Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 412
Filter
Add more filters

Country/Region as subject
Publication year range
1.
BMC Med ; 22(1): 278, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956533

ABSTRACT

BACKGROUND: APRI and FIB-4 scores are used to exclude clinically significant fibrosis (defined as stage ≥ F2) in patients with chronic viral hepatitis. However, the cut-offs for these scores (generated by Youden indices) vary between different patient cohorts. This study aimed to evaluate whether serum dithiothreitol-oxidizing capacity (DOC), i.e., a surrogate test of quiescin sulfhydryl oxidase-1, which is a matrix remodeling enzyme, could be used to non-invasively identify significant fibrosis in patients with various chronic liver diseases (CLDs). METHODS: Diagnostic performance of DOC was compared with APRI and FIB-4 for identifying significant fibrosis. ROC curve analyses were undertaken in: a) two chronic hepatitis B (CHB) cohorts, independently established from hospitals in Wenzhou (n = 208) and Hefei (n = 120); b) a MASLD cohort from Wenzhou hospital (n = 122); and c) a cohort with multiple CLD etiologies (except CHB and MASLD; n = 102), which was identified from patients in both hospitals. Cut-offs were calculated using the Youden index. All CLD patients (n = 552) were then stratified by age for ROC curve analyses and cut-off calculations. RESULTS: Stratified by CLD etiology or age, ROC curve analyses consistently showed that the DOC test was superior to APRI and FIB-4 for discriminating between clinically significant fibrosis and no fibrosis, when APRI and FIB-4 showed poor/modest diagnostic performance (P < 0.05, P < 0.01 and P < 0.001 in 3, 1 and 3 cohort comparisons, respectively). Conversely, the DOC test was equivalent to APRI and FIB-4 when all tests showed moderate/adequate diagnostic performances (P > 0.05 in 11 cohort comparisons). DOC had a significant advantage over APRI or FIB-4 scores for establishing a uniform cut-off independently of age and CLD etiology (coefficients of variation of DOC, APRI and FIB-4 cut-offs were 1.7%, 22.9% and 47.6% in cohorts stratified by CLD etiology, 2.0%, 26.7% and 29.5% in cohorts stratified by age, respectively). The uniform cut-off was 2.13, yielded from all patients examined. Surprisingly, the uniform cut-off was the same as the DOC upper limit of normal with a specificity of 99%, estimated from 275 healthy control individuals. Hence, the uniform cut-off should possess a high negative predictive value for excluding significant fibrosis in primary care settings. A high DOC cut-off with 97.5% specificity could be used for detecting significant fibrosis (≥ F2) with an acceptable positive predictive value (87.1%). CONCLUSIONS: This proof-of-concept study suggests that the DOC test may efficiently rule out and rule in significant liver fibrosis, thereby reducing the numbers of unnecessary liver biopsies. Moreover, the DOC test may be helpful for clinicians to exclude significant liver fibrosis in the general population.


Subject(s)
Biomarkers , Dithiothreitol , Liver Cirrhosis , Humans , Liver Cirrhosis/diagnosis , Liver Cirrhosis/blood , Male , Middle Aged , Biomarkers/blood , Female , Adult , Aged , Oxidation-Reduction , ROC Curve , Cohort Studies , Oxidoreductases Acting on Sulfur Group Donors/blood , Proof of Concept Study
2.
Small ; 20(26): e2310838, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38214694

ABSTRACT

Although bioactive compounds (BCs) have many important functions, their applications are greatly limited due to their own defects. The development of nanocarriers (NCs) technology has gradually overcome the defects of BCs. NCs are equally important as BCs to some extent. Self-assembly (SA) methods to build NCs have many advantages than chemical methods, and SA has significant impact on the structure and function of NCs. However, the relationship among SA mechanism, structure, and function has not been given enough attention. Therefore, from the perspective of bottom-up building mechanism, the concept of SA-structure-function of NCs is emphasized to promote the development of SA-based NCs. First, the conditions and forces for occurring SA are introduced, and then the SA basis and molecular mechanism of protein, polysaccharide, and lipid are summarized. Then, varieties of the structures formed based on SA are introduced in detail. Finally, facing the defects of BCs and how to be well solved by NCs are also elaborated. This review attempts to describe the great significance of constructing artificial NCs to deliver BCs from the aspects of SA-structure-function, so as to promote the development of SA-based NCs and the wide application of BCs.


