Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 146
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 184(8): 2229-2238.e13, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33691138

ABSTRACT

The biosafety level 3 (BSL-3) requirement to culture severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a bottleneck for research. Here, we report a trans-complementation system that produces single-round infectious SARS-CoV-2 that recapitulates authentic viral replication. We demonstrate that the single-round infectious SARS-CoV-2 can be used at BSL-2 laboratories for high-throughput neutralization and antiviral testing. The trans-complementation system consists of two components: a genomic viral RNA containing ORF3 and envelope gene deletions, as well as mutated transcriptional regulator sequences, and a producer cell line expressing the two deleted genes. Trans-complementation of the two components generates virions that can infect naive cells for only one round but does not produce wild-type SARS-CoV-2. Hamsters and K18-hACE2 transgenic mice inoculated with the complementation-derived virions exhibited no detectable disease, even after intracranial inoculation with the highest possible dose. Thus, the trans-complementation platform can be safely used at BSL-2 laboratories for research and countermeasure development.


Subject(s)
COVID-19/virology , Containment of Biohazards/methods , SARS-CoV-2 , A549 Cells , Animals , Chlorocebus aethiops , Cricetinae , Genetic Complementation Test/methods , Genome, Viral , HEK293 Cells , Humans , Male , Mice , Mice, Transgenic , RNA, Viral , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Vero Cells , Virulence , Virus Replication
2.
Nature ; 602(7896): 294-299, 2022 02.
Article in English | MEDLINE | ID: mdl-34818667

ABSTRACT

The B.1.1.7 variant (also known as Alpha) of SARS-CoV-2, the cause of the COVID-19 pandemic, emerged in the UK in the summer of 2020. The prevalence of this variant increased rapidly owing to an increase in infection and/or transmission efficiency1. The Alpha variant contains 19 nonsynonymous mutations across its viral genome, including 8 substitutions or deletions in the spike protein that interacts with cellular receptors to mediate infection and tropism. Here, using a reverse genetics approach, we show that of the 8 individual spike protein substitutions, only N501Y resulted in consistent fitness gains for replication in the upper airway in a hamster model as well as in primary human airway epithelial cells. The N501Y substitution recapitulated the enhanced viral transmission phenotype of the eight mutations in the Alpha spike protein, suggesting that it is a major determinant of the increased transmission of the Alpha variant. Mechanistically, the N501Y substitution increased the affinity of the viral spike protein for cellular receptors. As suggested by its convergent evolution in Brazil, South Africa and elsewhere2,3, our results indicate that N501Y substitution is an adaptive spike mutation of major concern.


Subject(s)
Amino Acid Substitution , COVID-19/transmission , COVID-19/virology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Animals , Binding, Competitive , Bronchi/cytology , Cells, Cultured , Cricetinae , Humans , Male , Mesocricetus , Models, Molecular , Mutation , Protein Binding , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Virus Replication
3.
Nature ; 610(7931): 381-388, 2022 10.
Article in English | MEDLINE | ID: mdl-36198800

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged at the end of 2019 and caused the devastating global pandemic of coronavirus disease 2019 (COVID-19), in part because of its ability to effectively suppress host cell responses1-3. In rare cases, viral proteins dampen antiviral responses by mimicking critical regions of human histone proteins4-8, particularly those containing post-translational modifications required for transcriptional regulation9-11. Recent work has demonstrated that SARS-CoV-2 markedly disrupts host cell epigenetic regulation12-14. However, how SARS-CoV-2 controls the host cell epigenome and whether it uses histone mimicry to do so remain unclear. Here we show that the SARS-CoV-2 protein encoded by ORF8 (ORF8) functions as a histone mimic of the ARKS motifs in histone H3 to disrupt host cell epigenetic regulation. ORF8 is associated with chromatin, disrupts regulation of critical histone post-translational modifications and promotes chromatin compaction. Deletion of either the ORF8 gene or the histone mimic site attenuates the ability of SARS-CoV-2 to disrupt host cell chromatin, affects the transcriptional response to infection and attenuates viral genome copy number. These findings demonstrate a new function of ORF8 and a mechanism through which SARS-CoV-2 disrupts host cell epigenetic regulation. Further, this work provides a molecular basis for the finding that SARS-CoV-2 lacking ORF8 is associated with decreased severity of COVID-19.


