci form a single nucleolus throughout the cell cycle. Unexpectedly, the size of each rDNA array appears to depend on its position relative to the CEN, in that the locus that is CEN-distal undergoes size reduction at a higher frequency compared to the CEN-proximal counterpart. Finally, we provided molecular evidence supporting a mechanism called paralogous cis-rDNA interference, which potentially explains why placing two identical repeated arrays on the same chromosome may negatively affect their function and structural stability.
Subject(s)
Cell Nucleolus , Telomere , DNA, Ribosomal/genetics , Cell Nucleolus/metabolism , Telomere/metabolism , Cell Cycle , Saccharomyces cerevisiae/metabolism , RNA, Ribosomal/metabolismABSTRACT
BACKGROUND: The metastatic cascade, a multifaceted and highly aggressive process, is the primary cause of mortality. The survival of quiescent cancer cells in circulatory system during metastasis is crucial, yet our comprehension is constrained by the absence of universally accepted quiescent cancer models. METHOD: We developed a quiescent cancer cell model using high-density cultivation. Based on the scRNA-seq analysis, IP-MS, metabolomics, mouse lung metastasis models, cholesterol assay, PLA and other molecular experiments, we explored the molecular mechanism. Immunofluorescence, atomic force microscope, FluidFM, and shear stress stimulation were used to analyze the cytoskeleton and membrane properties contributing to mechanical force resistance. RESULT: We established a quiescent cancer cell model induced by high-density cultivation. Single-cell RNA sequencing (scRNA-seq) analysis reveals that CDC25A plays a crucial role in the transition to quiescence, with its expression significantly elevated in the quiescent state. Depletion of CDC25A leads to an increased proliferative capacity, and reduced metastasis under high-density conditions. Mechanistically, upregulated CDC25A in quiescent cells enhances cholesterol metabolism via endosome pathways, leading to cell cycle arrest. This increase in cholesterol reinforces the cytoskeleton, alters membrane properties, and improves resistance to mechanical forces in circulatory system. CONCLUSION: CDC25A significantly increased the cholesterol metabolism through endosome pathway in quiescent cancer cells, leading to the significant changes in cytoskeleton and membrane properties so as to enhance the resistance of mechanical force in circulatory system, facilitating lung metastasis. In high-density cultivation, quiescent cancer cells, up-regulate cholesterol metabolism by CDC25A through endosome pathway, enhancing the resistance to mechanical force in circulatory system, facilitating lung metastasis.
ABSTRACT
Ferroptosis, a nonapoptotic form of cell death marked by iron-dependent peroxidation of phospholipids, is associated with the occurrence and progression of tumors. Erastin, a selective inhibitor of the cystine/glutamate transporter system Xc-, can induce the ferroptosis of cancer cells. Multiple myeloma (MM) has been reported to be insensitive to erastin-induced ferroptosis. However, we found the erastin sensitivity of different MM cells varied widely. Specifically, SLC7A11 abundance determined the sensitivity of MM cells to erastin-induced ferroptosis. MM cells expressing a high SLC7A11 level were more sensitive to erastin-induced ferroptosis than cells expressing a low level of SLC7A11. Moreover, the expression of SLC7A11 gradually increased with the progression of plasma cell dyscrasias. Survival analysis indicated that high levels of SLC7A11 predicted a poor prognosis for MM patients. Knocking down SLC7A11 expression significantly inhibited the proliferation of MM cells and induced ferroptotic cell death. Additionally, we revealed that the long noncoding RNA (lncRNA) SLC7A11-AS1 was a critical regulatory factor of SLC7A11 expression. SLC7A11-AS1 overexpression diminished SLC7A11 levels, leading to the ferroptosis of MM cells. In summary, our data show that heterogeneous SLC7A11 expression affects MM cell sensitivity to ferroptosis, providing a theoretical basis for improving the clinical treatment of MM.