Subject(s)
Drug Carriers , Drug Delivery Systems , Drug Carriers/chemistry , Drug Delivery Systems/methods , Nanoparticles/chemistry , Humans , Lipids/chemistry
3.
Circ Res ; 131(11): 893-908, 2022 11 11.
Article in English | MEDLINE | ID: mdl-36268709

ABSTRACT

BACKGROUND: Inflammation resolution and cardiac repair initiation after myocardial infarction (MI) require timely activation of reparative signals. Histone lactylation confers macrophage homeostatic gene expression signatures via transcriptional regulation. However, the role of histone lactylation in the repair response post-MI remains unclear. We aimed to investigate whether histone lactylation induces reparative gene expression in monocytes early and remotely post-MI. METHODS: Single-cell transcriptome data indicated that reparative genes were activated early and remotely in bone marrow and circulating monocytes before cardiac recruitment. Western blotting and immunofluorescence staining revealed increases in histone lactylation levels, including the previously identified histone H3K18 lactylation in monocyte-macrophages early post-MI. Through joint CUT&Tag and RNA-sequencing analyses, we identified Lrg1, Vegf-a, and IL-10 as histone H3K18 lactylation target genes. The increased modification and expression levels of these target genes post-MI were verified by chromatin immunoprecipitation-qPCR and reverse transcription-qPCR. RESULTS: We demonstrated that histone lactylation regulates the anti-inflammatory and pro-angiogenic dual activities of monocyte-macrophages by facilitating reparative gene transcription and confirmed that histone lactylation favors a reparative environment and improves cardiac function post-MI. Furthermore, we explored the potential positive role of monocyte histone lactylation in reperfused MI. Mechanistically, we provided new evidence that monocytes undergo metabolic reprogramming in the early stage of MI and demonstrated that dysregulated glycolysis and MCT1 (monocarboxylate transporter 1)-mediated lactate transport promote histone lactylation. Finally, we revealed the catalytic effect of IL (interleukin)-1ß-dependent GCN5 (general control non-depressible 5) recruitment on histone H3K18 lactylation and elucidated its potential role as an upstream regulatory element in the regulation of monocyte histone lactylation and downstream reparative gene expression post-MI. CONCLUSIONS: Histone lactylation promotes early remote activation of the reparative transcriptional response in monocytes, which is essential for the establishment of immune homeostasis and timely activation of the cardiac repair process post-MI.


Subject(s)
Histones , Myocardial Infarction , Humans , Histones/metabolism , Transcriptional Activation , Myocardial Infarction/metabolism , Macrophages/metabolism , Monocytes/metabolism
4.
Crit Rev Food Sci Nutr ; : 1-15, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38961829

ABSTRACT

During the application of Whey proteins (WPs), they often have complex interactions with saccharides (Ss), another important biopolymer in food substrate. The texture and sensory qualities of foods containing WPs and Ss are largely influenced by the interactions of WPs-Ss. Moreover, the combination of WPs and Ss is possible to produce many excellent functional properties including emulsifying properties and thermal stability. However, the interactions between WPs-Ss are complex and susceptible to some processing conditions. In addition, with different interaction ways, they can be applied in different fields. Therefore, the non-covalent interaction mechanisms between WPs-Ss are firstly summarized in detail, including electrostatic interaction, hydrogen bond, hydrophobic interaction, van der Waals force. Furthermore, the existence modes of WPs-Ss are introduced, including complex coacervates, soluble complexes, segregation, and co-solubility. The covalent interactions of WPs-Ss in food applications are often formed by Maillard reaction (dry or wet heat reaction) and occasionally through enzyme induction. Then, two common influencing factors, pH and temperature, on non-covalent/covalent bonds are introduced. Finally, the applications of WPs-Ss complexes and conjugations in improving WP stability, delivery system, and emulsification are described. This review can improve our understanding of the interactions between WPs-Ss and further promote their wider application.

5.
Article in English | MEDLINE | ID: mdl-38591775

ABSTRACT

A Gram-stain-negative, aerobic, rod-shaped and halotolerant bacterium, designated as strain ASW11-75T, was isolated from intertidal sediments in Qingdao, PR China, and identified using a polyphasic taxonomic approach. Growth of strain ASW11-75T occurred at 10-45 °C (optimum, 37 °C), pH 6.5-9.0 (optimum, pH 8.0) and 0.5-18.0 % NaCl concentrations (optimum, 2.5 %). Phylogenetic analyses based on 16S rRNA gene sequences and 1179 single-copy orthologous clusters indicated that strain ASW11-75T is affiliated with the genus Marinobacter. Strain ASW11-75T showed highest 16S rRNA gene sequence similarity to 'Marinobacter arenosus' CAU 1620T (98.5 %). The digital DNA-DNA hybridization and average nucleotide identity values between strain ASW11-75T and its closely related strains (Marinobacter salarius R9SW1T, Marinobacter similis A3d10T, 'Marinobacter arenosus' CAU 1620T, Marinobacter sediminum R65T, Marinobacter salinus Hb8T, Marinobacter alexandrii LZ-8T and Marinobacter nauticus ATCC 49840T) were 19.8-24.5 % and 76.6-80.7 %, respectively. The predominant cellular fatty acids were C16 : 0, C18 : 1 ω9c and C16 : 0 N alcohol. The polar lipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, one unidentified aminophospholipid and two unidentified lipids. The major isoprenoid quinone was ubiquinone-9. The genomic DNA G+C content was 62.2 mol%. Based on genomic and gene function analysis, strain ASW11-75T had lower protein isoelectric points with higher ratios of acidic residues to basic residues and possessed genes related to ion transport and organic osmoprotectant uptake, implying its potential tolerance to salt. The results of polyphasic characterization indicated strain ASW11-75T represents a novel Marinobacter species, for which the name Marinobacter qingdaonensis sp. nov. with the type strain ASW11-75T is proposed. The type strain is ASW11-75T (=KCTC 82497T=MCCC 1K05587T).


