Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.504
Filter
Add more filters

Publication year range
1.
Cell ; 184(22): 5527-5540.e18, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34644527

ABSTRACT

To secure phosphorus (P) from soil, most land plants use a direct phosphate uptake pathway via root hairs and epidermis and an indirect phosphate uptake pathway via mycorrhizal symbiosis. The interaction between these two pathways is unclear. Here, we mapped a network between transcription factors and mycorrhizal symbiosis-related genes using Y1H. Intriguingly, this gene regulatory network is governed by the conserved P-sensing pathway, centered on phosphate starvation response (PHR) transcription factors. PHRs are required for mycorrhizal symbiosis and regulate symbiosis-related genes via the P1BS motif. SPX-domain proteins suppress OsPHR2-mediated induction of symbiosis-related genes and inhibit mycorrhizal infection. In contrast, plants overexpressing OsPHR2 show improved mycorrhizal infection and are partially resistant to P-mediated inhibition of symbiosis. Functional analyses of network nodes revealed co-regulation of hormonal signaling and mycorrhizal symbiosis. This network deciphers extensive regulation of mycorrhizal symbiosis by endogenous and exogenous signals and highlights co-option of the P-sensing pathway for mycorrhizal symbiosis.


Subject(s)
Gene Regulatory Networks , Mycorrhizae/genetics , Mycorrhizae/physiology , Phosphates/deficiency , Symbiosis/genetics , Symbiosis/physiology , Base Sequence , Gene Expression Regulation, Plant , Mutation/genetics , Oryza/genetics , Oryza/microbiology , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Promoter Regions, Genetic/genetics , Saccharomyces cerevisiae/metabolism , Two-Hybrid System Techniques
2.
Nat Immunol ; 20(6): 711-723, 2019 06.
Article in English | MEDLINE | ID: mdl-31061530

ABSTRACT

Resting CD4+ T cells are highly resistant to the production of human immunodeficiency virus type 1 (HIV-1). However, the mechanism by which resting CD4+ T cells restrict such production in the late viral replication phase of infection has remained unclear. In this study, we found that the cell membrane metalloprotease TRAB domain-containing protein 2A (TRABD2A) inhibited this production in resting CD4+ T cells by degrading the virion structural precursor polyprotein Gag at the plasma membrane. Depletion or inhibition of metalloprotease activity by TRABD2A profoundly enhanced HIV-1 production in resting CD4+ T cells. TRABD2A expression was much higher in resting CD4+ T cells than in activated CD4+ T cells and was considerably reduced by T cell activation. Moreover, reexpressing TRABD2A reinforced the resistance of activated CD4+ T cells to the production of HIV-1 progeny. Collectively, these results elucidate the molecular mechanism employed by resting CD4+ T cells to potently restrict the assembly and production of HIV-1 progeny.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , HIV Infections/genetics , HIV Infections/immunology , HIV Infections/virology , HIV-1/physiology , Metalloproteases/genetics , Virus Replication , gag Gene Products, Human Immunodeficiency Virus/metabolism , Animals , CD4-Positive T-Lymphocytes/metabolism , Cations , Cell Line , Enzyme Activation , Gene Expression , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Membrane Proteins/metabolism , Metalloproteases/antagonists & inhibitors , Metalloproteases/metabolism , Multigene Family , Proteolysis , SAM Domain and HD Domain-Containing Protein 1/genetics , SAM Domain and HD Domain-Containing Protein 1/metabolism , Viral Load
3.
Immunity ; 54(9): 2042-2056.e8, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34407391

ABSTRACT

Recruitment of immune cells to the site of inflammation by the chemokine CCL1 is important in the pathology of inflammatory diseases. Here, we examined the role of CCL1 in pulmonary fibrosis (PF). Bronchoalveolar lavage fluid from PF mouse models contained high amounts of CCL1, as did lung biopsies from PF patients. Immunofluorescence analyses revealed that alveolar macrophages and CD4+ T cells were major producers of CCL1 and targeted deletion of Ccl1 in these cells blunted pathology. Deletion of the CCL1 receptor Ccr8 in fibroblasts limited migration, but not activation, in response to CCL1. Mass spectrometry analyses of CCL1 complexes identified AMFR as a CCL1 receptor, and deletion of Amfr impaired fibroblast activation. Mechanistically, CCL1 binding triggered ubiquitination of the ERK inhibitor Spry1 by AMFR, thus activating Ras-mediated profibrotic protein synthesis. Antibody blockade of CCL1 ameliorated PF pathology, supporting the therapeutic potential of targeting this pathway for treating fibroproliferative lung diseases.