Subject(s)
Ferroptosis , Multiple Myeloma , Piperazines , Humans , Apoptosis/genetics , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Ferroptosis/genetics , Cell Death , Amino Acid Transport System y+/genetics , Amino Acid Transport System y+/metabolismABSTRACT
BACKGROUND: Young patients with breast ductal carcinoma in situ (DCIS) often face a poorer prognosis. The genomic intricacies in young-onset DCIS, however, remain underexplored. METHODS: To address this gap, we undertook a comprehensive study encompassing exome, transcriptome, and vmethylome analyses. Our investigation included 20 DCIS samples (including 15 young-onset DCIS) and paired samples of normal breast tissue and blood. RESULTS: Through RNA sequencing, we identified two distinct DCIS subgroups: "immune hot" and "immune cold". The "immune hot" subgroup was characterized by increased infiltration of lymphocytes and macrophages, elevated expression of PDCD1 and CTLA4, and reduced GATA3 expression. This group also exhibited active immunerelated transcriptional regulators. Mutational analysis revealed alterations in TP53 (38%), GATA3 (25%), and TTN (19%), with two cases showing mutations in APC, ERBB2, and SMARCC1. Common genomic alterations, irrespective of immune status, included gains in copy numbers at 1q, 8q, 17q, and 20q, and losses at 11q, 17p, and 22q. Signature analysis highlighted the predominance of signatures 2 and 1, with "immune cold" samples showing a significant presence of signature 8. Our methylome study on 13 DCIS samples identified 328 hyperdifferentially methylated regions (DMRs) and 521 hypo-DMRs, with "immune cold" cases generally showing lower levels of methylation. CONCLUSION: In summary, the molecular characteristics of young-onset DCIS share similarities with invasive breast cancer (IBC), potentially indicating a poor prognosis. Understanding these characteristics, especially the immune microenvironment of DCIS, could be pivotal in identifying new therapeutic targets and preventive strategies for breast cancer.
Subject(s)
Breast Neoplasms , Carcinoma, Intraductal, Noninfiltrating , Humans , Female , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Carcinoma, Intraductal, Noninfiltrating/genetics , Carcinoma, Intraductal, Noninfiltrating/pathology , Adult , Mutation , Transcriptome , Gene Expression Regulation, Neoplastic , Biomarkers, Tumor/genetics , Gene Expression Profiling , Middle Aged , DNA Methylation , Young Adult , Genomics/methods , Prognosis , Exome/genetics , MultiomicsABSTRACT
Cimicifugae rhizoma is a traditional Chinese herbal medicine in China, and modern pharmacological research showed that it has obvious antiviral activity. Many polysaccharides have been proved to have immune enhancement and antiviral activity, but there are few studies on the biological activity of Cimicifuga rhizoma polysaccharide (CRP). The aim was to explore the character of CRP and its effects on improving immune activity and inhibiting transmissible gastroenteritis virus (TGEV). The monosaccharide composition, molecular weight, fourier transform infrared spectra and electron microscopy analysis of CRP was measured. The effect of CRP on immune activity in lymphocytes and RAW264.7 cells were studied by colorimetry, FITC-OVA fluorescent staining and ELISA. The effect of CRP on TGEV-infected PK-15 cells was determined using Real-time PCR, Hoechst fluorescence staining, trypan blue staining, acridine orange staining, Annexin V-FITC/PI fluorescent staining, DCFH-DA loading probe, and JC-1 staining. Network pharmacology was used to predict the targets of CRP in enhancing immunity and anti-TGEV, and molecular docking was used to further analyze the binding mode between CPR and core targets. The results showed that CRP was mainly composed of glucose and galactose, and its molecular weight was 64.28 kDa. The content of iNOS and NO in CRP group were significantly higher than the control group. CRP (125 and 62.5 µg/mL) could significantly enhance the phagocytic capacity of RAW264.7 cells, and imprive the content of IL-1ß content compared with control group. 250 µg/mL of CRP possessed the significant inhibitory effect on TGEV, which could significantly reduce the apoptosis compared to TGVE group and inhibit the decrease in mitochondrial membrane potential compared to TGVE group. The mRNA expression of TGEV N gene in CRP groups was significantly lower than TGEV group. PPI showed that the core targets of immune-enhancing were AKT1, MMP9, HSP90AA1, etc., and the core targets of TGE were CASP3, MMP9, EGFR, etc. Molecular docking show that CRP has binding potential with target. These results indicated that CRP possessed the better immune enhancement effect and anti-TGEV activity.
