Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Environ Sci Technol ; 57(46): 18172-18182, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37129473

ABSTRACT

China's nitrogen oxide (NOx) emissions have undergone significant changes over the past few decades. However, nonfossil fuel NOx emissions are not yet well constrained in urban environments, resulting in a substantial underestimation of their importance relative to the known fossil fuel NOx emissions. We developed an approach using machine learning that is accurate enough to generate a long time series of the nitrogen isotopic composition (δ15N) of atmospheric nitrate using high-level accuracies of air pollutants and meteorology data. Air temperature was found to be the critical driver of the variation of nitrate δ15N at daily resolution based on this approach, while significant reductions of aerosol and its precursor emissions played a key role in the change of nitrate δ15N on the yearly scale. Predictions from this model found a significant decrease in nitrate δ15N in Chinese megacities (Beijing and Guangzhou as representative cities in the north and south, respectively) since 2013, implying an enhanced contribution of nonfossil fuel NOx emissions to nitrate aerosols (up to 22%-26% in 2021 from 18%-22% in 2013 quantified by an isotope mixing model), as confirmed by the Weather Research and Forecasting model coupled with online chemistry (WRF-Chem) simulation. Meanwhile, the declining contribution in coal combustion (34%-39% in 2013 to 31%-34% in 2021) and increasing contribution of natural gas combustion (11%-14% in 2013 to 14%-17% in 2021) demonstrated the transformation of China's energy structure from coal to natural gas. This approach provides missing records for exploring long-term variability in the nitrogen isotope system and may contribute to the study of the global reactive nitrogen biogeochemical cycle.


Subject(s)
Air Pollutants , Nitrates , Nitrates/analysis , Natural Gas , Seasons , Environmental Monitoring/methods , China , Air Pollutants/analysis , Coal/analysis , Nitric Oxide , Nitrogen Isotopes/analysis , Aerosols/analysis , Particulate Matter/analysis
2.
Environ Sci Technol ; 57(25): 9243-9251, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37311057

ABSTRACT

Himalayas and Tibetan Plateau (HTP) is important for global biodiversity and regional sustainable development. While numerous studies have revealed that the ecosystem in this unique and pristine region is changing, their exact causes are still poorly understood. Here, we present a year-round (23 March 2017 to 19 March 2018) ground- and satellite-based atmospheric observation at the Qomolangma monitoring station (QOMS, 4276 m a.s.l.). Based on a comprehensive chemical and stable isotope (15N) analysis of nitrogen compounds and satellite observations, we provide unequivocal evidence that wildfire emissions in South Asia can come across the Himalayas and threaten the HTP's ecosystem. Such wildfire episodes, mostly occurring in spring (March-April), not only substantially enhanced the aerosol nitrogen concentration but also altered its composition (i.e., rendering it more bioavailable). We estimated a nitrogen deposition flux at QOMS of ∼10 kg N ha-1 yr-1, which is approximately twice the lower value of the critical load range reported for the Alpine ecosystem. Such adverse impact is particularly concerning, given the anticipated increase of wildfire activities in the future under climate change.


Subject(s)
Air Pollutants , Wildfires , Ecosystem , Tibet , Nitrogen/analysis , Nitrogen/chemistry , Aerosols/analysis , Environmental Monitoring , Air Pollutants/analysis
3.
Acta Pharmacol Sin ; 44(1): 105-119, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35732707

ABSTRACT

Hederacoside C (HSC) has attracted much attention as a novel modulator of inflammation, but its anti-inflammatory mechanism remains elusive. In the present study, we investigated how HSC attenuated intestinal inflammation in vivo and in vitro. HSC injection significantly alleviated TNBS-induced colitis by inhibiting pro-inflammatory cytokine production and colonic epithelial cell apoptosis, and partially restored colonic epithelial cell proliferation. The therapeutic effect of HSC injection was comparable to that of oral administration of mesalazine (200 mg·kg-1·d-1, i.g.). In LPS-stimulated human intestinal epithelial Caco-2 cells, pretreatment with HSC (0.1, 1, 10 µM) significantly inhibited activation of MAPK/NF-κB and its downstream signaling pathways. Pretreatment with HSC prevented LPS-induced TLR4 dimerization and MyD88 recruitment in vitro. Quantitative proteomic analysis revealed that HSC injection regulated 18 proteins in the colon samples, mainly clustered in neutrophil degranulation. Among them, S100A9 involved in the degranulation of neutrophils was one of the most significantly down-regulated proteins. HSC suppressed the expression of S100A9 and its downstream genes including TLR4, MAPK, and NF-κB axes in colon. In Caco-2 cells, recombinant S100A9 protein activated the MAPK/NF-κB signaling pathway and induced inflammation, which were ameliorated by pretreatment with HSC. Notably, HSC attenuated neutrophil recruitment and degranulation as well as S100A9 release in vitro and in vivo. In addition, HSC promoted the expression of tight junction proteins and repaired the epithelial barrier via inhibiting S100A9. Our results verify that HSC ameliorates colitis via restoring impaired intestinal barrier through moderating S100A9/MAPK and neutrophil recruitment inactivation, suggesting that HSC is a promising therapeutic candidate for colitis.