Subject(s)
COVID-19 , Epigenesis, Genetic , Histones , Host Microbial Interactions , Molecular Mimicry , SARS-CoV-2 , Viral Proteins , COVID-19/genetics , COVID-19/metabolism , COVID-19/virology , Chromatin/genetics , Chromatin/metabolism , Chromatin Assembly and Disassembly , Epigenome/genetics , Histones/chemistry , Histones/metabolism , Humans , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/metabolism
4.
Nature ; 592(7852): 116-121, 2021 04.
Article in English | MEDLINE | ID: mdl-33106671

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein substitution D614G became dominant during the coronavirus disease 2019 (COVID-19) pandemic1,2. However, the effect of this variant on viral spread and vaccine efficacy remains to be defined. Here we engineered the spike D614G substitution in the USA-WA1/2020 SARS-CoV-2 strain, and found that it enhances viral replication in human lung epithelial cells and primary human airway tissues by increasing the infectivity and stability of virions. Hamsters infected with SARS-CoV-2 expressing spike(D614G) (G614 virus) produced higher infectious titres in nasal washes and the trachea, but not in the lungs, supporting clinical evidence showing that the mutation enhances viral loads in the upper respiratory tract of COVID-19 patients and may increase transmission. Sera from hamsters infected with D614 virus exhibit modestly higher neutralization titres against G614 virus than against D614 virus, suggesting that the mutation is unlikely to reduce the ability of vaccines in clinical trials to protect against COVID-19, and that therapeutic antibodies should be tested against the circulating G614 virus. Together with clinical findings, our work underscores the importance of this variant in viral spread and its implications for vaccine efficacy and antibody therapy.


Subject(s)
COVID-19/transmission , COVID-19/virology , Genetic Fitness , Mutation , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/genetics , Animals , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/therapeutic use , COVID-19/immunology , COVID-19 Vaccines/immunology , Cricetinae , Disease Models, Animal , Humans , Lung/virology , Male , Mesocricetus/virology , Models, Biological , Nasal Mucosa/virology , Neutralization Tests , Protein Stability , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Tissue Culture Techniques , Trachea/virology , Viral Load , Virion/chemistry , Virion/pathogenicity , Virion/physiology , Virus Replication/genetics
5.
Nature ; 591(7849): 293-299, 2021 03.
Article in English | MEDLINE | ID: mdl-33494095

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-a new coronavirus that has led to a worldwide pandemic1-has a furin cleavage site (PRRAR) in its spike protein that is absent in other group-2B coronaviruses2. To explore whether the furin cleavage site contributes to infection and pathogenesis in this virus, we generated a mutant SARS-CoV-2 that lacks the furin cleavage site (ΔPRRA). Here we report that replicates of ΔPRRA SARS-CoV-2 had faster kinetics, improved fitness in Vero E6 cells and reduced spike protein processing, as compared to parental SARS-CoV-2. However, the ΔPRRA mutant had reduced replication in a human respiratory cell line and was attenuated in both hamster and K18-hACE2 transgenic mouse models of SARS-CoV-2 pathogenesis. Despite reduced disease, the ΔPRRA mutant conferred protection against rechallenge with the parental SARS-CoV-2. Importantly, the neutralization values of sera from patients with coronavirus disease 2019 (COVID-19) and monoclonal antibodies against the receptor-binding domain of SARS-CoV-2 were lower against the ΔPRRA mutant than against parental SARS-CoV-2, probably owing to an increased ratio of particles to plaque-forming units in infections with the former. Together, our results demonstrate a critical role for the furin cleavage site in infection with SARS-CoV-2 and highlight the importance of this site for evaluating the neutralization activities of antibodies.


