Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.069
Filter
Add more filters

Publication year range
1.
Nature ; 625(7995): 593-602, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38093017

ABSTRACT

Emerging data have shown that previously defined noncoding genomes might encode peptides that bind human leukocyte antigen (HLA) as cryptic antigens to stimulate adaptive immunity1,2. However, the significance and mechanisms of action of cryptic antigens in anti-tumour immunity remain unclear. Here mass spectrometry of the HLA class I (HLA-I) peptidome coupled with ribosome sequencing of human breast cancer samples identified HLA-I-binding cryptic antigenic peptides that were noncanonically translated by a tumour-specific circular RNA (circRNA): circFAM53B. The cryptic peptides efficiently primed naive CD4+ and CD8+ T cells in an antigen-specific manner and induced anti-tumour immunity. Clinically, the expression of circFAM53B and its encoded peptides was associated with substantial infiltration of antigen-specific CD8+ T cells and better survival in patients with breast cancer and patients with melanoma. Mechanistically, circFAM53B-encoded peptides had strong binding affinity to both HLA-I and HLA-II molecules. In vivo, administration of vaccines consisting of tumour-specific circRNA or its encoded peptides in mice bearing breast cancer tumours or melanoma induced enhanced infiltration of tumour-antigen-specific cytotoxic T cells, which led to effective tumour control. Overall, our findings reveal that noncanonical translation of circRNAs can drive efficient anti-tumour immunity, which suggests that vaccination exploiting tumour-specific circRNAs may serve as an immunotherapeutic strategy against malignant tumours.


Subject(s)
Breast Neoplasms , Melanoma , Peptides , Protein Biosynthesis , RNA, Circular , Animals , Female , Humans , Mice , Antigens, Neoplasm/immunology , Breast Neoplasms/genetics , Breast Neoplasms/immunology , Breast Neoplasms/mortality , Breast Neoplasms/pathology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class II/immunology , Mass Spectrometry , Melanoma/genetics , Melanoma/immunology , Melanoma/mortality , Melanoma/pathology , Peptides/genetics , Peptides/immunology , Ribosome Profiling , RNA, Circular/genetics , RNA, Circular/metabolism , Survival Analysis
2.
Nature ; 608(7921): 62-68, 2022 08.
Article in English | MEDLINE | ID: mdl-35922499

ABSTRACT

Additive manufacturing produces net-shaped components layer by layer for engineering applications1-7. The additive manufacture of metal alloys by laser powder bed fusion (L-PBF) involves large temperature gradients and rapid cooling2,6, which enables microstructural refinement at the nanoscale to achieve high strength. However, high-strength nanostructured alloys produced by laser additive manufacturing often have limited ductility3. Here we use L-PBF to print dual-phase nanolamellar high-entropy alloys (HEAs) of AlCoCrFeNi2.1 that exhibit a combination of a high yield strength of about 1.3 gigapascals and a large uniform elongation of about 14 per cent, which surpasses those of other state-of-the-art additively manufactured metal alloys. The high yield strength stems from the strong strengthening effects of the dual-phase structures that consist of alternating face-centred cubic and body-centred cubic nanolamellae; the body-centred cubic nanolamellae exhibit higher strengths and higher hardening rates than the face-centred cubic nanolamellae. The large tensile ductility arises owing to the high work-hardening capability of the as-printed hierarchical microstructures in the form of dual-phase nanolamellae embedded in microscale eutectic colonies, which have nearly random orientations to promote isotropic mechanical properties. The mechanistic insights into the deformation behaviour of additively manufactured HEAs have broad implications for the development of hierarchical, dual- and multi-phase, nanostructured alloys with exceptional mechanical properties.