Subject(s)
Colitis , NF-kappa B , Humans , NF-kappa B/metabolism , Caco-2 Cells , Calgranulin B/adverse effects , Neutrophil Infiltration , Toll-Like Receptor 4/metabolism , Lipopolysaccharides/pharmacology , Proteomics , Cytokines/metabolism , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Inflammation
4.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 54(2): 415-421, 2023 Mar.
Article in Zh | MEDLINE | ID: mdl-36949708

ABSTRACT

Objective: To investigate the relationship between abnormal activation of T cell subsets in peripheral whole blood and the recovery of immune function in persons infected with HIV-1, and to examine the relationship between the size of the viral reservoir of HIV-1 DNA and T cell subsets. Methods: HIV-1-infected persons who underwent routine testing between July 2019 and May 2020 were the target population of the study. According to whether, at the time of enrollment, their CD4+ T cells reached 500 cells/µL after antiretroviral therapy (ART), HIV-1-infected persons were divided into two groups, 76 in the deficiency group and 61 in the immune recovery group. In addition, 22 people who were not exposed to HIV-1, and who were tested negative for HIV-1 antibody were selected as the control group. For the three groups of subjects, tests of the T cell subsets were conducted. A total of 77 HIV-1-infected persons, with 44 from the deficiency group and 33 from the recovery group, were examined for HIV-1 DNA reservoir. The deficiency group and the recovery group were followed up 6 months later and the CD4+ T cell test results of 133 blood samples were collected, with 74 from the deficiency group and 59 from the recovery group. Results: The proportions of activated CD4+ and CD8+ T cells of the deficiency group were higher than those of the recovery group and the control group. The proportions of senescent CD4+ and CD8+ T cells in the deficiency group were comparable to those of the recovery group, which were higher than those of the control group, showing significant differences only in senescent CD8+ T cells, and no significant difference in senescent CD4+ T cells. The deficiency group expressed higher levels of effector memory CD4+ T and CD8+ T cells than the control group did, and the recovery group only expressed a higher level of effect memory CD8+ T cells. Both the deficiency group and the recovery group showed lower levels of central memory CD4+ T and CD8+ T cells than the control group did, and the recovery group had an even lower level of central memory CD4+ T cells than the deficiency group did. The recovery group showed a higher expression level of naïve CD4+ T cells, and the deficiency group and the recovery group had lower expression levels of naïve CD8+ T cells than the control group did. There was no correlation between the size of the viral reservoir of HIV-1 DNA and CD4+ T cell count or the T cell subsets. Activated CD4+ T cells, activated CD8+ T cells, and central memory CD4+ T cells were negatively correlated with the follow-up findings for CD4+ T cells, with r at -0.378, -0.334, and -0.322, respectively ( P<0.05). Naïve CD4+ T cells and naïve CD8+ T cells were positively correlated with the follow-up findings for CD4+ T cell subset, with r at 0.350 and 0.267, respectively ( P<0.05). Conclusion: HIV-1 infected persons have varying degrees of abnormal immune activation of T cell subsets. The abnormal activation of some T-cell subsets is partly associated with the subsequent recovery of immune functions and the size of the viral reservoir of HIV-1 DNA was not associated with the T cell subsets.


Subject(s)
HIV Infections , HIV-1 , Humans , CD8-Positive T-Lymphocytes , CD4-Positive T-Lymphocytes , HIV Infections/drug therapy , T-Lymphocyte Subsets , Viral Load
5.
Environ Sci Technol ; 56(11): 6870-6879, 2022 06 07.
Article in English | MEDLINE | ID: mdl-34428888

ABSTRACT

Until now, there has been a lack of knowledge regarding the vertical profiles of nitrate formation in the urban boundary layer (BL) based on triple oxygen isotopes. Here, we conducted vertical measurements of the oxygen anomaly of nitrate (Δ17O-NO3-) on a 325 m meteorological tower in urban Beijing during the winter and summer. The simultaneous vertical measurements suggested different formation mechanisms of nitrate aerosols at ground level and 120 and 260 m in the winter due to the less efficient vertical mixing under stable atmospheric conditions. Particularly, different chemical processes of nitrate aerosols at the three heights were found between clean days and polluted days in the winter. On clean days, nocturnal chemistry (NO3 + HC and N2O5 uptake) contributed to nitrate production equally with OH/H2O + NO2 at ground level, while it dominated aloft (contributing 80% of nitrate production at 260 m), due to the higher aerosol liquid water content and O3 concentration there. On polluted days, nocturnal reactions dominated the formation of nitrate at the three heights. Particularly, the contribution of the OH/H2O + NO2 pathway to nitrate production increased from the ground level to 120 m might be attributed to the hydrolysis of NO2 to HONO and then further photolysis to OH radicals in the day. In contrast, the proportion of N2O5 + H2O decreased at 260 m, likely due to the low relative humidity aloft that inhibited the N2O5 hydrolysis reactions in the residual layer. Our results highlighted that the differences between meteorology and gaseous precursors could largely affect particulate nitrate formation at different heights within the polluted urban BL.