Subject(s)
COVID-19/virology , Furin/metabolism , Mutation , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Sequence , Animals , Antibodies, Neutralizing/immunology , COVID-19/pathology , COVID-19/physiopathology , Cell Line , Chlorocebus aethiops , Cricetinae , Female , Humans , Lung Diseases/pathology , Lung Diseases/physiopathology , Lung Diseases/virology , Male , Mice , Mice, Transgenic , Models, Molecular , Mutant Proteins/chemistry , Mutant Proteins/genetics , Mutant Proteins/metabolism , Proteolysis , SARS-CoV-2/chemistry , SARS-CoV-2/metabolism , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells , Virus Replication/genetics
6.
J Am Chem Soc ; 146(23): 15730-15739, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38776525

ABSTRACT

NAD(P)H cofactor is a critical energy and electron carrier in biocatalysis and photosynthesis, but the artificial reduction of NAD(P)+ to regenerate bioactive 1,4-NAD(P)H with both high activity and selectivity is challenging. Herein, we found that a coupled system of a Ni3S2 electrode and a Rh complex in an electrolyte (denoted as Ni3S2-Rh) can catalyze the reduction of NAD(P)+ to 1,4-NAD(P)H with superior activity and selectivity. The optimized selectivity in 1,4-NADH can be up to 99.1%, much higher than that for Ni3S2 (80%); the normalized activity of Ni3S2-Rh is about 5.8 times that of Ni3S2 and 13.2 times that of the Rh complex. The high performance of Ni3S2-Rh is attributed to the synergistic effect between metal sulfides and Rh complex. The NAD+ reduction reaction proceeds via a concerted electron-proton transfer (CEPT) mechanism in the Ni3S2-Rh system, in which Ni3S2 acts as a proton and electron-transfer mediator to accelerate the formation of Rh hydride (Rh-H), and then the Rh-H regioselectively transfers the hydride to NAD+ to form 1,4-NADH. The artificial system Ni3S2-Rh essentially mimics the functions of ferredoxin-NADP+ reductase in nature.

7.
Plant Physiol ; 192(2): 1603-1620, 2023 05 31.
Article in English | MEDLINE | ID: mdl-36879425

ABSTRACT

Pectin methylesterification in guard cell (GC) walls plays an important role in stomatal development and stomatal response to external stimuli, and pectin methylesterase inhibitors (PMEIs) modulate pectin methylesterification by inhibition of pectin methylesterase (PME). However, the function of PMEIs has not been reported in stomata. Here, we report the role of Arabidopsis (Arabidopsis thaliana) PECTIN METHYLESTERASE INHIBITOR18 in stomatal dynamic responses to environmental changes. PMEI18 mutation increased pectin demethylesterification and reduced pectin degradation, resulting in increased stomatal pore size, impaired stomatal dynamics, and hypersensitivity to drought stresses. In contrast, overexpression of PMEI18 reduced pectin demethylesterification and increased pectin degradation, causing more rapid stomatal dynamics. PMEI18 interacted with PME31 in plants, and in vitro enzymatic assays demonstrated that PMEI18 directly inhibits the PME activity of PME31 on pectins. Genetic interaction analyses suggested that PMEI18 modulates stomatal dynamics mainly through inhibition of PME31 on pectin methylesterification in cell walls. Our results provide insight into the molecular mechanism of the PMEI18-PME31 module in stomatal dynamics and highlight the role of PMEI18 and PME31 in stomatal dynamics through modulation of pectin methylesterification and distribution in GC walls.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Carboxylic Ester Hydrolases/metabolism , Cell Wall/metabolism , Pectins/metabolism
8.
Ann Hematol ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916741