Subject(s)
Chemokine CCL1/metabolism , Fibroblasts/metabolism , Membrane Proteins/metabolism , Myofibroblasts/metabolism , Phosphoproteins/metabolism , Pulmonary Fibrosis/metabolism , Receptors, Autocrine Motility Factor/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Differentiation/physiology , Fibroblasts/pathology , Humans , Mice , Myofibroblasts/pathology , Pulmonary Fibrosis/pathology , Signal Transduction/physiology
4.
Nature ; 629(8014): 1158-1164, 2024 May.
Article in English | MEDLINE | ID: mdl-38750355

ABSTRACT

Plant pattern-recognition receptors perceive microorganism-associated molecular patterns to activate immune signalling1,2. Activation of the pattern-recognition receptor kinase CERK1 is essential for immunity, but tight inhibition of receptor kinases in the absence of pathogen is crucial to prevent autoimmunity3,4. Here we find that the U-box ubiquitin E3 ligase OsCIE1 acts as a molecular brake to inhibit OsCERK1 in rice. During homeostasis, OsCIE1 ubiquitinates OsCERK1, reducing its kinase activity. In the presence of the microorganism-associated molecular pattern chitin, active OsCERK1 phosphorylates OsCIE1 and blocks its E3 ligase activity, thus releasing the brake and promoting immunity. Phosphorylation of a serine within the U-box of OsCIE1 prevents its interaction with E2 ubiquitin-conjugating enzymes and serves as a phosphorylation switch. This phosphorylation site is conserved in E3 ligases from plants to animals. Our work identifies a ligand-released brake that enables dynamic immune regulation.


Subject(s)
Oryza , Plant Immunity , Plant Proteins , Ubiquitin , Animals , Chitin/metabolism , Homeostasis , Ligands , Oryza/enzymology , Oryza/immunology , Oryza/metabolism , Oryza/microbiology , Phosphorylation , Plant Proteins/antagonists & inhibitors , Plant Proteins/immunology , Plant Proteins/metabolism , Ubiquitin/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligases/antagonists & inhibitors , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Phosphoserine/metabolism , Conserved Sequence
5.
Nature ; 622(7981): 63-68, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37315640

ABSTRACT

The interplay between spontaneous symmetry breaking and topology can result in exotic quantum states of matter. A celebrated example is the quantum anomalous Hall (QAH) state, which exhibits an integer quantum Hall effect at zero magnetic field owing to intrinsic ferromagnetism1-3. In the presence of strong electron-electron interactions, fractional QAH (FQAH) states at zero magnetic field can emerge4-8. These states could host fractional excitations, including non-Abelian anyons-crucial building blocks for topological quantum computation9. Here we report experimental signatures of FQAH states in a twisted molybdenum ditelluride (MoTe2) bilayer. Magnetic circular dichroism measurements reveal robust ferromagnetic states at fractionally hole-filled moiré minibands. Using trion photoluminescence as a sensor10, we obtain a Landau fan diagram showing linear shifts in carrier densities corresponding to filling factor v = -2/3 and v = -3/5 ferromagnetic states with applied magnetic field. These shifts match the Streda formula dispersion of FQAH states with fractionally quantized Hall conductance of [Formula: see text] and [Formula: see text], respectively. Moreover, the v = -1 state exhibits a dispersion corresponding to Chern number -1, consistent with the predicted QAH state11-14. In comparison, several non-ferromagnetic states on the electron-doping side do not disperse, that is, they are trivial correlated insulators. The observed topological states can be electrically driven into topologically trivial states. Our findings provide evidence of the long-sought FQAH states, demonstrating MoTe2 moiré superlattices as a platform for exploring fractional excitations.