Subject(s)
Fatty Acids , Marinobacter , Fatty Acids/chemistry , Phospholipids/chemistry , Seawater/microbiology , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Base Composition , DNA, Bacterial/genetics , Bacterial Typing Techniques
6.
J Gastroenterol Hepatol ; 39(1): 55-65, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37788676

ABSTRACT

BACKGROUND AND AIM: The anti-interleukin-23 antibody risankizumab is being investigated as a treatment for moderate-to-severe Crohn's disease. This post hoc subanalysis evaluates the efficacy and safety of risankizumab therapy in Asian patients. METHODS: ADVANCE (NCT03105128) and MOTIVATE (NCT03104413) were randomized, double-blind, placebo-controlled, phase 3 induction studies. Patients with intolerance/inadequate response to biologic (MOTIVATE) and/or conventional therapy (ADVANCE) were randomized to receive intravenous risankizumab (600 or 1200 mg) or placebo at weeks 0, 4, and 8. Clinical responders to risankizumab could enter the phase 3, randomized, double-blind, placebo-controlled maintenance withdrawal study (FORTIFY; NCT03105102). Patients were rerandomized to receive subcutaneous risankizumab (180 or 360 mg) or placebo (withdrawal) every 8 weeks for 52 weeks. RESULTS: Among 198 Asian patients in the induction studies, clinical remission and endoscopic response at week 12 were achieved by 61.4% and 40.0%, 59.5% and 35.8%, and 27.3% and 9.1% of patients in the risankizumab 600 mg, risankizumab 1200 mg, and placebo groups, respectively. Among 67 patients who entered the maintenance study, clinical remission and endoscopic response at week 52 were achieved by 57.1% and 52.4%, 75.0% and 40.0%, and 53.8% and 34.6% of patients in the risankizumab 180 mg, risankizumab 360 mg, and placebo (withdrawal) groups, respectively. Fistula closure was observed with risankizumab treatment in 28.6% (induction) and 57.1% (maintenance) of patients. Efficacy trends and safety profile were similar to those in non-Asian patients. CONCLUSION: Consistent with non-Asian and global population results, risankizumab was effective and well tolerated in Asian patients with Crohn's disease.


Subject(s)
Crohn Disease , Humans , Crohn Disease/drug therapy , Antibodies, Monoclonal/adverse effects , Remission Induction , Interleukin-23/therapeutic use , Double-Blind Method , Treatment Outcome
7.
Appl Microbiol Biotechnol ; 108(1): 33, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38175234

ABSTRACT

Due to the limited resources and environmental problems associated with fossil fuels, there is a growing interest in utilizing renewable resources for the production of biofuels through microbial fermentation. Isobutanol is a promising biofuel that could potentially replace gasoline. However, its production efficiency is currently limited by the use of naturally isolated microorganisms. These naturally isolated microorganisms often encounter problems such as a limited range of substrates, low tolerance to solvents or inhibitors, feedback inhibition, and an imbalanced redox state. This makes it difficult to improve their production efficiency through traditional process optimization methods. Fortunately, recent advancements in genetic engineering technologies have made it possible to enhance microbial hosts for the increased production of isobutanol from renewable resources. This review provides a summary of the strategies and synthetic biology approaches that have been employed in the past few years to improve naturally isolated or non-natural microbial hosts for the enhanced production of isobutanol by utilizing different renewable resources. Furthermore, it also discusses the challenges that are faced by engineered microbial hosts and presents future perspectives to enhancing isobutanol production. KEY POINTS: • Promising potential of isobutanol to replace gasoline • Engineering of native and non-native microbial host for isobutanol production • Challenges and opportunities for enhanced isobutanol production.