3.
Nature ; 599(7884): 302-307, 2021 11.
Article in English | MEDLINE | ID: mdl-34671163

ABSTRACT

Dietary interventions can change metabolite levels in the tumour microenvironment, which might then affect cancer cell metabolism to alter tumour growth1-5. Although caloric restriction (CR) and a ketogenic diet (KD) are often thought to limit tumour progression by lowering blood glucose and insulin levels6-8, we found that only CR inhibits the growth of select tumour allografts in mice, suggesting that other mechanisms contribute to tumour growth inhibition. A change in nutrient availability observed with CR, but not with KD, is lower lipid levels in the plasma and tumours. Upregulation of stearoyl-CoA desaturase (SCD), which synthesises monounsaturated fatty acids, is required for cancer cells to proliferate in a lipid-depleted environment, and CR also impairs tumour SCD activity to cause an imbalance between unsaturated and saturated fatty acids to slow tumour growth. Enforcing cancer cell SCD expression or raising circulating lipid levels through a higher-fat CR diet confers resistance to the effects of CR. By contrast, although KD also impairs tumour SCD activity, KD-driven increases in lipid availability maintain the unsaturated to saturated fatty acid ratios in tumours, and changing the KD fat composition to increase tumour saturated fatty acid levels cooperates with decreased tumour SCD activity to slow tumour growth. These data suggest that diet-induced mismatches between tumour fatty acid desaturation activity and the availability of specific fatty acid species determine whether low glycaemic diets impair tumour growth.


Subject(s)
Blood Glucose/metabolism , Diet, Carbohydrate-Restricted , Fatty Acids/metabolism , Lipid Metabolism , Neoplasms/metabolism , Neoplasms/pathology , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/pathology , Allografts , Animals , Caloric Restriction , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Cell Proliferation , Diet, Ketogenic , Extracellular Fluid/chemistry , Fatty Acids, Unsaturated/metabolism , Female , Lipid Metabolism/drug effects , Male , Mice , Mice, Inbred C57BL , Neoplasm Transplantation , Nutrients/analysis , Nutrients/blood , Stearoyl-CoA Desaturase/metabolism , Tumor Microenvironment/drug effects
4.
Nucleic Acids Res ; 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39265120

ABSTRACT

Perturb-Seq combines CRISPR (clustered regularly interspaced short palindromic repeats)-based genetic screens with single-cell RNA sequencing readouts for high-content phenotypic screens. Despite the rapid accumulation of Perturb-Seq datasets, there remains a lack of a user-friendly platform for their efficient reuse. Here, we developed PerturbDB (http://research.gzsys.org.cn/perturbdb), a platform to help users unveil gene functions using Perturb-Seq datasets. PerturbDB hosts 66 Perturb-Seq datasets, which encompass 4 518 521 single-cell transcriptomes derived from the knockdown of 10 194 genes across 19 different cell lines. All datasets were uniformly processed using the Mixscape algorithm. Genes were clustered by their perturbed transcriptomic phenotypes derived from Perturb-Seq data, resulting in 421 gene clusters, 157 of which were stable across different cellular contexts. Through integrating chemically perturbed transcriptomes with Perturb-Seq data, we identified 552 potential inhibitors targeting 1409 genes, including an mammalian target of rapamycin (mTOR) signaling inhibitor, retinol, which was experimentally verified. Moreover, we developed a 'Cancer' module to facilitate the understanding of the regulatory role of genes in cancer using Perturb-Seq data. An interactive web interface has also been developed, enabling users to visualize, analyze and download all the comprehensive datasets available in PerturbDB. PerturbDB will greatly drive gene functional studies and enhance our understanding of the regulatory roles of genes in diseases such as cancer.

5.
Proc Natl Acad Sci U S A ; 120(29): e2303740120, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37428914

ABSTRACT

Defining reliable surrogate markers and overcoming drug resistance are the most challenging issues for improving therapeutic outcomes of antiangiogenic drugs (AADs) in cancer patients. At the time of this writing, no biomarkers are clinically available to predict AAD therapeutic benefits and drug resistance. Here, we uncovered a unique mechanism of AAD resistance in epithelial carcinomas with KRAS mutations that targeted angiopoietin 2 (ANG2) to circumvent antivascular endothelial growth factor (anti-VEGF) responses. Mechanistically, KRAS mutations up-regulated the FOXC2 transcription factor that directly elevated ANG2 expression at the transcriptional level. ANG2 bestowed anti-VEGF resistance as an alternative pathway to augment VEGF-independent tumor angiogenesis. Most colorectal and pancreatic cancers with KRAS mutations were intrinsically resistant to monotherapies of anti-VEGF or anti-ANG2 drugs. However, combination therapy with anti-VEGF and anti-ANG2 drugs produced synergistic and potent anticancer effects in KRAS-mutated cancers. Together, these data demonstrate that KRAS mutations in tumors serve as a predictive marker for anti-VEGF resistance and are susceptible to combination therapy with anti-VEGF and anti-ANG2 drugs.