6.
Nature ; 614(7947): 303-308, 2023 02.
Article in English | MEDLINE | ID: mdl-36697825

ABSTRACT

Flowering plants have evolved numerous intraspecific and interspecific prezygotic reproductive barriers to prevent production of unfavourable offspring1. Within a species, self-incompatibility (SI) is a widely utilized mechanism that rejects self-pollen2,3 to avoid inbreeding depression. Interspecific barriers restrain breeding between species and often follow the SI × self-compatible (SC) rule, that is, interspecific pollen is unilaterally incompatible (UI) on SI pistils but unilaterally compatible (UC) on SC pistils1,4-6. The molecular mechanisms underlying SI, UI, SC and UC and their interconnections in the Brassicaceae remain unclear. Here we demonstrate that the SI pollen determinant S-locus cysteine-rich protein/S-locus protein 11 (SCR/SP11)2,3 or a signal from UI pollen binds to the SI female determinant S-locus receptor kinase (SRK)2,3, recruits FERONIA (FER)7-9 and activates FER-mediated reactive oxygen species production in SI stigmas10,11 to reject incompatible pollen. For compatible responses, diverged pollen coat protein B-class12-14 from SC and UC pollen differentially trigger nitric oxide, nitrosate FER to suppress reactive oxygen species in SC stigmas to facilitate pollen growth in an intraspecies-preferential manner, maintaining species integrity. Our results show that SRK and FER integrate mechanisms underlying intraspecific and interspecific barriers and offer paths to achieve distant breeding in Brassicaceae crops.


Subject(s)
Brassicaceae , Flowers , Hybridization, Genetic , Plant Proteins , Pollination , Brassicaceae/genetics , Brassicaceae/metabolism , Inbreeding Depression , Nitric Oxide/metabolism , Phosphotransferases/metabolism , Plant Breeding , Plant Proteins/metabolism , Pollen/metabolism , Reactive Oxygen Species/metabolism , Species Specificity , Flowers/metabolism , Self-Fertilization
7.
Immunity ; 51(3): 522-534.e7, 2019 09 17.
Article in English | MEDLINE | ID: mdl-31471107

ABSTRACT

Although recent progress provides mechanistic insights into the pathogenesis of pulmonary fibrosis (PF), rare anti-PF therapeutics show definitive promise for treating this disease. Repeated lung epithelial injury results in injury-repairing response and inflammation, which drive the development of PF. Here, we report that chronic lung injury inactivated the ubiquitin-editing enzyme A20, causing progressive accumulation of the transcription factor C/EBPß in alveolar macrophages (AMs) from PF patients and mice, which upregulated a number of immunosuppressive and profibrotic factors promoting PF development. In response to chronic lung injury, elevated glycogen synthase kinase-3ß (GSK-3ß) interacted with and phosphorylated A20 to suppress C/EBPß degradation. Ectopic expression of A20 or pharmacological restoration of A20 activity by disturbing the A20-GSK-3ß interaction accelerated C/EBPß degradation and showed potent therapeutic efficacy against experimental PF. Our study indicates that a regulatory mechanism of the GSK-3ß-A20-C/EBPß axis in AMs may be a potential target for treating PF and fibroproliferative lung diseases.


Subject(s)
CCAAT-Enhancer-Binding Protein-beta/metabolism , Macrophages/metabolism , Pulmonary Fibrosis/metabolism , Transcription Factors/metabolism , Ubiquitin/metabolism , Animals , Cell Line , Glycogen Synthase Kinase 3 beta/metabolism , HEK293 Cells , Humans , Inflammation/metabolism , Mice , Mice, Inbred C57BL , Phosphorylation/physiology , Signal Transduction/physiology , Ubiquitin-Protein Ligases/metabolism , Ubiquitination/physiology , Up-Regulation/physiology
8.
Nature ; 589(7843): 586-590, 2021 01.
Article in English | MEDLINE | ID: mdl-33299183