Subject(s)
Air Pollutants , Nitrates , Aerosols , Air Pollutants/analysis , Beijing , China , Environmental Monitoring , Nitrates/analysis , Nitrogen Dioxide , Nitrogen Oxides/analysis , Organic Chemicals , Oxygen Isotopes/analysis , Seasons
6.
Environ Res ; 206: 112554, 2022 04 15.
Article in English | MEDLINE | ID: mdl-34951988

ABSTRACT

Humic-like substances (HULIS), as important components of brown carbon (BrC), play an important role in climate change. In this study, one-year PM2.5 samples from 2017 to 2018 were collected at Nanjing, China and the water soluble HULIS and other chemical species were analyzed to investigate the seasonal variations, optical properties and possible sources. The HULIS concentrations exhibited highest in winter and lowest in summer. The annual averaged HULIS concentration was 2.61 ± 1.79 µg m-3, accounting for 45 ± 13% of water-soluble organic carbon (WSOC). The HULIS light absorption coefficient at 365 nm (Abs365, HULIS) averagely accounted for 71 ± 19% of that of WSOC, suggesting that HULIS are the main light-absorbing components in WSOC. The annual averaged Ångström absorption exponent and mass absorption efficiency of HULIS at 365 nm were 5.22 ± 0.77 and 1.71 ± 0.70 m2 g-1. Good correlations between HULIS with levoglucosan and K+ suggested biomass burning (BB) influence on HULIS. High concentrations of HULIS and secondary species (e.g., NO3-, SO42-, NH4+, C2O42-) were found in present of high relative humidity, indicating strong aqueous phase secondary HULIS formation. Secondary HULIS produced from anthropogenic and biogenic precursors were quantified based on the positive matrix factorization (PMF) model and the results showed that both fossil (55%) and biogenic (45%) emission sources made great contributions to HULIS. Fossil fuel combustion significantly contributed to HULIS formation throughout the whole year, which were enriched with more secondary HULIS (30%) than primary HULIS (25%). Strongest BB contribution (39%) was found in winter and biogenic SOA contribution (32%) was found in summer. A multiple linear regression (MLR) method was further applied to obtain specific source contributions to Abs365, HULIS and the results showed that strong light-absorbing chromophores were produced from anthropogenic precursors. Our results highlight the anthropogenic SOA and fossil fuels combustion contributions to HULIS in addition to the biggest contributor, BB, in urban area in China.


Subject(s)
Air Pollutants , Particulate Matter , Aerosols/analysis , Air Pollutants/analysis , Carbon/analysis , China , Environmental Monitoring/methods , Humic Substances/analysis , Particulate Matter/analysis , Water/chemistry
7.
Environ Res ; 211: 112984, 2022 08.
Article in English | MEDLINE | ID: mdl-35245534

ABSTRACT

The Coronavirus Disease 2019 (COVID-19) lockdown policy reduced anthropogenic emissions and impacted the atmospheric chemical characteristics in Chinese urban cities. However, rare studies were conducted at the high mountain site. In this work, in-situ measurements of light absorption by carbonaceous aerosols and carbon dioxide (CO2) concentrations were conducted at Waliguan (WLG) over the northeastern Tibetan Plateau of China from January 3 to March 30, 2020. The data was employed to explore the influence of the COVID-19 lockdown on atmospheric chemistry in the background-free troposphere. During the sampling period, the light absorption near-infrared (>470 nm) was mainly contributed by BC (>72%), however, BC and brown carbon (BrC) contributed equally to light absorption in the short wavelength (∼350 nm). The average BC concentrations in the pre-, during and post-lockdown were 0.28 ±â€¯0.25, 0.18 ±â€¯0.16, and 0.28 ±â€¯0.20 µg m-3, respectively, which decreased by approximately 35% during the lockdown period. Meanwhile, CO2 also showed slight decreases during the lockdown period. The declined BC was profoundly attributed to the reduced emissions (∼86%), especially for the combustion of fossil fuels. Moreover, the declined light absorption of BC, primary and secondary BrC decreased the solar energy absorbance by 35, 15, and 14%, respectively. The concentration weighted trajectories (CWT) analysis suggested that the decreased BC and CO2 at WLG were exclusively associated with the emission reduction in the eastern region of WLG. Our results highlighted that the reduced anthropogenic emissions attributed to the lockdown in the urban cities did impact the atmospheric chemistry in the free troposphere of the Tibetan Plateau.