Subject(s)
Carcinoma , Endothelial Growth Factors , Humans , Endothelial Growth Factors/genetics , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Angiopoietin-2/genetics , Angiopoietin-2/metabolism , Angiopoietin-1/metabolism
6.
Am J Pathol ; 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39243944

ABSTRACT

Polycystic ovary syndrome (PCOS) is the leading cause of infertility in reproductive-age women. Hyperandrogenism, polycystic ovaries, and chronic anovulation are its typical clinical features. However, the correlation between hyperandrogenism and ovarian follicle growth aberrations remains undisclosed. To advance our understanding of the molecular alterations in ovarian granulosa cells (GCs) with excessive androgen, epigenetic changes and affected gene expression in human granulosa-lutein cells and immortalized human GCs were evaluated. A PCOS mouse model induced by dihydrotestosterone was also established. This study found excessive testosterone significantly decreased the acetylation of lysine 27 on histone H3 (H3K27ac). H3K27ac chromatin immunoprecipitation- sequencing data showed down-regulated expression of cell cycle-related genes (CCND1/CCND3/PCNA), which was confirmed by real-time quantitative PCR and Western blot analysis. Testosterone application impeding cell proliferation was also proved by Ki-67 immunofluorescence and flow-cytometric analysis. Moreover, testosterone influenced CK2α nuclear translocation, which increased the phosphorylation level of histone deacetylase 2 (HDAC2). Inhibition of CK2α nuclear translocation or silenced HDAC2 expression efficiently retarded H3K27 acetylation. Meanwhile, PCOS mouse model experiments also demonstrated decreased H3K27ac and enhanced HDAC2 phosphorylation in GCs. Cell proliferation-related genes were also down-regulated in PCOS mouse GCs. In conclusion, hyperandrogenism in human and mouse GCs caused H3K27Ac aberrations, which are associated with CK2α nuclear translocation and HDAC2 phosphorylation, participating in abnormal follicle development in patients with PCOS.

7.
Nature ; 574(7777): 223-227, 2019 10.
Article in English | MEDLINE | ID: mdl-31597974

ABSTRACT

High-entropy alloys are a class of materials that contain five or more elements in near-equiatomic proportions1,2. Their unconventional compositions and chemical structures hold promise for achieving unprecedented combinations of mechanical properties3-8. Rational design of such alloys hinges on an understanding of the composition-structure-property relationships in a near-infinite compositional space9,10. Here we use atomic-resolution chemical mapping to reveal the element distribution of the widely studied face-centred cubic CrMnFeCoNi Cantor alloy2 and of a new face-centred cubic alloy, CrFeCoNiPd. In the Cantor alloy, the distribution of the five constituent elements is relatively random and uniform. By contrast, in the CrFeCoNiPd alloy, in which the palladium atoms have a markedly different atomic size and electronegativity from the other elements, the homogeneity decreases considerably; all five elements tend to show greater aggregation, with a wavelength of incipient concentration waves11,12 as small as 1 to 3 nanometres. The resulting nanoscale alternating tensile and compressive strain fields lead to considerable resistance to dislocation glide. In situ transmission electron microscopy during straining experiments reveals massive dislocation cross-slip from the early stage of plastic deformation, resulting in strong dislocation interactions between multiple slip systems. These deformation mechanisms in the CrFeCoNiPd alloy, which differ markedly from those in the Cantor alloy and other face-centred cubic high-entropy alloys, are promoted by pronounced fluctuations in composition and an increase in stacking-fault energy, leading to higher yield strength without compromising strain hardening and tensile ductility. Mapping atomic-scale element distributions opens opportunities for understanding chemical structures and thus providing a basis for tuning composition and atomic configurations to obtain outstanding mechanical properties.