ABSTRACT

Immune thrombocytopenia (ITP) is the most common autoimmune disorder characterized by decreased platelet counts and impaired platelet production. Eltrombopag has been demonstrated to be safe and effective for children with ITP. It is reported eltrombopag can achieve a sustained response off treatment. However, data on its overall efficacy and safety profile are scarce in children. This study aimed to investigate the long-term efficacy of eltrombopag in children with ITP. Treatment overall response (OR), complete response (CR), response (R), durable response (DR), no response (NR), treatment free remission (TFR), and relapse rate, were assessed in 103 children with ITP during eltrombopag therapy. The OR rate, CR rate, R rate, DR rate, NR rate, TFR rate, and relapse rate were 67.0%, 55.3%, 11.7%, 56.3%, 33.0%, 60%, 36.2%, respectively. Importantly, we discovered that newly diagnosed ITP patients showed a higher DR rate, TFR rate and lower relapse rate compared to persistent and chronic ITP patients. Furthermore, the CR rate, DR rate, and TFR rate of 5 patients under six months were 100%. None of them suffered relapse. The most common adverse event (AEs) was hepatotoxicity (7.77%). Our study highlighted the critical role of eltrombopag as the second-line treatment in children with ITP who were intolerant to first-line therapy.

9.
EMBO Rep ; 23(11): e55671, 2022 11 07.
Article in English | MEDLINE | ID: mdl-36197120

ABSTRACT

Frequent turnover of dengue virus (DENV) clades is one of the major forces driving DENV persistence and prevalence. In this study, we assess the fitness advantage of nine stable substitutions within the envelope (E) protein of DENV serotypes. Two tandem neighboring substitutions, threonine to lysine at the 226th (T226K) and glycine to glutamic acid at the 228th (G228E) residues in the DENV2 Asian I genotype, enhance virus infectivity in either mosquitoes or mammalian hosts, thereby promoting clades turnover and dengue epidemics. Mechanistic studies indicate that the substitution-mediated polarity changes in these two residues increase the binding affinity of E for host C-type lectins. Accordingly, we predict that a G228E substitution could potentially result in a forthcoming epidemic of the DENV2 Cosmopolitan genotype. Investigations into the substitutions associated with DENV fitness in hosts may offer mechanistic insights into dengue prevalence, thus providing a warning of potential epidemics in the future.


Subject(s)
Dengue Virus , Dengue , Animals , Dengue Virus/genetics , Dengue/epidemiology , Phylogeny , Serogroup , Genotype , Mutation , Mammals
12.
Cereb Cortex ; 33(22): 11102-11111, 2023 11 04.
Article in English | MEDLINE | ID: mdl-37746807

ABSTRACT

Olfaction is a crucial sense that is essential for the well-being and survival of individuals. Olfactory bulb (OB) is the first olfactory relay station, and its function depends on newly generated neurons from the subventricular zone (SVZ). These newly born neurons constantly migrate through the rostral migratory stream to integrate into existing neural networks within the OB, thereby contributing to olfactory information processing. However, the mechanisms underlying the contribution of SVZ adult neurogenesis to OB neurogenesis remain largely elusive. Adult neurogenesis is a finely regulated multistep process involving the proliferation of adult neural stem cells (aNSCs) and neural precursor cells, as well as the migration and differentiation of neuroblasts, and integration of newly generated neurons into preexisting neuronal circuitries. Recently, extensive studies have explored the mechanism of SVZ and OB neurogenesis. This review focused on elucidating various molecules and signaling pathways associated with OB neurogenesis dependent on the SVZ function. A better understanding of the mechanisms underlying the OB neurogenesis on the adult brain is an attractive prospect to induce aNSCs in SVZ to generate new neurons to ameliorate olfactory dysfunction that is involved in various diseases. It will also contribute to developing new strategies for the human aNSCs-based therapies.