Subject(s)
Antiviral Agents , Molecular Docking Simulation , Polysaccharides , Transmissible gastroenteritis virus , Animals , Mice , Polysaccharides/pharmacology , Polysaccharides/chemistry , RAW 264.7 Cells , Transmissible gastroenteritis virus/drug effects , Antiviral Agents/pharmacology , Rhizome/chemistry , Interleukin-1beta/metabolism , Molecular Weight , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type II/genetics , Cell Line , Lymphocytes/drug effects , Lymphocytes/immunology , Apoptosis/drug effects , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Spectroscopy, Fourier Transform Infrared , Monosaccharides , Nitric Oxide/metabolism , Immunologic Factors/pharmacologyABSTRACT
BACKGROUND: In addition to functioning as a precise monitoring mechanism in cell cycle, the anaphase-promoting complex/cyclosome (APC/C) is reported to be involved in regulating multiple metabolic processes by facilitating the ubiquitin-mediated degradation of key enzymes. Fatty acid oxidation is a metabolic pathway utilized by tumor cells that is crucial for malignant progression; however, its association with APC/C remains to be explored. METHODS: Cell cycle synchronization, immunoblotting, and propidium iodide staining were performed to investigate the carnitine palmitoyltransferase 1 C (CPT1C) expression manner. Proximity ligation assay and co-immunoprecipitation were performed to detect interactions between CPT1C and APC/C. Flow cytometry, 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2 H-tetrazolium, inner salt (MTS) assays, cell-scratch assays, and transwell assays and xenograft transplantation assays were performed to investigate the role of CPT1C in tumor progression in vitro and in vivo. Immunohistochemistry was performed on tumor tissue microarray to evaluate the expression levels of CPT1C and explore its potential clinical value. RESULTS: We identified CPT1C as a novel APC/C substrate. CPT1C protein levels exhibited cell cycle-dependent fluctuations, peaking at the G1/S boundary. Elevated CPT1C accelerated the G1/S transition, facilitating tumor cell proliferation in vitro and in vivo. Furthermore, CPT1C enhanced fatty acid utilization, upregulated ATP levels, and decreased reactive oxygen species levels, thereby favoring cell survival in a harsh metabolic environment. Clinically, high CPT1C expression correlated with poor survival in patients with esophageal squamous cell carcinoma. CONCLUSIONS: Overall, our results revealed a novel interplay between fatty acid utilization and cell cycle machinery in tumor cells. Additionally, CPT1C promoted tumor cell proliferation and survival by augmenting cellular ATP levels and preserving redox homeostasis, particularly under metabolic stress. Therefore, CPT1C could be an independent prognostic indicator in esophageal squamous cell carcinoma.
Subject(s)
Anaphase-Promoting Complex-Cyclosome , Carnitine O-Palmitoyltransferase , Carnitine O-Palmitoyltransferase/metabolism , Carnitine O-Palmitoyltransferase/genetics , Humans , Animals , Cell Line, Tumor , Anaphase-Promoting Complex-Cyclosome/metabolism , Anaphase-Promoting Complex-Cyclosome/genetics , Energy Metabolism/genetics , Up-Regulation , Disease Progression , Cell Proliferation , Mice, Nude , Mice , Female , Male , S Phase , Mice, Inbred BALB CABSTRACT
BACKGROUND: Alveolar echinococcosis (AE) primarily affects the liver and potentially spreads to other organs. Managing recurrent AE poses significant challenges, especially when it involves critical structures and multiple major organs. CASE PRESENTATION: We present a case of a 59-year-old female with recurrent AE affecting the liver, heart, and lungs following two previous hepatectomies, the hepatic lesions persisted, adhering to major veins, and imaging revealed additional diaphragmatic, cardiac, and pulmonary involvement. The ex vivo liver resection and autotransplantation (ELRA), first in human combined with right atrium (RA) reconstruction were performed utilizing cardiopulmonary bypass, and repairs of the pericardium and diaphragm. This approach aimed to offer a potentially curative solution for lesions previously considered inoperable without requiring a donor organ or immunosuppressants. The patient encountered multiple serious complications, including atrial fibrillation, deteriorated liver function, severe pulmonary infection, respiratory failure, and acute kidney injury (AKI). These complications necessitated intensive intraoperative and postoperative care, emphasizing the need for a comprehensive management strategy in such complicated high-risk surgeries. CONCLUSIONS: The multidisciplinary collaboration in this case proved effective and yielded significant therapeutic outcomes for a rare case of advanced hepatic, cardiac, and pulmonary AE. The combined approach of ELRA and RA reconstruction under extracorporeal circulation demonstrated distinct advantages of ELRA in treating complex HAE. Meanwhile, assessing diaphragm function during the perioperative period, especially in patients at high risk of developing pulmonary complications and undergoing diaphragmectomy is vital to promote optimal postoperative recovery. For multi-resistant infection, it is imperative to take all possible measures to mitigate the risk of AKI if vancomycin administration is deemed necessary.