8.
Cell Mol Life Sci ; 81(1): 165, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38578457

ABSTRACT

The DNA methylation is gradually acquired during oogenesis, a process sustained by successful follicle development. However, the functional roles of methyl-CpG-binding protein 2 (MeCP2), an epigenetic regulator displaying specifical binding with methylated DNA, remains unknown in oogenesis. In this study, we found MeCP2 protein was highly expressed in primordial and primary follicle, but was almost undetectable in secondary follicles. However, in aged ovary, MeCP2 protein is significantly increased in both oocyte and granulosa cells. Overexpression of MeCP2 in growing oocyte caused transcription dysregulation, DNA hypermethylation, and genome instability, ultimately leading to follicle growth arrest and apoptosis. MeCP2 is targeted by DCAF13, a substrate recognition adaptor of the Cullin 4-RING (CRL4) E3 ligase, and polyubiquitinated for degradation in both cells and oocytes. Dcaf13-null oocyte exhibited an accumulation of MeCP2 protein, and the partial rescue of follicle growth arrest induced by Dcaf13 deletion was observed following MeCP2 knockdown. The RNA-seq results revealed that large amounts of genes were regulated by the DCAF13-MeCP2 axis in growing oocytes. Our study demonstrated that CRL4DCAF13 E3 ubiquitin ligase targets MeCP2 for degradation to ensure normal DNA methylome and transcription in growing oocytes. Moreover, in aged ovarian follicles, deceased DCAF13 and DDB1 protein were observed, indicating a potential novel mechanism that regulates ovary aging.


Subject(s)
Methyl-CpG-Binding Protein 2 , Ubiquitin-Protein Ligases , Female , Humans , Cullin Proteins/genetics , Cullin Proteins/metabolism , DNA/metabolism , DNA Methylation , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/metabolism , Oocytes/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
9.
Nucleic Acids Res ; 51(D1): D269-D279, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36300630

ABSTRACT

RNA modification is a dynamic and reversible process regulated by a series of writers, erasers and readers (WERs). Abnormal changes of WERs will disrupt the RNA modification homeostasis of their target genes, leading to the dysregulation of RNA metabolisms such as RNA stability and translation, and consequently to diseases such as cancer. A public repository hosting the regulatory relationships between WERs and their target genes will help in understanding the roles of RNA modifications in various physiological and pathological conditions. Previously, we developed a database named 'm6A2Target' to host targets of WERs in m6A, one of the most prevalent RNA modifications in eukaryotic cells. To host all RNA modification (RM)-related WER-target associations, we hereby present an updated database, named 'RM2Target' (http://rm2target.canceromics.org/). In this update, RM2Target encompasses 1 619 653 WER-target associations for nine RNA modifications in human and mouse, including m6A, m6Am, m5C, m5U, m1A, m7G, pseudouridine, 2'-O-Me and A-to-I. Extensive annotations of target genes are available in RM2Target, including but not limited to basic gene information, RNA modifications, RNA-RNA/RNA-protein interactions and related diseases. Altogether, we expect that RM2Target will facilitate further downstream functional and mechanistic studies in the field of RNA modification research.


Subject(s)
Databases, Nucleic Acid , RNA Processing, Post-Transcriptional , Animals , Humans , Mice , Adenosine/metabolism , Neoplasms/genetics , Neoplasms/metabolism , RNA/chemistry , RNA/metabolism , RNA-Binding Proteins
10.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Article in English | MEDLINE | ID: mdl-35012985