Subject(s)
Air Pollutants , COVID-19 , Aerosols/analysis , Air Pollutants/analysis , COVID-19/epidemiology , COVID-19/prevention & control , Carbon Dioxide/analysis , China/epidemiology , Communicable Disease Control , Environmental Monitoring , Humans , Particulate Matter/analysis , Soot/analysis
8.
Am J Forensic Med Pathol ; 43(1): 11-17, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34510055

ABSTRACT

OBJECTIVE: To discuss the collision relationship and the cause of the fracture caused by traffic accidents in which the front of a small car collides with the side of a pedestrian while braking. METHODS: The surveillance videos of 42 traffic accidents involving the front of a small car colliding with the side of a pedestrian while braking were collected. By analyzing the surveillance videos and the paths, the speed of the collision, the relationship between the vehicle and the pedestrian upon collision, and the movement trajectory of the human body were clearly identified. The type and severity of the injuries were also determined through autopsy. The characteristics of the human injuries and vehicle paths were analyzed according to the collision speed (<40 km/h, 40-60 km/h, 60-90 km/h), and the correlations between the fracture and the height of the pedestrian, the height of the hood and the length of the hood were discussed. RESULTS: When a small car hits the side of a pedestrian, the front bumper first hits the lower limbs of the pedestrian, and then, the human body falls to the side of the vehicle, causing a secondary collision with the hood and front windshield; thus, the pedestrian is thrown at a speed similar to the speed of the vehicle, finally falling to the ground and sliding forward a certain distance. (1) When V is less than 40 km/h (n = 10), the pedestrian's head did not collide with the windshield, and the fatal injuries were caused by the individual striking the ground. (2) When V is greater than 40 km/h (n = 32), the majority (97%) of cases showed collision with the windshield. (3) When 40 to 60 km/h (n = 16), the pedestrian's head collided with the windshield, which can cause fatal injuries, and pelvic fractures and rib fractures occurred in 56.25% of patients. (4) When V is less than 60 km/h (n = 26), the ratio of the height of the pedestrian to the height of the hood was significantly smaller in the pelvic fracture group than in the nonpelvic fracture group (P < 0.01). (5) When 60 to 90 km/h (n = 16), there were holes in the windshield, and the pedestrians experienced severe head injuries, with cervical spine fracture occurring in 37.5% of patients, pelvic fractures occurring in 43.75% of patients, and rib fractures occurring in 31.25% of patients. CONCLUSIONS: When V is less than 40 km/h, the vehicle does not cause severe injuries in pedestrians; when V is greater than 40 km/h, the collisions of the pedestrian's head with the windshield lead to severe head injuries and the accident can cause severe pelvic and rib fractures; when V is greater than 60 km/h, the collisions of the pedestrian's head with the windshield can cause cervical spine fracture in addition to head injuries. The occurrence of human injuries is related to not only the vehicle speed but also factors such as the height of the pedestrian, the height of the hood and the length of the hood.


Subject(s)
Craniocerebral Trauma , Pedestrians , Rib Fractures , Wounds and Injuries , Accidents, Traffic , Automobiles , Humans , Walking
9.
Fa Yi Xue Za Zhi ; 38(2): 263-266, 2022 Apr 25.
Article in English, Zh | MEDLINE | ID: mdl-35899517

ABSTRACT

In the practice of forensic pathology, fat embolism is one of the common causes of death, which can be divided into two categories: traumatic and non-traumatic. Non-traumatic fat embolism refers to the blockage of small blood vessels by fat droplets in the circulatory blood flow caused by non-traumatic factors such as underlying diseases, stress, poisoning and lipid metabolism disorders. At present, it is believed that the production of non-traumatic fat embolism is related to the disturbance of lipid metabolism, C-reactive protein-related cascade reaction, the agglutination of chylomicron and very low-density lipoprotein. The forensic identification of the cause of death of non-traumatic fat embolism is mainly based on the case, systematic autopsy, HE staining and fat staining, but it is often missed or misdiagnosed by forensic examiners because of its unknown risk factors, hidden onset, the difficulty of HE staining observation and irregular implementation of fat staining. In view of the lack of attention to non-traumatic fat embolism in forensic identification, this paper reviews the concepts, pathophysiological mechanism, research progress, existing problems and countermeasures of non-traumatic fat embolism, providing reference for forensic scholars.


Subject(s)
Embolism, Fat , Pulmonary Embolism , Autopsy , Embolism, Fat/diagnosis , Embolism, Fat/etiology , Embolism, Fat/pathology , Forensic Medicine , Forensic Pathology , Humans , Pulmonary Embolism/complications , Pulmonary Embolism/pathology
10.
Environ Sci Technol ; 55(18): 12261-12271, 2021 09 21.
Article in English | MEDLINE | ID: mdl-34469681