Subject(s)
Neural Stem Cells , Humans , Neural Stem Cells/metabolism , Lateral Ventricles , Olfactory Bulb , Neurons/physiology , Neurogenesis/physiology , Cell Movement
13.
Plant Foods Hum Nutr ; 79(2): 381-386, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38436827

ABSTRACT

Edgeworthia gardneri (Wall.) Meisn., a member of the genus Edgeworthia in the family Thymelaeaceae, has long been applied as an edible and medicinal plant in China. E. gardneria has a hypoglycemic effect and is used to prepare daily drinks for the prevention and treatment of diabetes. However, the hypoglycemic substances involved remain unknown. The present study aimed to screen the α-glucosidase-inhibitors of E. gardneri and analyze its chemical profile using a ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS) method. As a result, the ethyl acetate fraction (EAF) had significant α-glucosidase-inhibitory and antioxidant activities but did not show an α-amylase-inhibitory activity. A total of 67 compounds were identified in the EAF by UPLC-Q-TOF-MS/MS analysis; among them, 48 compounds were first discovered in the genus Edgeworthia. Additionally, five flavonoids, namely, isoorintin, secoisolaricirinol, tiliroside, chrysin, and kaempferol, had α-glucosidase-inhibitory activities. Rutin had a α-amylase-inhibitory activity. Daphnoretin, a kind of coumarin, has α-glucosidase and α-amylase-inhibitory activities. These findings enrich the chemical library of E. gardneria. EAF has a selective α-glucosidase-inhibitory activity, and flavonoids and coumarins may be the active components of EAF. E. gardneria has important value for developing multiple-target hypoglycemic drugs.


Subject(s)
Antioxidants , Flavonoids , Glycoside Hydrolase Inhibitors , Hypoglycemic Agents , Tandem Mass Spectrometry , Thymelaeaceae , Glycoside Hydrolase Inhibitors/analysis , Glycoside Hydrolase Inhibitors/pharmacology , Tandem Mass Spectrometry/methods , Thymelaeaceae/chemistry , Hypoglycemic Agents/analysis , Hypoglycemic Agents/pharmacology , Chromatography, High Pressure Liquid/methods , Flavonoids/analysis , Antioxidants/analysis , Antioxidants/pharmacology , alpha-Glucosidases , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/analysis , alpha-Amylases/antagonists & inhibitors , China
14.
J Med Virol ; 95(3): e28610, 2023 03.
Article in English | MEDLINE | ID: mdl-36840407

ABSTRACT

Tick-borne encephalitis virus (TBEV) is the causative agent of a potentially fatal neurological infection in humans. Investigating virus-host interaction is important for understanding the pathogenesis of TBEV and developing effective antiviral drugs against this virus. Here, we report that mammalian ste20-like kinase 3 (MST3) is involved in the regulation of TBEV infection. The knockdown or knockout of MST3, but not other mammalian ste20-like kinase family members, inhibited TBEV replication. The knockdown of MST3 also significantly reduced TBEV replication in mouse primary astrocytes. Life cycle analysis indicated that MST3 remarkably impaired virion assembly efficiency and specific infectivity by respectively 59% and 95% in MST3-knockout cells. We further found that MST3 interacts with the viral proteins NS2A and prM; and MST3 enhances the interaction of NS2A-NS4A. Thus, MST3-NS2A complex plays a major role in recruiting prM-E heterodimers and NS4A and mediates the virion assembly. Additionally, we found that MST3 was biotinylated and combined with other proteins (e.g., ATG5, Sec24A, and SNX4) that are associated with the cellular membrane required for TBEV infection. Overall, our study revealed a novel function for MST3 in TBEV infection and identified as a novel host factor supporting TBEV assembly.