ABSTRACT

Materials containing heterogeneous nanostructures hold great promise for achieving superior mechanical properties. However, the strengthening effect due to plastically inhomogeneous deformation in heterogeneous nanostructures has not been clearly understood. Here, we investigate a prototypical heterogeneous nanostructured material of gradient nanotwinned (GNT) Cu to unravel the origin of its extra strength arising from gradient nanotwin structures relative to uniform nanotwin counterparts. We measure the back and effective stresses of GNT Cu with different nanotwin thickness gradients and compare them with those of homogeneous nanotwinned Cu with different uniform nanotwin thicknesses. We find that the extra strength of GNT Cu is caused predominantly by the extra back stress resulting from nanotwin thickness gradient, while the effective stress is almost independent of the gradient structures. The combined experiment and strain gradient plasticity modeling show that an increasing structural gradient in GNT Cu produces an increasing plastic strain gradient, thereby raising the extra back stress. The plastic strain gradient is accommodated by the accumulation of geometrically necessary dislocations inside an unusual type of heterogeneous dislocation structure in the form of bundles of concentrated dislocations. Such a heterogeneous dislocation structure produces microscale internal stresses leading to the extra back stress in GNT Cu. Altogether, this work establishes a fundamental connection between the gradient structure and extra strength in GNT Cu through the mechanistic linkages of plastic strain gradient, heterogeneous dislocation structure, microscale internal stress, and extra back stress. Broadly, this work exemplifies a general approach to unraveling the strengthening mechanisms in heterogeneous nanostructured materials.

11.
Nano Lett ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833276

ABSTRACT

Inspired by the imbalance between extrinsic and intrinsic tendon healing, this study fabricated a new biofilter scaffold with a hierarchical structure based on a melt electrowriting technique. The outer multilayered fibrous structure with connected porous characteristics provides a novel passageway for vascularization and isolates the penetration of scar fibers, which can be referred to as a biofilter process. In vitro experiments found that the porous architecture in the outer layer can effectively prevent cell infiltration, whereas the aligned fibers in the inner layer can promote cell recruitment and growth, as well as the expression of tendon-associated proteins in a simulated friction condition. It was shown in vivo that the biofilter process could promote tendon healing and reduce scar invasion. Herein, this novel strategy indicates great potential to design new biomaterials for balancing extrinsic and intrinsic healing and realizing scarless tendon healing.

12.
Pflugers Arch ; 476(5): 821-831, 2024 May.
Article in English | MEDLINE | ID: mdl-38416255

ABSTRACT

Obesity has been linked with the impairment of spatial memory and synaptic plasticity but the molecular mechanisms remained unidentified. Since glutamatergic transmission and NMDA receptor neural pathways in hippocampal dentate gyrus (DG) are essential in the learning and memory, we aimed to investigate glutamate (Glu) and NMDA receptor signaling of DG in spatial learning and memory in diet-induced obesity (DIO) rats. Spatial learning and memory were assessed via Morris water maze (MWM) test on control (Ctr) and DIO rats. Extracellular concentration of Glu in the DG was determined using in vivo microdialysis and HPLC. The protein expressions of NMDA receptor subunit 2B (NR2B), brain-derived neurotrophic factor (BDNF), the activation of calcium/calmodulin-dependent kinase II (CaMKII) and cAMP-response-element-binding protein (CREB) in the DG were observed by western blot. Spatial learning and memory were impaired in DIO rats compared to those of Ctr. NR2B expression was increased, while BDNF expression and CaMKII and CREB activation were decreased in DG of DIO rats. Extracellular concentration of Glu was increased in Ctr on the 3rd and 4th days of the MWM test, but significant further increment was observed in DIO rats. Microinjection of an NMDA antagonist (MK-801) into the DG reversed spatial learning and memory impairment. Such effects were accompanied by greater BDNF expression and CaMKII/CREB activation in the DG of DIO rats. In conclusion, the enhancement of Glu-NMDA receptor transmission in the hippocampal DG contributes to the impairment of spatial learning and memory in DIO rats, maybe via the modulation of CaMKII-CREB-BDNF signaling pathway.


Subject(s)
Dentate Gyrus , Glutamic Acid , Obesity , Receptors, N-Methyl-D-Aspartate , Spatial Learning , Animals , Male , Rats , Brain-Derived Neurotrophic Factor/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Dentate Gyrus/metabolism , Glutamic Acid/metabolism , Maze Learning , Memory Disorders/metabolism , Memory Disorders/etiology , Obesity/metabolism , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate/metabolism , Signal Transduction/physiology , Spatial Memory , Synaptic Transmission
13.
J Am Chem Soc ; 146(1): 979-987, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38117691