Subject(s)
Biofuels , Gasoline , Butanols , Cloning, Molecular
8.
Antonie Van Leeuwenhoek ; 117(1): 28, 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38280034

ABSTRACT

A novel Gram-stain-negative, strictly aerobic and bioflocculant-producing bacterium, designated as ASW11-36T, was isolated from an intertidal sand collected from coastal areas of Qingdao, PR China. Growth occurred at 15-40 °C (optimum, 30 °C), pH 7.0-9.0 (optimum, pH 7.5) and with 1.5-7.0% (w/v) NaCl (optimum, 2.5-3.0%). In the whole-cell fatty acid pattern prevailed C16:0 and summed feature 3 (C16:1 ω7c and/or C16:1 ω6c). The major isoprenoid quinone was determined to be Q-8 and the major polar lipids were phosphatidylethanolamine (PE) and phosphatidylglycerol (PG), one unidentified aminolipid (AL), one unidentified glycolipid (GL), and two lipids (L1, L2). Based on the phylogenetic analyses of 16S rRNA gene sequences and 618 single-copy orthologous clusters, strain ASW11-36T could represent a novel member of the genus Alteromonas and was closely related to Alteromonas flava P0211T (98.4%) and Alteromonas facilis P0213T (98.3%). The pairwise average nucleotide identity and digital DNA-DNA hybridization values of the ASW11-36T genome assembly against the closely related species genomes were 71.8% and 21.7%, respectively, that clearly lower than the proposed thresholds for species. Based on phenotypic, phylogenetic, and chemotaxonomic analyses, strain ASW11-36T is considered to represent a novel species of the genus Alteromonas, for which the name Alteromonas arenosi sp. nov. is proposed. The type strain is ASW11-36T (= KCTC 82496T = MCCC 1K05585T). In addition, the strain yielded 65% of flocculating efficiency in kaolin suspension with CaCl2 addition. The draft genome of ASW11-36T shared abundant putative CAZy family related genes, especially involved in the biosynthesis of exopolysaccharides, implying its potential environmental and biological applications.


Subject(s)
Alteromonas , Sand , Phylogeny , RNA, Ribosomal, 16S/genetics , Bacterial Typing Techniques , Fatty Acids , Ubiquinone , DNA , Sequence Analysis, DNA , DNA, Bacterial/genetics , Phospholipids
9.
Antonie Van Leeuwenhoek ; 117(1): 74, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691182

ABSTRACT

A Gram-stain positive, aerobic, alkalitolerant and halotolerant bacterium, designated HH7-29 T, was isolated from the confluence of the Fenhe River and the Yellow River in Shanxi Province, PR China. Growth occurred at pH 6.0-12.0 (optimum, pH 8.0-8.5) and 15-40℃ (optimum, 32℃) with 0.5-24% NaCl (optimum, 2-9%). The predominant fatty acids (> 10.0%) were iso-C15:0 and anteiso-C15:0. The major menaquinones were MK-7 and MK-8. The polar lipids were phosphatidylglycerol, diphosphatidylglycerol and two unidentified phospholipids. Phylogenetic analyses based on the 16S rRNA gene sequence revealed that strain HH7-29 T was a member of the genus Jeotgalibacillus, exhibiting high sequence similarity to the 16S rRNA gene sequences of Jeotgalibacillus alkaliphilus JC303T (98.4%), Jeotgalibacillus salarius ASL-1 T (98.1%) and Jeotgalibacillus alimentarius YKJ-13 T (98.1%). The genomic DNA G + C content was 43.0%. Gene annotation showed that strain HH7-29 T had lower protein isoelectric points (pIs) and possessed genes related to ion transport and organic osmoprotectant uptake, implying its potential tolerance to salt and alkali. The average nucleotide identity, digital DNA-DNA hybridization values, amino acid identity values, and percentage of conserved proteins values between strain HH7-29 T and its related species were 71.1-83.8%, 19.5-27.4%, 66.5-88.4% and 59.8-76.6%, respectively. Based on the analyses of phenotypic, chemotaxonomic, phylogenetic and genomic features, strain HH7-29 T represents a novel species of the genus Jeotgalibacillus, for which the name Jeotgalibacillus haloalkalitolerans sp. nov. is proposed. The type strain is HH7-29 T (= KCTC 43417 T = MCCC 1K07541T).