Subject(s)
Encephalitis Viruses, Tick-Borne , Encephalitis, Tick-Borne , Animals , Mice , Humans , Encephalitis Viruses, Tick-Borne/genetics , Viral Proteins/metabolism , Mammals/metabolism , Vesicular Transport Proteins
15.
Plasmid ; 125: 102670, 2023.
Article in English | MEDLINE | ID: mdl-36828204

ABSTRACT

The effective utilization of traditional Chinese medicine (TCM) has been challenged by the difficulty to accurately distinguish between similar plant varieties. The stability and conservation of the chloroplast genome can aid in resolving genotypes. Previous studies using nuclear sequences and molecular markers have not effectively differentiated the species from related taxa, such as Machilus leptophylla, Hanceola exserta, Rubus bambusarum, and Rubus henryi. This study aimed to characterize the chloroplast genomes of these four plant species, and analyze their simple sequence repeats (SSRs) and phylogenetic positions. The results demonstrated the four chloroplast genomes consisted of 152.624 kb, 153.296 kb, 156.309 kb, and 158.953 kb in length, involving 124, 130, 129, and 131 genes, respectively. They also contained four specific regions with mononucleotide being the class with the most members. Moreover, these repeating types of SSR were various in individual class. Phylogenetic analysis showed that M. leptophylla was clustered with M. yunnanensis, and H. exserta was confirmed as belonging to the family Ocimeae. Additionally, R. bambusarum and R. henryi were grouped together but differed in their SSR features, indicating that they were not the same species. This research provides evidence for resolving species and contributes new genetic information for further studies.


Subject(s)
Genome, Chloroplast , Phylogeny , Plasmids
16.
Int J Mol Sci ; 24(13)2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37446367

ABSTRACT

WUSCHEL (WUS) is a crucial transcription factor in regulating plant stem cell development, and its expression can also improve genetic transformation. However, the ectopic expression of WUS always causes pleiotropic effects during genetic transformation, making it important to understand the regulatory mechanisms underlying these phenomena. In our study, we found that the transient expression of the maize WUS ortholog ZmWus2 caused severe leaf necrosis in Nicotiana benthamiana. We performed transcriptomic and non-target metabolomic analyses on tobacco leaves during healthy to wilted states after ZmWus2 transient overexpression. Transcriptomic analysis revealed that ZmWus2 transformation caused active metabolism of inositol trisphosphate and glycerol-3-phosphate, while also upregulating plant hormone signaling and downregulating photosystem and protein folding pathways. Metabolomic analysis mainly identified changes in the synthesis of phenylpropanoid compounds and various lipid classes, including steroid synthesis. In addition, transcription factors such as ethylene-responsive factors (ERFs), the basic helix-loop-helix (bHLH) factors, and MYBs were found to be regulated by ZmWus2. By integrating these findings, we developed a WUS regulatory model that includes plant hormone accumulation, stress responses, lipid remodeling, and leaf necrosis. Our study sheds light on the mechanisms underlying WUS ectopic expression causing leaf necrosis and may inform the development of future genetic transformation strategies.


Subject(s)
Nicotiana , Transcriptome , Nicotiana/genetics , Nicotiana/metabolism , Plant Growth Regulators/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Plant Leaves/genetics , Plant Leaves/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Lipids
17.
Biochem Biophys Res Commun ; 588: 23-28, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34942530

ABSTRACT

Morphine is the pain releasing and abusing drug. Morphine leads to addiction by activating dopaminergic rewarding system consisted of the ventral tegmental area (VTA) and nucleus accumbens (NAc). Cholecystokinin (CCK) is a gut-brain neuropeptide and involved in morphine dependence. Brain-derived neurotrophic factor (BDNF) is a neurotrophin and plays roles in regulating addiction. Geranylgeranylacetone (GGA) is a medicine of protecting gastric mucosal injury and protecting neurons. Our previous study showed that GGA blocked morphine-induced withdrawal and relapse through inducing thioredoxin 1(Trx1). In this study, we investigated that whether cholecystokinin-B receptor (CCKB receptor) and BDNF were related to GGA inhibition on morphine addiction. At first, we made conditioned place preference (CPP) model and confirmed again that GGA blocked the expression of morphine-CPP in present study. Then, our results showed that morphine increased the expressions of dopamine D1 receptor, tyrosine hydroxylase (TH), CCKB receptor and BDNF in the VTA and NAc in mice, which was inhibited by GGA. These results suggest that CCK and BDNF in dopaminergic systems are associated with the role of GGA blocking morphine-CPP.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Diterpenes/pharmacology , Morphine/adverse effects , Receptor, Cholecystokinin B/metabolism , Receptors, Dopamine D1/metabolism , Animals , Conditioning, Classical , Male , Mice, Inbred C57BL , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Tyrosine 3-Monooxygenase/metabolism , Ventral Tegmental Area/drug effects , Ventral Tegmental Area/metabolism
19.
Plant Foods Hum Nutr ; 77(1): 62-67, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34853948