ABSTRACT

Formation pathways and sources of atmosphere nitrate (NO3-) have attracted much attention as NO3- had detrimental effects on Earth's ecosystem and climate change. Here, we measured nitrogen (δ15N-NO3-) and oxygen (δ18O-NO3- and Δ17O-NO3-) isotope compositions in nitrate aerosols at the Qomolangma station (QOMS) over the Himalayan-Tibetan Plateau (HTP) to quantify the formation mechanisms and emission sources of nitrate at the background site. At QOMS, the enhanced NO3- concentrations were observed in the springtime. The average δ15N-NO3-, δ18O-NO3-, and Δ17O-NO3- values were 0.4 ± 4.9, 64.7 ± 11.5 and 27.6 ± 6.9‰, respectively. Seasonal variations of isotope ratios at QOMS can be explained by the different emissions and formation pathways to nitrate. The average fractions of NO2 + OH and N2O5 + H2O to nitrate production were estimated to be 43 and 52%, respectively, when the NO3 + hydrocarbon (HC)/dimethyl sulfide (DMS) (NO3 + HC/DMS) pathway was assumed to be 5%. Using stable isotope analysis in the R (SIAR) model, the relative contributions of biomass burning (BB), biogenic soil emission, traffic, and coal combustion to nitrate were estimated to be 28, 25, 24, and 23%, respectively, on yearly basis. By FLEXible PARTicle (FLEXPART) dispersion model, we highlighted that NOx from BB emission over South Asia that had undergone N2O5 + H2O processes enhanced the nitrate concentrations in the springtime over the HTP region.


Subject(s)
Nitrates , Nitrogen , Aerosols , China , Ecosystem , Environmental Monitoring , Nitrates/analysis , Nitrogen/analysis , Nitrogen Isotopes/analysis , Oxygen Isotopes/analysis , Tibet
11.
Med Sci Monit ; 27: e929212, 2021 Jan 26.
Article in English | MEDLINE | ID: mdl-33495433

ABSTRACT

BACKGROUND Sudden death from ischemic heart disease while driving is an important cause of traffic accidents. This study discusses causes of traffic accidents in relation to risk factors for acute myocardial infarction such as hypertension and overwork and provides references for the early prevention and regulation of drivers' health conditions. MATERIAL AND METHODS Data on 21 cases of sudden death by ischemic heart disease while driving from January 2015 to December 2019 were collected. Age, symptoms, and cardiac pathological changes of patients were summarized by systematic anatomical and medical history data. RESULTS Patients were 21 men with an average age of 47±7.27 years (most aged 40 to 60 years), and the average weight of their hearts was 439.45±76.3 g. Twelve patients had a history of hypertension, 8 had previous myocardial infarction, and 4 had fatty liver. All had at least 1 severe narrowing of a major coronary artery. Twelve patients died within a short period; 9 died more than 12 h after myocardial infarction onset. Ten patients had worked more than 80 h of overtime per month, 4 patients, more than 45 h, and 7 patients, less than 45 h. CONCLUSIONS Regular physical examination and information about ischemic heart disease should be emphasized for men aged 40 to 60 years who drive frequently, especially for those with hypertension, overwork, or previous myocardial infarction. Incorporating objective evaluation criteria for the severity of ischemic heart disease and overwork into health condition-related driving regulations is needed.


Subject(s)
Death, Sudden, Cardiac/epidemiology , Death, Sudden, Cardiac/pathology , Myocardial Ischemia/mortality , Adult , Automobile Driving , Autopsy , China/epidemiology , Coronary Vessels/pathology , Heart , Humans , Hypertension/pathology , Male , Middle Aged , Myocardial Infarction/pathology , Myocardial Ischemia/pathology , Myocardium/pathology , Risk Factors
12.
Anal Chem ; 92(21): 14373-14382, 2020 11 03.
Article in English | MEDLINE | ID: mdl-33047954

ABSTRACT

Carbon content constitutes a major fraction of atmospheric particulate matter (PM) and directly influences the earth's climate and human health. The stable carbon isotope ratios (δ13C) can be used to track potential sources and atmospheric processes of carbonaceous aerosols. Previously, determination of δ13C was always conducted in offline carbonaceous aerosol samples. The poor time-resolution results cannot provide information regarding the temporal evolution of δ13C at a short-time scale. In this study, we developed a new system for online measurements of δ13C in atmospheric carbonaceous aerosols by combining a semicontinuous organic carbon/elemental carbon (OC/EC) analyzer and online cavity ring-down spectroscopy (CRDS) (OC/EC analyzer-CRDS). To provide better stability in the determination of δ13C, a carrier gas with CO2 (∼200 ppm) in "balance gas" was used, and Keeling analysis was employed to separate the δ13C signal of the sample from background CO2 gas. Our results showed that the accuracy and absolute precision of the δ13C measurements by the OC/EC analyzer-CRDS system were better than 0.1‰ and 0.5‰, respectively, for the samples containing carbon content more than 5 µg. Furthermore, we employed this system to monitor δ13C (δ13C-TC) in particulate total carbon (TC) with a time resolution of 2-4 h over Beijing in late summer and early autumn, 2019. During the sampling period, the TC concentrations varied from 0.1 to 12.0 µg m-3 with a mean value of 6.0 ± 2.4 µg m-3. The δ13C-TC ranged from -28.2 to -24.2‰ (mean value was -25.9 ± 0.9‰) without significant diurnal variations, suggesting similar contributing sources to TC. Comparing the δ13C signatures of different emissions, we found that liquid fuels and primary and secondary C3 plants were likely the dominant sources of particulate TC. Finally, we found that atmospheric heavy precipitation washed out the aged aerosols from the polluted air, resulting in significant depletion (∼2.4‰) of δ13C-TC in the atmosphere. This paper described a novel system for conducting online measurements of δ13C in atmospheric carbonaceous aerosols and provided us information to better understand the temporal evolution of emission sources and atmospheric processes of carbonaceous aerosols.