Subject(s)
Base Composition , DNA, Bacterial , Fatty Acids , Phylogeny , RNA, Ribosomal, 16S , Rivers , RNA, Ribosomal, 16S/genetics , China , Rivers/microbiology , DNA, Bacterial/genetics , Fatty Acids/analysis , Sodium Chloride/metabolism , Bacterial Typing Techniques , Phospholipids/analysis , Sequence Analysis, DNA , Nucleic Acid Hybridization
10.
J Nanobiotechnology ; 22(1): 7, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38166931

ABSTRACT

Radionuclides internal radiotherapy (RIT) is a clinically powerful method for cancer treatment, but still poses unsatisfactory therapeutic outcomes due to the hypoxic characteristic of tumor microenvironment (TME). Catalase (CAT) or CAT-like nanomaterials can be used to enzymatically decompose TME endogenous H2O2 to boost TME oxygenation and thus alleviate the hypoxic level within tumors, but their effectiveness is still hindered by the short-lasting of hypoxia relief owing to their poor stability or degradability, thereby failing to match the long therapeutic duration of RIT. Herein, we proposed an innovative strategy of using facet-dependent CAT-like Pd-based two-dimensional (2D) nanoplatforms to continuously enhance RIT. Specifically, rationally designed 2D Pd@Au nanosheets (NSs) enable consistent enzymatic conversion of endogenous H2O2 into O2 to overcome hypoxia-induced RIT resistance. Furthermore, partially coated Au layer afford NIR-II responsiveness and moderate photothermal treatment that augmenting their enzymatic functionality. This approach with dual-effect paves the way for reshaping TME and consequently facilitating the brachytherapy ablation of cancer. Our work offers a significant advancement in the integration of catalytic nanomedicine and nuclear medicine, with the overarching goal of amplifying the clinical benefits of RIT-treated patients.


Subject(s)
Nanoparticles , Neoplasms , Humans , Hydrogen Peroxide , Tumor Microenvironment , Hypoxia/drug therapy , Catalysis , Nanomedicine , Cell Line, Tumor , Neoplasms/drug therapy , Neoplasms/radiotherapy
11.
Lipids Health Dis ; 23(1): 42, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38331880

ABSTRACT

BACKGROUND: Lewy body dementia (LBD) ranks second among prevalent neurodegenerative dementias. Previous studies have revealed associations of serum lipid measures with several neurodegenerative diseases. Nevertheless, the potential connection between serum lipids and LBD remains undetermined. In this study, Mendelian randomization (MR) analyses were carried out to assess the causal relationships of several serum lipid measures with the risk of developing LBD. METHODS: Genome-wide association study (GWAS) data for serum lipids and LBD in European descent individuals were acquired from publicly available genetic summary data. A series of filtering procedures were conducted to identify the genetic variant candidates that are related to serum lipids, including high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and triglycerides (TG). The causal effects were primarily determined through inverse-variance weighting (IVW)-based analyses. RESULTS: Neither TG (odds ratio [OR] = 1.149; 95% confidence interval [CI], 0.887-1.489; P = 0.293) nor HDL-C (OR = 0.864; 95% CI, 0.718-1.041; P = 0.124) had causal effects on LBD. However, a causal relationship was identified between LDL-C and LBD (OR = 1.343; 95% CI, 1.094-1.649; P = 0.005), which remained significant (OR = 1.237; 95% CI, 1.015-1.508; P = 0.035) following adjustment for HDL-C and TG in multivariable MR. CONCLUSIONS: Elevated serum LDL-C increases the risk of LBD, while HDL-C and TG have no significant causal effects on LBD.


Subject(s)
Lewy Body Disease , Mendelian Randomization Analysis , Humans , Cholesterol, LDL , Risk Factors , Genome-Wide Association Study , Lewy Body Disease/genetics , Polymorphism, Single Nucleotide/genetics , Triglycerides , Cholesterol, HDL
12.
Nano Lett ; 23(17): 8288-8294, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37610068

ABSTRACT

Controlling resistance by external fields provides fascinating opportunities for the development of novel devices and circuits, such as temperature-field-induced superconductors, magnetic-field-triggered giant magnetoresistance devices, and electric-field-operated flash memories. In this work, we demonstrate a light-triggered nonvolatile resistive switching behavior in oxygen-doped MoS2. The two-terminal devices exhibit stable light-modulated resistive switching characteristics and optically tunable synaptic properties with an on/off ratio of up to 104. The integrated device with crossbar architecture enables simultaneous image sensing, preprocessing, and storage in a single device, thereby increasing the training efficiency and recognition rate of image recognition tasks. This work presents a novel pathway to develop the next generation of light-controlled memory and artificial vision systems for neuromorphic computing.