ABSTRACT

Elsholtzia rugulosa Hemsl., a species of the Labiatae family, has a long history of use as a honey plant, herbal tea, and folk medicine in China. However, little is known about its composition and biological activities. The present study aimed to investigate the total phenol and flavonoid contents, phytochemical composition, and multiple biological activities of this plant. The total flavonoid content of the ethyl acetate fraction (EAF) was higher than those of the petroleum ether fraction (PEF), n-butanol fraction (NBF), and water fraction (WF). The EAF also had much stronger antioxidant, cytotoxic, hepatoprotective, and acetylcholinesterase (AChE) and α-glucosidase inhibitory activities than the PEF, NBF, and WF. More importantly, the IC50 values of the EAF and NBF against α-glucosidase were much lower than that of the positive control acarbose, indicating their potent α-glucosidase inhibitory activities. The isolation of the EAF led to the acquisition of 9 compounds, four of which (ß-daucosterol, methyl rosmarinate, betulinic acid, and oleanolic acid) possessed significant α-glucosidase inhibitory activities. Maltol 6'-O-(5-O-p-coumaroyl)-ß-D-apiofuranosyl-ß-D-glucopyranoside and rosmarinic acid were the major phenolic compounds in the EAF according to the HPLC-DAD analysis. All these findings indicate that the EAF, NBF, and some isolated compounds have the potential to be developed as antidiabetic drugs. Moreover, the dual inhibition of AChE and butyrylcholinesterase (BChE) of certain fractions indicates their potential in the development of anti-Alzheimer's disease drugs. The present study provides a new understanding of the phytochemistry and bioactivity of E. rugulosa.


Subject(s)
Hypoglycemic Agents , Lamiaceae , Acetylcholinesterase , Anti-Bacterial Agents , Antioxidants/chemistry , Butyrylcholinesterase , Flavonoids/chemistry , Hypoglycemic Agents/chemistry , Lamiaceae/chemistry , Phytochemicals/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , alpha-Glucosidases
20.
Entropy (Basel) ; 24(8)2022 Aug 22.
Article in English | MEDLINE | ID: mdl-36010834

ABSTRACT

Although long polar codes with successive cancellation decoding can asymptotically achieve channel capacity, the performance of short blocklength polar codes is far from optimal. Recently, Arikan proposed employing a convolutional pre-transformation before the polarization network, called polarization-adjusted convolutional (PAC) codes. In this paper, we focus on improving the performance of short PAC codes concatenated with a cyclic redundancy check (CRC) outer code, CRC-PAC codes, since error detection capability is essential in practical applications, such as the polar coding scheme for the control channel. We propose an enhanced adaptive belief propagation (ABP) decoding algorithm with the assistance of CRC bits for PAC codes. We also derive joint parity-check matrices of CRC-PAC codes suitable for iterative BP decoding. The proposed CRC-aided ABP (CA-ABP) decoding can effectively improve error performance when partial CRC bits are used in the decoding. Meanwhile, the error detection ability can still be guaranteed by the remaining CRC bits and adaptive decoding parameters. Moreover, compared with the conventional CRC-aided list (CA-List) decoding, our proposed scheme can significantly reduce computational complexity, to achieve a better trade-off between the performance and complexity for short PAC codes.

SELECTION OF CITATIONS
SEARCH DETAIL