Subject(s)
Atmosphere/chemistry , Carbon Isotopes/analysis , Carbon Isotopes/chemistry , Spectrum Analysis/methods , Aerosols
13.
Environ Sci Technol ; 54(19): 11789-11797, 2020 10 06.
Article in English | MEDLINE | ID: mdl-32897062

ABSTRACT

So far, studies on the conversion of stereochemistry under photo-Fenton conditions and their atmospheric implication are still rare. Here, we found that the biomass burning marker, the chiral compound levoglucosan (L), undergoes oxidative degradation under photo-Fenton conditions and can be isomerized into mannosan (M) and galactosan (G) simultaneously. Among the formic acid, acetic acid, and oxalic acid in the degradation products of levoglucosan, it was found that the yield of formation of formic acid in the photo-Fenton pathway can be as high as 86%. It is worth noting that both levoglucosan and its isomers are present in the atmosphere and their concentrations are strongly correlated. At the same time, the range of their concentration ratios, L/(G + M), measured in the photo-Fenton experiments in the laboratory was found to agree well with that measured in atmospheric PM2.5 samples. However, the sources of L, G, and M in the atmosphere are complex, and the photo-Fenton reaction may be an essential pathway for the distribution of L, G, and M in the atmosphere.


Subject(s)
Environmental Monitoring , Particulate Matter , Glucose/analogs & derivatives , Hydrogen Peroxide , Isomerism , Particulate Matter/analysis
14.
Environ Sci Technol ; 54(5): 2626-2634, 2020 03 03.
Article in English | MEDLINE | ID: mdl-31944676

ABSTRACT

Secondary sulfate aerosols played an important role in aerosol formation and aging processes, especially during haze episodes in China. Secondary sulfate was formed via atmospheric oxidation of SO2 by OH, O3, H2O2, and transition-metal-catalyzed (TMI) O2. However, the relative importance of these oxidants in haze episodes was strongly debated. Here, we use stable sulfur isotopes (δ34S) of sulfate aerosols and a Rayleigh distillation model to quantify the contributions of each oxidant during a haze episode in Nanjing, a megacity in China. The observed δ34S values of sulfate aerosols showed a negative correlation with sulfur oxidation ratios, which was attributed to the sulfur isotopic fractionations during the sulfate formation processes. Using the average fractionation factor calculated from our observations and zero-dimensional (0-D) atmospheric chemistry modeling estimations, we suggest that OH oxidation was trivial during the haze episode, while the TMI pathway contributed 49 ± 10% of the total sulfate production and O3/H2O2 oxidations accounted for the rest. Our results displayed good agreement with several atmospheric chemistry models that carry aqueous and heterogeneous TMI oxidation pathways, suggesting the role of the TMI pathway was significant during haze episodes.


Subject(s)
Air Pollutants , Aerosols , Catalysis , China , Environmental Monitoring , Hydrogen Peroxide , Metals , Particulate Matter , Sulfur Isotopes
15.
J Clin Lab Anal ; 34(2): e23065, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31617251

ABSTRACT

BACKGROUND: Inflammation is a necessary component of chronic kidney disease (CKD) that can be attributed to an accumulation of toxins and a reduced clearance of proinflammatory cytokines. Procalcitonin (PCT) is a widely applied biomarker in the diagnosis of infection, and considering the presence of pre-existing inflammation in CKD patients, the PCT level could be high in such a population; however, no reference value for PCT in CKD patients has been available to date. METHODS: During the present study period, 361 CKD patients and 119 healthy controls were included. The PCT level and other biochemistry parameters were assayed by using a COBAS system. Statistical analysis was conducted to compare the differences in PCT levels and other biochemistry parameters between the two groups, and linear regression was used to assess the correlation between two variables. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the performance of PCT and the optimal cutoff value to differentiate between CKD patients and healthy controls. RESULTS: The PCT level in CKD patients was significantly higher than that in healthy controls, and among the CKD patients, the PCT level was increased with advanced clinical stage. Moreover, PCT was moderately correlated with CysC. The optimal off-value was 0.075 with a sensitivity of 94.7% and specificity of 90.8%. CONCLUSION: The PCT level was significantly higher in CKD patients than in healthy controls, and the reference value for CKD patients should be adjusted to avoid unnecessary antibiotic treatments which may pose a negative impact on residual renal function.