13.
Molecules ; 29(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38930856

ABSTRACT

The extract of Dendrobium huoshanense, a traditional Chinese medicinal and food homologous plant belonging to the family Orchidaceae, was previously reported to have hypoglycemic and antioxidant effects. In this study, the direct effects of polysaccharide (DHP) and non-polysaccharide (NDHP) components of D. huoshanense, as well as its water extract (DHWE) were compared with that of metformin (an antidiabetic drug) on the gut microbiota (collected from fecal flora) of rats with streptozotocin-induced type 1 diabetes (T1D) using an in vitro fermentation method. The results showed that DHWE, DHP, and NDHP reduced pH and increased bacterial proliferation and short-chain fatty acid (SCFA) content in fermentation broth. DHWE, DHP, NDHP and metformin promoted the production of acetic and propionic acid, acetic acid, propionic acid and butyric acid, and propionic acid, respectively. DHWE, DHP, and NDHP reduced the abundance of Proteobacteria (subdominant pathogenic bacteria) and increased the abundance of Firmicutes (dominant beneficial gut bacteria). NDHP also reduced the abundance of Bacteroidetes (beneficial and conditional pathogenic). Metformin increased the abundance of Proteobacteria and reduced the abundance of Firmicutes and Bacteroidetes. At the genus level, NDHP promoted the proliferation of Megamonas and Megasphaera and decreased harmful bacteria (e.g., Klebsiella), and DHP increased the abundance of Prevotellaceae (opportunistic and usually harmless). By contrast, metformin increased the abundance of harmful bacteria (e.g., Citrobacter) and reduced the abundance of beneficial bacteria (e.g., Oscillospira). Our study indicates that DHWE, DHP, and NDHP are potentially more beneficial than metformin on the gut microbiota of T1D rats in vitro.


Subject(s)
Dendrobium , Diabetes Mellitus, Type 1 , Fatty Acids, Volatile , Gastrointestinal Microbiome , Metformin , Polysaccharides , Animals , Gastrointestinal Microbiome/drug effects , Metformin/pharmacology , Dendrobium/chemistry , Polysaccharides/pharmacology , Polysaccharides/chemistry , Rats , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/microbiology , Fatty Acids, Volatile/metabolism , Hypoglycemic Agents/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Male , Diabetes Mellitus, Experimental/drug therapy
14.
Angew Chem Int Ed Engl ; : e202407923, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38738617

ABSTRACT

Although catenated cages have been widely constructed due to their unique and elegant topological structures, cyclic catenanes formed by the connection of multiple catenane units have been rarely reported. Herein, based on the orthogonal metal-coordination-driven self-assembly, we prepare a series of heterometallic [2]catenanes and cyclic bis[2]catenanes, whose structures are clearly evidenced by single-crystal X-ray analysis. Owing to the multiple positively charged nature, as well as the potential synergistic effect of the Cu(I) and Pt(II) metal ions, the cyclic bis[2]catenanes display broad-spectrum antibacterial activity. This work not only provides an efficient strategy for the construction of heterometallic [2]catenanes and cyclic bis[2]catenanes but also explores their applications as superior antibacterial agents, which will promote the construction of advanced supramolecular structures for biomedical applications.

15.
Plant J ; 109(6): 1375-1385, 2022 03.
Article in English | MEDLINE | ID: mdl-34905264

ABSTRACT

Slow development has been shown to be a general mechanism to restore the fertility of thermo-sensitive and photoperiod-sensitive genic male sterile (TGMS and PGMS) lines in Arabidopsis. rpg1 is a TGMS line defective in primexine, which is essential for pollen wall pattern formation. Here, we showed that RPG1-GFP was highly expressed in microsporocytes, microspores, and pollen grains but not in the tapetum in the complemented transgenic line, suggesting that microsporocytes are the main sporophytic cells for primexine formation. Further cytological observations showed that primexine formation in rpg1 was partially restored under slow growth conditions, leading to its fertility restoration. RPG2 is the homolog of RPG1 in Arabidopsis. We revealed that the fertility recovery of rpg1 rpg2 was significantly reduced compared with that of rpg1 under low temperature. The RPG2-GFP protein was also expressed in microsporocytes in the RPG2-GFP (WT) transgenic line. These results suggest that RPG2 plays a redundant role in rpg1 fertility restoration. rpg1 plants were male sterile at the early growth stage, while their fertility was partially restored at the late developmental stage. The fertility of the rpg1 lateral branches was also partially restored. Further growth analysis showed that slow growth at the late reproductive stage or on the lateral branches led to fertility restoration. This work reveals the importance of gene redundancy in fertility restoration for TGMS lines and provides further insight into pollen wall pattern formation.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Fertility/genetics , Plant Infertility/genetics , Pollen/metabolism
16.
Anal Chem ; 95(5): 2628-2632, 2023 02 07.
Article in English | MEDLINE | ID: mdl-36705511