ABSTRACT

The development of metal-free and recyclable catalysts for significant yet challenging transformations of naturally abundant feedstocks has long been sought after. In this work, we contribute a general strategy of combining the rationally designed crystalline covalent organic framework (COF) with a newly developed chiral frustrated Lewis pair (CFLP) to afford chiral frustrated Lewis pair framework (CFLPF), which can efficiently promote the asymmetric olefin hydrogenation in a heterogeneous manner, outperforming the homogeneous CFLP counterpart. Notably, the metal-free CFLPF exhibits superior activity/enantioselectivity in addition to excellent stability/recyclability. A series of in situ spectroscopic studies, kinetic isotope effect measurements, and density-functional theory computational calculations were also performed to gain an insightful understanding of the superior asymmetric hydrogenation catalysis performances of CFLPF. Our work not only increases the versatility of catalysts for asymmetric catalysis but also broadens the reactivity of porous organic materials with the addition of frustrated Lewis pair (FLP) chemistry, thereby suggesting a new approach for practical and substantial transformations through the advancement of novel catalysts from both concept and design perspectives.

14.
Mol Cancer ; 23(1): 170, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39164671

ABSTRACT

BACKGROUND: Gastric cancer (GC) is one of the deadliest malignant tumors with unknown pathogenesis. Due to its treatment resistance, high recurrence rate, and lack of reliable early detection techniques, a majority of patients have a poor prognosis. Therefore, identifying new tumor biomarkers and therapeutic targets is essential. This review aims to provide fresh insights into enhancing the prognosis of patients with GC by summarizing the processes through which microRNAs (miRNAs) regulate the tumor microenvironment (TME) and highlighting their critical role in the TME. MAIN TEXT: A comprehensive literature review was conducted by focusing on the interactions among tumor cells, extracellular matrix, blood vessels, cancer-associated fibroblasts, and immune cells within the GC TME. The role of noncoding RNAs, known as miRNAs, in modulating the TME through various signaling pathways, cytokines, growth factors, and exosomes was specifically examined. Tumor formation, metastasis, and therapy in GC are significantly influenced by interactions within the TME. miRNAs regulate tumor progression by modulating these interactions through multiple signaling pathways, cytokines, growth factors, and exosomes. Dysregulation of miRNAs affects critical cellular processes such as cell proliferation, differentiation, angiogenesis, metastasis, and treatment resistance, contributing to the pathogenesis of GC. CONCLUSIONS: miRNAs play a crucial role in the regulation of the GC TME, influencing tumor progression and patient prognosis. By understanding the mechanisms through which miRNAs control the TME, potential biomarkers and therapeutic targets can be identified to improve the prognosis of patients with GC.


Subject(s)
Biomarkers, Tumor , Gene Expression Regulation, Neoplastic , MicroRNAs , Stomach Neoplasms , Tumor Microenvironment , Humans , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , Tumor Microenvironment/genetics , MicroRNAs/genetics , Biomarkers, Tumor/genetics , Animals , Signal Transduction , Prognosis
15.
Emerg Infect Dis ; 30(2): 321-324, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38270156

ABSTRACT

Among persons born in China before 1980 and tested for vaccinia virus Tiantan strain (VVT), 28.7% (137/478) had neutralizing antibodies, 71.4% (25/35) had memory B-cell responses, and 65.7% (23/35) had memory T-cell responses to VVT. Because of cross-immunity between the viruses, these findings can help guide mpox vaccination strategies in China.


Subject(s)
Mpox (monkeypox) , Smallpox , Humans , Smallpox/prevention & control , Vaccination , Antibodies, Neutralizing , China/epidemiology , Vaccinia virus
16.
J Neuroinflammation ; 21(1): 169, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961424