ABSTRACT

Legumes, unlike other plants, have the ability to establish symbiosis with nitrogen-fixing rhizobia. It has been theorized that a unique property of legume root cortical cells enabled the initial establishment of rhizobial symbiosis1-3. Here we show that a SHORTROOT-SCARECROW (SHR-SCR) stem cell program in cortical cells of the legume Medicago truncatula specifies their distinct fate. Regulatory elements drive the cortical expression of SCR, and stele-expressed SHR protein accumulates in cortical cells of M. truncatula but not Arabidopsis thaliana. The cortical SHR-SCR network is conserved across legume species, responds to rhizobial signals, and initiates legume-specific cortical cell division for de novo nodule organogenesis and accommodation of rhizobia. Ectopic activation of SHR and SCR in legumes is sufficient to induce root cortical cell division. Our work suggests that acquisition of the cortical SHR-SCR module enabled cell division coupled to rhizobial infection in legumes. We propose that this event was central to the evolution of rhizobial endosymbiosis.


Subject(s)
Cell Differentiation , Cell Lineage , Medicago truncatula/cytology , Medicago truncatula/metabolism , Plant Proteins/metabolism , Plant Root Nodulation , Arabidopsis/cytology , Arabidopsis/metabolism , Cell Division , Cytokinins/metabolism , Evolution, Molecular , Medicago truncatula/embryology , Plant Proteins/genetics , Plant Roots/cytology , Plant Roots/metabolism , Promoter Regions, Genetic/genetics , Rhizobium/metabolism , Signal Transduction , Symbiosis/genetics
9.
Plant Cell ; 35(1): 24-66, 2023 01 02.
Article in English | MEDLINE | ID: mdl-36222573

ABSTRACT

Climate change is a defining challenge of the 21st century, and this decade is a critical time for action to mitigate the worst effects on human populations and ecosystems. Plant science can play an important role in developing crops with enhanced resilience to harsh conditions (e.g. heat, drought, salt stress, flooding, disease outbreaks) and engineering efficient carbon-capturing and carbon-sequestering plants. Here, we present examples of research being conducted in these areas and discuss challenges and open questions as a call to action for the plant science community.


Subject(s)
Climate Change , Ecosystem , Humans , Crops, Agricultural , Carbon , Droughts
10.
PLoS Biol ; 21(7): e3001862, 2023 07.
Article in English | MEDLINE | ID: mdl-37406020

ABSTRACT

The induction of ferroptosis in tumor cells is one of the most important mechanisms by which tumor progression can be inhibited; however, the specific regulatory mechanism underlying ferroptosis remains unclear. In this study, we found that transcription factor HBP1 has a novel function of reducing the antioxidant capacity of tumor cells. We investigated the important role of HBP1 in ferroptosis. HBP1 down-regulates the protein levels of UHRF1 by inhibiting the expression of the UHRF1 gene at the transcriptional level. Reduced levels of UHRF1 have been shown to regulate the ferroptosis-related gene CDO1 by epigenetic mechanisms, thus up-regulating the level of CDO1 and increasing the sensitivity of hepatocellular carcinoma and cervical cancer cells to ferroptosis. On this basis, we constructed metal-polyphenol-network coated HBP1 nanoparticles by combining biological and nanotechnological. MPN-HBP1 nanoparticles entered tumor cells efficiently and innocuously, induced ferroptosis, and inhibited the malignant proliferation of tumors by regulating the HBP1-UHRF1-CDO1 axis. This study provides a new perspective for further research on the regulatory mechanism underlying ferroptosis and its potential role in tumor therapy.