Subject(s)
Heart Atria , Liver Transplantation , Transplantation, Autologous , Humans , Middle Aged , Female , Heart Atria/surgery , Heart Atria/parasitology , Echinococcosis/surgery , Liver/parasitology , Liver/surgery , Plastic Surgery Procedures/methods , Echinococcosis, Hepatic/surgeryABSTRACT
Thiazole scaffold-based small molecules exhibit a range of biological activities and play important roles in drug discovery. Based on bioinformatics analysis, a putative biosynthetic gene cluster (BGC) for thiazole-containing compounds was identified from Streptomyces sp. SCSIO 40020. Heterologous expression of this BGC led to the production of eight new thiazole-containing compounds, grisechelins E, F, and I-N (1, 2, 5-10), and two quinoline derivatives, grisechelins G and H (3 and 4). The structures of 1-10, including their absolute configurations, were elucidated by HRESIMS, NMR spectroscopic data, ECD calculations, and single-crystal X-ray diffraction analysis. Grisechelin F (2) is a unique derivative, distinguished by the presence of a salicylic acid moiety. The biosynthetic pathway for 2 was proposed based on bioinformatics analysis and in vivo gene knockout experiments. Grisechelin E (1) displayed moderate antimycobacterial activity against Mycobacterium tuberculosis H37Ra (MIC of 8 µg mL-1).
Subject(s)
Streptomyces , Streptomyces/genetics , Streptomyces/chemistry , Anti-Bacterial Agents/pharmacology , Magnetic Resonance Spectroscopy , Salicylic Acid , ThiazolesABSTRACT
Thyroid stimulating hormone (TSH), a glycoprotein synthesized and secreted from thyrotrophs of the pituitary gland, is composed of a glycoprotein hormone common alpha subunit (CGA) and a specific beta subunit (TSHB). The major biological function of TSH is to stimulate thyroidal follicles to synthesize and secrete thyroid hormones through activating its cognate receptor, the thyroid stimulating hormone receptor (TSHR). In the present study, polyclonal antisera against ricefield eel Tshb and Tshr were generated respectively, and the expression of Tshb and Tshr was examined at mRNA and protein levels. RT-PCR analysis showed that tshb mRNA was expressed mainly in the pituitary as well as in some extrapituitary tissues including the ovary and testis. Tshr mRNA was also expressed in a tissue-specific manner, with transcripts detected in tissues including the kidney, ovary, and testis. The immunoreactive Tshb signals in the pituitary were shown to be localized to the inner areas of adenohypophysis which are close to the neurohypophysis of adult ricefield eels. Tshb-immunoreatvie cells in the pituitary of ricefield eel larvae were firstly observed at hatching. The expression of immunoreactive Tshb and Cga was also detected in ricefield eel ovary and testis together with Tshr. In the ovary, immunoreactive Tshb, Cga, and Tshr were observed in oocytes and granulosa cells. In the testis, immunoreactive Tshb was mainly observed in Sertoli cells while immunoreactive Cga and Tshr were detected in germ cells as well as somatic cells. Results of the present study suggest that Tsh may be synthesized both in the ovary and testis locally, which may play paracrine and/or autocrine roles in gonadal development in ricefield eels.