Subject(s)
Biomarkers/blood , Procalcitonin/blood , Renal Insufficiency, Chronic/blood , Adult , Aged , Case-Control Studies , Female , Humans , Infections/blood , Linear Models , Male , Middle Aged , ROC Curve , Renal Insufficiency, Chronic/therapy
16.
Environ Sci Technol ; 53(21): 12247-12256, 2019 Nov 05.
Article in English | MEDLINE | ID: mdl-31558018

ABSTRACT

Nitrogenous aerosols are ubiquitous in the environment and thus play a vital role in the nutrient balance as well as the Earth's climate system. However, their abundance, sources, and deposition are poorly understood, particularly in the fragile and ecosensitive Himalayan and Tibetan Plateau (HTP) region. Here, we report concentrations of nitrogen species and isotopic composition (δ15N) in aerosol samples collected from a forest site in the HTP (i.e., Southeast Tibet). Our results revealed that both organic and inorganic nitrogen contribute almost equally with high abundance of ammonium nitrogen (NH4+-N) and water-insoluble organic nitrogen (WION), contributing ∼40% each to aerosol total nitrogen (TN). The concentrations and δ15N exhibit a significant seasonality with ∼2 times higher in winter than in summer with no significant diurnal variations for any species. Moreover, winter aerosols mainly originated from biomass burning emissions from North India and East Pakistan and reached the HTP through a long-range atmospheric transport. The TN dry deposition and total deposition fluxes were 2.04 kg ha-1 yr-1 and 6.12 kg ha-1 yr-1 respectively. Our results demonstrate that the air contamination from South Asia reach the HTP and is most likely impacting the high altitude ecosystems in an accepted scenario of increasing emissions over South Asia.


Subject(s)
Air Pollutants , Nitrogen , Aerosols , Ecosystem , Environmental Monitoring , Forests , India , Pakistan , Seasons , Tibet
17.
Acta Pharmacol Sin ; 39(3): 336-344, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29072256

ABSTRACT

Rapamycin and its derivative possess anti-atherosclerosis activity, but its effects on adhesion molecule expression and macrophage adhesion to endothelial cells during atherosclerosis remain unclear. In this study we explored the effects of rapamycin on ox-LDL-induced adhesion molecule expression and macrophage adhesion to endothelial cells in vitro and the underlying mechanisms. Ox-LDL (6-48 µg/mL) dose-dependently increased the protein levels of two adhesion molecules, intercellular adhesion molecule-1 (ICAM-1) and E-selectin, in human umbilical vein endothelial cells (HUVECs), whereas pretreatment with rapamycin (1-10 µmol/L) dose-dependently inhibited ox-LDL-induced increase in the adhesion molecule expression and macrophage adhesion to endothelial cells. Knockdown of mTOR or rictor, rather than raptor, mimicked the effects of rapamycin. Ox-LDL (100 µg/mL) time-dependently increased PKC phosphorylation in HUVECs, which was abolished by rapamycin or rictor siRNA. Pretreatment with PKC inhibitor staurosporine significantly reduced ox-LDL-stimulated adhesion molecule expression and macrophage adhesion to endothelial cells, whereas pretreatment with PKC activator PMA/TPA attenuated the inhibitory effect of rapamycin on adhesion molecule expression. Ox-LDL (100 µg/mL) time-dependently increased c-Fos levels in HUVECs, and pretreatment with rapamycin or rictor siRNA significantly decreased expression of c-Fos. Knockdown of c-Fos antagonized ox-LDL-induced adhesion molecule expression and macrophage adhesion to endothelial cells. Our results demonstrate that rapamycin reduces ox-LDL-stimulated adhesion molecule expression and macrophage adhesion to endothelial cells by inhibiting mTORC2, but not mTORC1, and mTORC2 acts through the PKC/c-Fos signaling pathway.


Subject(s)
Genes, fos/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Inflammation/prevention & control , Lipoproteins, LDL/antagonists & inhibitors , Mechanistic Target of Rapamycin Complex 2/antagonists & inhibitors , Protein Kinase C/antagonists & inhibitors , Sirolimus/pharmacology , Cell Adhesion/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , E-Selectin/metabolism , Gene Knockdown Techniques , Human Umbilical Vein Endothelial Cells/enzymology , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/pathology , Humans , Intercellular Adhesion Molecule-1/metabolism , Lipoproteins, LDL/pharmacology , Mechanistic Target of Rapamycin Complex 2/genetics , RNA, Small Interfering/pharmacology , Rapamycin-Insensitive Companion of mTOR Protein/antagonists & inhibitors , Rapamycin-Insensitive Companion of mTOR Protein/genetics , Regulatory-Associated Protein of mTOR/antagonists & inhibitors , Regulatory-Associated Protein of mTOR/genetics , Signal Transduction/drug effects , Staurosporine/pharmacology , Tetradecanoylphorbol Acetate/analogs & derivatives , Tetradecanoylphorbol Acetate/pharmacology
18.
Biochem Biophys Res Commun ; 482(1): 93-99, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27815075