Subject(s)
Ferroptosis , Liver Neoplasms , Humans , Transcription Factors/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Gene Expression Regulation , High Mobility Group Proteins/metabolism , CCAAT-Enhancer-Binding Proteins/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
11.
Proc Natl Acad Sci U S A ; 120(3): e2208348120, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36623202

ABSTRACT

As an important free energy source, the membrane voltage (Vm) regulates many essential physiological processes in bacteria. However, in comparison with eukaryotic cells, knowledge of bacterial electrophysiology is very limited. Here, we developed a set of novel genetically encoded bacterial Vm sensors which allow single-cell recording of bacterial Vm dynamics in live cells with high temporal resolution. Using these new sensors, we reveal the electrically "excitable" and "resting" states of bacterial cells dependent on their metabolic status. In the electrically excitable state, frequent hyperpolarization spikes in bacterial Vm are observed, which are regulated by Na+/K+ ratio of the medium and facilitate increased antibiotic tolerance. In the electrically resting state, bacterial Vm displays significant cell-to-cell heterogeneity and is linked to the cell fate after antibiotic treatment. Our findings demonstrate the potential of our newly developed voltage sensors to reveal the underpinning connections between bacterial Vm and antibiotic tolerance.


Subject(s)
Anti-Bacterial Agents , Membrane Potentials , Anti-Bacterial Agents/pharmacology , Cell Differentiation
12.
PLoS Pathog ; 19(1): e1011077, 2023 01.
Article in English | MEDLINE | ID: mdl-36652443

ABSTRACT

Ebola virus (EBOV) causes severe hemorrhagic fever in humans with high mortality. In Ebola virus disease (EVD) survivors, EBOV persistence in the eyes may break through the inner blood-retinal barrier (iBRB), leading to ocular complications and EVD recurrence. However, the mechanism by which EBOV affects the iBRB remains unclear. Here, we used the in vitro iBRB model to simulate EBOV in retinal tissue and found that Ebola virus-like particles (EBO-VLPs) could disrupt the iBRB. Cytokine screening revealed that EBO-VLPs stimulate pericytes to secrete vascular endothelial growth factor (VEGF) to cause iBRB breakdown. VEGF downregulates claudin-1 to disrupt the iBRB. Ebola glycoprotein is crucial for VEGF stimulation and iBRB breakdown. Furthermore, EBO-VLPs caused iBRB breakdown by stimulating VEGF in rats. This study provides a mechanistic insight into that EBOV disrupts the iBRB, which will assist in developing new strategies to treat EBOV persistence in EVD survivors.


Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola , Rats , Humans , Animals , Ebolavirus/physiology , Blood-Retinal Barrier , Vascular Endothelial Growth Factor A , Pericytes
14.
Proc Natl Acad Sci U S A ; 119(2)2022 01 11.
Article in English | MEDLINE | ID: mdl-34987100

ABSTRACT

Myeloid lineage cells such as macrophages and dendritic cells (DCs), targeted by HIV-1, are important vehicles for virus dissemination through the body as well as viral reservoirs. Compared to activated lymphocytes, myeloid cells are collectively more resistant to HIV-1 infection. Here we report that NRP-1, encoding transmembrane protein neuropilin-1, is highly expressed in macrophages and DCs but not CD4+ T cells, serving as an anti-HIV factor to inhibit the infectivity of HIV-1 progeny virions. Silencing NRP-1 enhanced the transmission of HIV-1 in macrophages and DCs significantly and increased the infectivity of the virions produced by these cells. We further demonstrated that NRP-1 was packaged into the progeny virions to inhibit their ability to attach to target cells, thus reducing the infectivity of the virions. These data indicate that NRP-1 is a newly identified antiviral protein highly produced in both macrophages and DCs that inhibit HIV-1 infectivity; thus, NRP-1 may be a novel therapeutic strategy for the treatment of HIV-1 infection.


Subject(s)
HIV Infections/drug therapy , Myeloid Cells/metabolism , Neuropilin-1/metabolism , CD4-Positive T-Lymphocytes/metabolism , Cell Line , Dendritic Cells/metabolism , HIV-1 , Humans , Macrophages/metabolism , Macrophages/virology , Virion/metabolism , Virus Replication/drug effects
15.
Nano Lett ; 24(9): 2821-2830, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38407052

ABSTRACT

Single-virus tracking provides a powerful tool for studying virus infection with high spatiotemporal resolution. Quantum dots (QDs) are used to label and track viral particles due to their brightness and photostability. However, labeling viral particles with QDs is not easy. We developed a new method for labeling viral particles with QDs by using the Strep-tag II/streptavidin system. In this method, QDs were site-specifically ligated to viral proteins in live cells and then packaged into viral-like particles (VLPs) of tick-borne encephalitis virus (TBEV) and Ebola virus during viral assembly. With TBEV VLP-QDs, we tracked the clathrin-mediated endocytic entry of TBEV and studied its intracellular dynamics at the single-particle level. Our Strep-tag II/streptavidin labeling procedure eliminates the need for BirA protein expression or biotin addition, providing a simple and general method for site-specifically labeling viral particles with QDs for single-virus tracking.