Subject(s)
Eels , Receptors, Thyrotropin , Animals , Receptors, Thyrotropin/metabolism , Receptors, Thyrotropin/genetics , Female , Male , Eels/metabolism , Eels/genetics , Testis/metabolism , Gonads/metabolism , Paracrine Communication/physiology , Ovary/metabolism , Pituitary Gland/metabolism , Thyrotropin, beta Subunit/metabolism , Thyrotropin, beta Subunit/genetics , Autocrine Communication/physiologyABSTRACT
A rare transthoracic echocardiographic image of left sinus of Valsalva aneurysm complicated by thrombus formation.
Subject(s)
Aortic Aneurysm , Echocardiography , Sinus of Valsalva , Thrombosis , Humans , Sinus of Valsalva/diagnostic imaging , Thrombosis/diagnostic imaging , Thrombosis/complications , Aortic Aneurysm/diagnostic imaging , Aortic Aneurysm/complications , Echocardiography/methods , Male , Diagnosis, DifferentialABSTRACT
A 35-year-old woman was initially misdiagnosed with a muscular ventricular septal defect but was later correctly diagnosed with a double-chambered left ventricle following evaluation by echocardiography and cardiac computed tomography.
Subject(s)
Diagnostic Errors , Echocardiography , Heart Septal Defects, Ventricular , Heart Ventricles , Humans , Female , Heart Septal Defects, Ventricular/diagnostic imaging , Heart Septal Defects, Ventricular/diagnosis , Adult , Heart Ventricles/diagnostic imaging , Heart Ventricles/abnormalities , Echocardiography/methods , Diagnosis, Differential , Tomography, X-Ray Computed/methodsABSTRACT
Two undescribed letendrones A-B (1-2), along with three known compounds, ZL-6 (3), dankasterone B (4) and minimoidione B (5) were isolated from the Aquilaria-derived fungus Letendraea helminthicola A820. The structures of 1 and 2 were established by analysis of spectroscopes including 1D/2D NMR, IR, UV, and HRESIMS. Among them, the conï¬guration of 1 was further confirmed by single-crystal X-ray diffraction. Letendrones A and B were the new phenalenyl derivatives with radical form that were firstly found in nature. In addition, bioactivity of these compounds was evaluated and compounds 3-5 exhibited inhibitory activity against LPS-induced NO production in macrophages with IC50 values of 4.64, 13.90, and 34.07 µM. Furthermore, potential targets of the new compounds were analyzed by molecular docking in silico. As a result, compound 1 showed high binding with predicted 5-HT2c receptor (∆G=-8.2 kcal/mol) potentially associated with depression disease, and compound 2 showed significant connection with phosphodiesterase 3A (∆G=-9.4 kcal/mol) probably against cardiovascular disorders. Our findings firstly reported the high symmetry phenalenyl compounds from natural products which would provide a basis for further development and utilization of the secondary metabolites from the endophytic fungus Letendraea helminthicola A820.
ABSTRACT
Studies have shown that genetic factors play an important role in CHD's development. The mutations in GATA4 and CITED2 genes result in the failure of the heart to develop normally, thereby leading to septal defects. The present study investigated the underlying molecular aetiology of patients with cardiac septation defects from Xinjiang. We investigated variants of the GATA4 and CITED2 gene coding regions in 172 patients with cardiac septation defects by sequencing. Healthy controls (n = 200) were included. Three heterozygous variations (p.V380M, p.P394T, and p.P407Q) of the GATA4 gene were identified in three patients. p.V380M was discovered in a patient with atrial septal defect. p.P394T was noted in a patient with atrial septal defect. p.V380M and p.P407Q of the GATA4 gene were detected in one patient with ventricular septal defect. A novel homozygous variation (p. Sl92G) of the CITED2 gene was found in one patient with ventricular septal defect. Other patients and healthy individuals were normal. The limited prevalence of genetic variations observed in individuals with cardiac septal defects from Xinjiang provides evidence in favour of the hypothesis that CHD is a polygenic hereditary disorder. It is plausible that mutations in the GATA4 and CITED2 genes could potentially underlie the occurrence of idiopathic CHD in affected patients.