ABSTRACT

Foam cell formation, which is caused by imbalanced cholesterol influx and efflux by macrophages, plays a vital role in the occurrence and development of atherosclerosis. Humanin (HN), a mitochondria-derived peptide, can prevent the production of reactive oxygen species and death of human aortic endothelial cells exposed to oxidized low-density lipoprotein (ox-LDL) and has a protective effect on patients with in early atherosclerosis. However, the effects of HN on the regulation of cholesterol metabolism in RAW 264.7 macrophages are still unknown. This study was designed to investigate the role of [Gly14]-humanin (HNG) in lipid uptake and cholesterol efflux in RAW 264.7 macrophages. Flow cytometry and live cell imaging results showed that HNG reduced Dil-ox-LDL accumulation in the RAW 264.7 macrophages. A similar result was obtained for lipid accumulation by measuring cellular cholesterol content. Western blot analysis showed that ox-LDL treatment upregulated not only the protein expression of CD36 and LOX-1, which mediate ox-LDL endocytosis, but also ATP-binding cassette (ABC) transporter A1 and ABCG1, which mediate ox-LDL exflux. HNG pretreatment inhibited the upregulation of CD36 and LOX-1 levels, prompting the upregulation of ABCA1 and ABCG1 levels induced by ox-LDL. Therefore we concluded that HNG could inhibit ox-LDL-induced macrophage-derived foam cell formation, which occurs because of a decrease in lipid uptake and an increase in cholesterol efflux from macrophage cells.


Subject(s)
Cell Differentiation/physiology , Cholesterol/metabolism , Foam Cells/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Lipid Metabolism/physiology , Lipoproteins, LDL/pharmacokinetics , Animals , Foam Cells/cytology , Mice , RAW 264.7 Cells
19.
Environ Sci Technol ; 50(12): 6284-92, 2016 06 21.
Article in English | MEDLINE | ID: mdl-27203471

ABSTRACT

Source quantification of carbonaceous aerosols in the Chinese outflow regions still remains uncertain despite their high mass concentrations. Here, we unambiguously quantified fossil and nonfossil contributions to elemental carbon (EC) and organic carbon (OC) of total suspended particles (TSP) from a regional receptor site in the outflow of Northeast China using radiocarbon measurement. OC and EC concentrations were lower in summer, representing mainly marine air, than in other seasons, when air masses mostly traveled over continental regions in Mongolia and northeast China. The annual-mean contribution from fossil-fuel combustion to EC was 76 ± 11% (0.1-1.3 µg m(-3)). The remaining 24 ± 11% (0.03-0.42 µg m(-3)) was attributed to biomass burning, with slightly higher contribution in the cold period (∼31%) compared to the warm period (∼21%) because of enhanced emissions from regional biomass combustion sources in China. OC was generally dominated by nonfossil sources, with an annual average of 66 ± 11% (0.5-2.8 µg m(-3)), approximately half of which was apportioned to primary biomass-burning sources (34 ± 6%). In winter, OC almost equally originated from primary OC (POC) emissions and secondary OC (SOC) formation from fossil fuel and biomass-burning sources. In contrast, summertime OC was dominated by primary biogenic emissions as well as secondary production from biogenic and biomass-burning sources, but fossil-derived SOC was the smallest contributor. Distinction of POC and SOC was performed using primary POC-to-EC emission ratios separated for fossil and nonfossil emissions.


Subject(s)
Air Pollutants , Particulate Matter , Aerosols , Carbon , China , Environmental Monitoring , Fossils , Seasons
20.
Environ Sci Technol ; 49(14): 8408-15, 2015 Jul 21.
Article in English | MEDLINE | ID: mdl-26114602

ABSTRACT

Elemental carbon (EC) or black carbon (BC) in the atmosphere has a strong influence on both climate and human health. In this study, radiocarbon ((14)C) based source apportionment is used to distinguish between fossil fuel and biomass burning sources of EC isolated from aerosol filter samples collected in Beijing from June 2010 to May 2011. The (14)C results demonstrate that EC is consistently dominated by fossil-fuel combustion throughout the whole year with a mean contribution of 79% ± 6% (ranging from 70% to 91%), though EC has a higher mean and peak concentrations in the cold season. The seasonal molecular pattern of hopanes (i.e., a class of organic markers mainly emitted during the combustion of different fossil fuels) indicates that traffic-related emissions are the most important fossil source in the warm period and coal combustion emissions are significantly increased in the cold season. By combining (14)C based source apportionment results and picene (i.e., an organic marker for coal emissions) concentrations, relative contributions from coal (mainly from residential bituminous coal) and vehicle to EC in the cold period were estimated as 25 ± 4% and 50 ± 7%, respectively, whereas the coal combustion contribution was negligible or very small in the warm period.


Subject(s)
Carbon/analysis , Environmental Monitoring/methods , Aerosols/analysis , Aerosols/chemistry , Air Pollutants/analysis , Atmosphere , Beijing , Biomass , Carbon Radioisotopes/analysis , China , Coal/analysis , Fossil Fuels/analysis , Seasons , Soot/analysis
SELECTION OF CITATIONS
SEARCH DETAIL