ABSTRACT

A novel microfiber-like biohydrogel was fabricated by a facile approach relying on electroactive bacteria-induced graphene oxide reduction and confined self-assembly in a capillary tube. The microfiber-like biohydrogel (d = ∼1 mm) embedded high-density living cells and activated efficient electron exchange between cells and the conductive graphene network. Further, a miniature whole-cell electrochemical biosensing system was developed and applied for fumarate detection under -0.6 V (vs Ag/AgCl) applied potential. Taking advantage of its small size, high local cell density, and excellent electron exchange, this microfiber-like biohydrogel-based sensing system reached a linear calibration curve (R2 = 0.999) ranging from 1 nM to 10 mM. The limit of detection obtained was 0.60 nM, which was over 1300 times lower than a traditional biosensor for fumarate detection in 0.2 µL microdroplets. This work opened a new dimension for miniature whole-cell electrochemical sensing system design, which provided the possibility for bioelectrochemical detection in small volumes or three-dimensional local detection at high spatial resolutions.


Subject(s)
Biosensing Techniques , Graphite , Electrochemical Techniques/methods , Biosensing Techniques/methods , Bacteria , Fumarates , Electric Conductivity , Limit of Detection
17.
Anal Chem ; 95(13): 5747-5753, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36951754

ABSTRACT

Drug-induced liver injury (DILI) is a major clinical issue associated with the majority of commercial drugs. During DILI, the peroxynitrite (ONOO-) level is upregulated in the liver. However, traditional methods are unable to timely monitor the dynamic changes of the ONOO- level during DILI in vivo. Therefore, ONOO--activated near-infrared (NIR) fluorescent probes with high sensitivity and selectivity are key to the early diagnosis of DILI in situ. Herein, we report a novel ONOO--responsive NIR fluorescent probe, QCy7-DP, which incorporates a donor-dual-acceptor π-electron cyanine skeleton with diphenyl phosphinate. The ONOO--mediated highly selective hydrolytic cleavage via an addition-elimination pathway of diphenyl phosphinate produced the deprotonated form of QCy7 in physiological conditions with a distinctive extended conjugated π-electron system and ∼200-fold enhancement in NIR fluorescence emission at 710 nm. Moreover, the probe QCy7-DP was successfully used for the imaging of the endogenous and exogenous ONOO- concentration changes in living cells. Importantly, in vivo fluorescence imaging tests demonstrated that the probe can effectively detect the endogenous generation of ONOO- in an acetaminophen (APAP)-induced liver injury mouse model. This study provides insight into the design of highly selective NIR fluorescent probes suitable for spatiotemporal monitoring of ONOO- under different pathological conditions.


Subject(s)
Chemical and Drug Induced Liver Injury , Fluorescent Dyes , Animals , Mice , Fluorescent Dyes/metabolism , Peroxynitrous Acid/metabolism , Biphenyl Compounds , Optical Imaging , Chemical and Drug Induced Liver Injury/diagnostic imaging
18.
J Transl Med ; 21(1): 328, 2023 05 18.
Article in English | MEDLINE | ID: mdl-37198593

ABSTRACT

BACKGROUND: Oral squamous cell carcinoma (OSCC) is one of the most prevalent and fatal oral cancers. Mitochondria-targeting therapies represent promising strategies against various cancers, but their applications in treating OSCC are limited. Alantolactone (ALT) possesses anticancer properties and also regulates mitochondrial events. In this study, we explored the effects of ALT on OSCC and the related mechanisms. METHODS: The OSCC cells were treated with varying concentrations and duration of ALT and N-Acetyl-L-cysteine (NAC). The cell viability and colony formation were assessed. The apoptotic rate was evaluated by flow cytometry with Annexin V-FITC/PI double staining. We used DCFH-DA and flow cytometry to detect reactive oxygen species (ROS) production and DAF-FM DA to investigate reactive nitrogen species (RNS) level. Mitochondrial function was reflected by mitochondrial reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and ATP levels. KEGG enrichment analyses determined the mitochondrial-related hub genes involved in OSCC progression. Dynamin-related protein 1 (Drp1) overexpression plasmids were further transfected into the cells to analyze the role of Drp1 in OSCC progression. Immunohistochemistry staining and western blot verified the expression of the protein. RESULTS: ALT exerted anti-proliferative and pro-apoptosis effects on OSCC cells. Mechanistically, ALT elicited cell injury by promoting ROS production, mitochondrial membrane depolarization, and ATP depletion, which were reversed by NAC. Bioinformatics analysis showed that Drp1 played a crucial role in OSCC progression. OSCC patients with low Drp1 expression had a higher survival rate. The OSCC cancer tissues presented higher phosphorylated-Drp1 and Drp1 levels than the normal tissues. The results further showed that ALT suppressed Drp1 phosphorylation in OSCC cells. Moreover, Drp1 overexpression abolished the reduced Drp1 phosphorylation by ALT and promoted the cell viability of ALT-treated cells. Drp1 overexpression also reversed the mitochondrial dysfunction induced by ALT, with decreased ROS production, and increased mitochondrial membrane potential and ATP level. CONCLUSIONS: ALT inhibited proliferation and promoted apoptosis of oral squamous cell carcinoma cells via impairment of mitochondrial homeostasis and regulation of Drp1. The results provide a solid basis for ALT as a therapeutic candidate for treating OSCC, with Drp1 being a novel therapeutic target in treating OSCC.