Subject(s)
Oligopeptides , Quantum Dots , Viruses , Streptavidin , Virion
16.
Plant J ; 115(6): 1599-1618, 2023 09.
Article in English | MEDLINE | ID: mdl-37277961

ABSTRACT

Wounding stress leads to leaf senescence. However, the underlying molecular mechanism has not been elucidated. In this study, we investigated the role of the MdVQ10-MdWRKY75 module in wound-induced leaf senescence. MdWRKY75 was identified as a key positive modulator of wound-induced leaf senescence by activating the expression of the senescence-associated genes MdSAG12 and MdSAG18. MdVQ10 interacted with MdWRKY75 to enhance MdWRKY75-activated transcription of MdSAG12 and MdSAG18, thereby promoting leaf senescence triggered by wounding. In addition, the calmodulin-like protein MdCML15 promoted MdVQ10-mediated leaf senescence by stimulating the interaction between MdVQ10 and MdWRKY75. Moreover, the jasmonic acid signaling repressors MdJAZ12 and MdJAZ14 antagonized MdVQ10-mediated leaf senescence by weakening the MdVQ10-MdWRKY75 interaction. Our results demonstrate that the MdVQ10-MdWRKY75 module is a key modulator of wound-induced leaf senescence and provides insights into the mechanism of leaf senescence caused by wounding.


Subject(s)
Malus , Malus/genetics , Plant Senescence , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Gene Expression Regulation, Plant
17.
BMC Plant Biol ; 24(1): 289, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627624

ABSTRACT

BACKGROUND: Long non-coding RNAs (lncRNAs) play a crucial role in regulating gene expression vital for the growth and development of plants. Despite this, the role of lncRNAs in Chinese cabbage (Brassica rapa L. ssp. pekinensis) pollen development and male fertility remains poorly understood. RESULTS: In this study, we characterized a recessive genic male sterile mutant (366-2 S), where the delayed degradation of tapetum and the failure of tetrad separation primarily led to the inability to form single microspores, resulting in male sterility. To analyze the role of lncRNAs in pollen development, we conducted a comparative lncRNA sequencing using anthers from the male sterile mutant line (366-2 S) and the wild-type male fertile line (366-2 F). We identified 385 differentially expressed lncRNAs between the 366-2 F and 366-2 S lines, with 172 of them potentially associated with target genes. To further understand the alterations in mRNA expression and explore potential lncRNA-target genes (mRNAs), we performed comparative mRNA transcriptome analysis in the anthers of 366-2 S and 366-2 F at two stages. We identified 1,176 differentially expressed mRNAs. Remarkably, GO analysis revealed significant enrichment in five GO terms, most notably involving mRNAs annotated as pectinesterase and polygalacturonase, which play roles in cell wall degradation. The considerable downregulation of these genes might contribute to the delayed degradation of tapetum in 366-2 S. Furthermore, we identified 15 lncRNA-mRNA modules through Venn diagram analysis. Among them, MSTRG.9997-BraA04g004630.3 C (ß-1,3-glucanase) is associated with callose degradation and tetrad separation. Additionally, MSTRG.5212-BraA02g040020.3 C (pectinesterase) and MSTRG.13,532-BraA05g030320.3 C (pectinesterase) are associated with cell wall degradation of the tapetum, indicating that these three candidate lncRNA-mRNA modules potentially regulate pollen development. CONCLUSION: This study lays the foundation for understanding the roles of lncRNAs in pollen development and for elucidating their molecular mechanisms in regulating male sterility in Chinese cabbage.