Subject(s)
Dynamins , Mouth Neoplasms , Squamous Cell Carcinoma of Head and Neck , Humans , Adenosine Triphosphate/metabolism , Apoptosis , Cell Line, Tumor , Down-Regulation , Dynamins/metabolism , Dynamins/pharmacology , Dynamins/therapeutic use , Mitochondria/metabolism , Mouth Neoplasms/drug therapy , Mouth Neoplasms/pathology , Phosphorylation , Reactive Oxygen Species/metabolism , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/pathology
19.
Nat Immunol ; 12(5): 441-9, 2011 May.
Article in English | MEDLINE | ID: mdl-21423173

ABSTRACT

Subcompartments of the plasma membrane are believed to be critical for lymphocyte responses, but few genetic tools are available to test their function. Here we describe a previously unknown X-linked B cell-deficiency syndrome in mice caused by mutations in Atp11c, which encodes a member of the P4 ATPase family thought to serve as 'flippases' that concentrate aminophospholipids in the cytoplasmic leaflet of cell membranes. Defective ATP11C resulted in a lower rate of phosphatidylserine translocation in pro-B cells and much lower pre-B cell and B cell numbers despite expression of pre-rearranged immunoglobulin transgenes or enforced expression of the prosurvival protein Bcl-2 to prevent apoptosis and abolished pre-B cell population expansion in response to a transgene encoding interleukin 7. The only other abnormalities we noted were anemia, hyperbilirubinemia and hepatocellular carcinoma. Our results identify an intimate connection between phospholipid transport and B lymphocyte function.


Subject(s)
Adenosine Triphosphatases/immunology , B-Lymphocytes/immunology , Cell Differentiation/immunology , Endocytosis/immunology , Phosphoserine/immunology , Adenosine Triphosphatases/genetics , Animals , B-Lymphocytes/enzymology , Base Sequence , Female , Flow Cytometry , Genes, bcl-2/immunology , Interleukin-7/genetics , Interleukin-7/immunology , Liver/cytology , Liver/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Knockout , Mice, Transgenic , Molecular Sequence Data , Mutagenesis/immunology , RNA, Messenger/chemistry , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction
20.
Histopathology ; 82(2): 340-353, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36221168

ABSTRACT

Exuberant large T-cell proliferations in Kikuchi disease can potentially be misdiagnosed as lymphoma. In this study, we explore their clinicopathological features and summarize key points that can be used to distinguish them from T-cell lymphoma. The cohort consisted of 25 cases of Kikuchi disease with an exuberant large T-cell proliferation, which, in part, mimicked lymphoma. The median age was 25 years with a female:male ratio of 4:1. By B-scan ultrasonography, patients presented with either isolated lymphadenopathy (68%) involving the cervical and axillary regions or generalized lymphadenopathy (32%). Histologically, lymph nodes showed paracortical and interfollicular expansion by sheets of large cells associated with karyorrhectic debris. Histiocytes and plasmacytoid dendritic cells were present in the background. No case showed complete effacement of lymph node architecture. The large cells were CD8-positive cytotoxic T-cells with a high proliferation rate. These T-cells showed decreased BCL-2 in 17 (68%) cases. CD5 expression was decreased in 10 (40%) cases. Histiocytes in the background were positive for myeloperoxidase. Clonal TRG and/or TRB rearrangements were detected in 2 of 10 (20%) cases. In conclusion, large T-cell proliferations in Kikuchi disease can be alarming at the morphologic and immunophenotypic levels and need to be distinguished from T-cell lymphoma. Clinical features helpful in the differential diagnosis include young patients and lymphadenopathy involving the cervical and axillary regions. Major pathologic features helpful in this differential diagnosis include partial involvement of the lymph node and the presence of karyorrhectic debris, crescent-shaped histiocytes, and/or loose aggregates of plasmacytoid dendritic cells.


Subject(s)
Histiocytic Necrotizing Lymphadenitis , Lymphoma, T-Cell , Lymphoma , Humans , Female , Male , Adult , Histiocytic Necrotizing Lymphadenitis/diagnosis , T-Lymphocytes , Cell Proliferation
SELECTION OF CITATIONS
SEARCH DETAIL