Subject(s)
Brassica rapa , Brassica , Infertility, Male , RNA, Long Noncoding , Male , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Brassica/genetics , Gene Expression Profiling/methods , Transcriptome , Fertility , Gene Expression Regulation, Plant , Plant Infertility/genetics
18.
Nat Mater ; 22(5): 599-604, 2023 May.
Article in English | MEDLINE | ID: mdl-36894775

ABSTRACT

Excitons, Coulomb-bound electron-hole pairs, play a crucial role in both optical excitation and correlated phenomena in solids. When excitons interact with other quasiparticles, few- and many-body excited states can appear. Here we report an interaction between exciton and charges enabled by unusual quantum confinement in two-dimensional moiré superlattices, which results in many-body ground states composed of moiré excitons and correlated electron lattices. In an H-stacked (60o-twisted) WS2/WSe2 heterobilayer, we found an interlayer moiré exciton whose hole is surrounded by its partner electron's wavefunction distributed among three adjacent moiré traps. This three-dimensional excitonic structure enables large in-plane electrical quadrupole moments in addition to the vertical dipole. Upon doping, the quadrupole facilitates the binding of interlayer moiré excitons to the charges in neighbouring moiré cells, forming intercell charged exciton complexes. Our work provides a framework for understanding and engineering emergent exciton many-body states in correlated moiré charge orders.

19.
Plant Physiol ; 193(2): 1652-1674, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37392474

ABSTRACT

Although brassinolide (BR) and jasmonic acid (JA) play essential roles in the regulation of cold stress responses, the molecular basis of their crosstalk remains elusive. Here, we show a key component of BR signaling in apple (Malus × domestica), BR INSENSITIVE1 (BRI1)-EMS-SUPPRESSOR1 (BES1)-INTERACTING MYC-LIKE PROTEIN1 (MdBIM1), increases cold tolerance by directly activating expression of C-REPEAT BINDING FACTOR1 (MdCBF1) and forming a complex with C-REPEAT BINDING FACTOR2 (MdCBF2) to enhance MdCBF2-activated transcription of cold-responsive genes. Two repressors of JA signaling, JAZMONATE ZIM-DOMAIN1 (MdJAZ1) and JAZMONATE ZIM-DOMAIN2 (MdJAZ2), interact with MdBIM1 to integrate BR and JA signaling under cold stress. MdJAZ1 and MdJAZ2 reduce MdBIM1-promoted cold stress tolerance by attenuating transcriptional activation of MdCBF1 expression by MdBIM1 and interfering with the formation of the MdBIM1-MdCBF2 complex. Furthermore, the E3 ubiquitin ligase ARABIDOPSIS TÓXICOS en LEVADURA73 (MdATL73) decreases MdBIM1-promoted cold tolerance by targeting MdBIM1 for ubiquitination and degradation. Our results not only reveal crosstalk between BR and JA signaling mediated by a JAZ-BIM1-CBF module but also provide insights into the posttranslational regulatory mechanism of BR signaling.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Malus , Brassinosteroids/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Malus/genetics , Malus/metabolism , Arabidopsis/metabolism , Gene Expression Regulation, Plant
20.
Opt Express ; 32(12): 21434-21446, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38859497

ABSTRACT

In most liquid dye lasers, dye cell windows are the optical components most susceptible to laser damage even at very low fluences. Although various mechanisms and mitigation techniques have been explored, damage still occurs at some point, and some behaviors of the process cannot be effectively explained. In this work, we investigated three special behaviors of dye cell window damage which cannot be explained by ordinary laser-induced damage mechanisms. We proposed that damage to dye cell windows can be caused by a contamination process similar to laser-induced contamination (LIC) on space optics, and used the LIC mechanism to analyze the cause of those damage behaviors. Additional experiments and calculations were conducted, providing more evidence in support of the analysis. In addition, it was found that dye molecules, which are necessary for dye lasers, are the primary contaminants in the LIC process. This explains the inevitable damage to dye cell windows.

SELECTION OF CITATIONS
SEARCH DETAIL