ABSTRACT

BACKGROUND: Understanding the mechanism behind sepsis-associated encephalopathy (SAE) remains a formidable task. This study endeavors to shed light on the complex cellular and molecular alterations that occur in the brains of a mouse model with SAE, ultimately unraveling the underlying mechanisms of this condition. METHODS: We established a murine model using intraperitoneal injection of lipopolysaccharide (LPS) in wild type and Anxa1-/- mice and collected brain tissues for analysis at 0-hour, 12-hour, 24-hour, and 72-hour post-injection. Utilizing advanced techniques such as single-nucleus RNA sequencing (snRNA-seq) and Stereo-seq, we conducted a comprehensive characterization of the cellular responses and molecular patterns within the brain. RESULTS: Our study uncovered notable temporal differences in the response to LPS challenge between Anxa1-/- (annexin A1 knockout) and wild type mice, specifically at the 12-hour and 24-hour time points following injection. We observed a significant increase in the proportion of Astro-2 and Micro-2 cells in these mice. These cells exhibited a colocalization pattern with the vascular subtype Vas-1, forming a distinct region known as V1A2M2, where Astro-2 and Micro-2 cells surrounded Vas-1. Moreover, through further analysis, we discovered significant upregulation of ligands and receptors such as Timp1-Cd63, Timp1-Itgb1, Timp1-Lrp1, as well as Ccl2-Ackr1 and Cxcl2-Ackr1 within this region. In addition, we observed a notable increase in the expression of Cd14-Itgb1, Cd14-Tlr2, and Cd14-C3ar1 in regions enriched with Micro-2 cells. Additionally, Cxcl10-Sdc4 showed broad upregulation in brain regions containing both Micro-2 and Astro-2 cells. Notably, upon LPS challenge, there was an observed increase in Anxa1 expression in the mouse brain. Furthermore, our study revealed a noteworthy increase in mortality rates following Anxa1 knockdown. However, we did not observe substantial differences in the types, numbers, or distribution of other brain cells between Anxa1-/- and wildtype mice over time. Nevertheless, when comparing the 24-hour post LPS injection time point, we observed a significant decrease in the proportion and distribution of Micro-2 and Astro-2 cells in the vicinity of blood vessels in Anxa1-/- mice. Additionally, we noted reduced expression levels of several ligand-receptor pairs including Cd14-Tlr2, Cd14-C3ar1, Cd14-Itgb1, Cxcl10-Sdc4, Ccl2-Ackr1, and Cxcl2-Ackr1. CONCLUSIONS: By combining snRNA-seq and Stereo-seq techniques, our study successfully identified a distinctive cellular colocalization, referred to as a special pathological niche, comprising Astro-2, Micro-2, and Vas-1 cells. Furthermore, we observed an upregulation of ligand-receptor pairs within this niche. These findings suggest a potential association between this cellular arrangement and the underlying mechanisms contributing to SAE or the increased mortality observed in Anxa1 knockdown mice.


Subject(s)
Astrocytes , Brain , Disease Models, Animal , Lipopolysaccharides , Mice, Knockout , Microglia , Sepsis-Associated Encephalopathy , Animals , Mice , Lipopolysaccharides/toxicity , Sepsis-Associated Encephalopathy/pathology , Sepsis-Associated Encephalopathy/genetics , Sepsis-Associated Encephalopathy/metabolism , Microglia/metabolism , Microglia/pathology , Brain/pathology , Brain/metabolism , Astrocytes/metabolism , Astrocytes/pathology , Sequence Analysis, RNA/methods , Mice, Inbred C57BL , Transcriptome , Male
17.
J Intern Med ; 296(3): 260-279, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39021307

ABSTRACT

BACKGROUND: Evidence on type 2 diabetes onset age and duration on mortality risk has been limited by short follow-up, inadequate control for confounding, missing repeated measurements, and inability to cover the full range of onset age, duration, and major causes of death. Moreover, scarce data dissect how type 2 diabetes onset age and duration shape life expectancy. METHODS: We evaluate prospectively these topics based on 270,075 eligible participants in the Nurses' Health Studies and Health Professionals Follow-up Study, leveraging repeated measurements throughout up to 40 years of follow-up. Cox models were used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs). RESULTS: In fully adjusted analyses, incident early onset type 2 diabetes (diagnosed <40 years of age) was associated with significantly higher mortality from all-causes (HR, 95% CI was 3.16, 2.64-3.79; vs. individuals without type 2 diabetes), cardiovascular disease (6.56, 4.27-10.1), respiratory disease (3.43, 1.38-8.51), neurodegenerative disease (5.13, 2.09-12.6), and kidney disease (8.55, 1.98-36.9). The relative risk elevations declined dramatically with each higher decade of age at diagnosis for deaths from most of these causes, though the absolute risk difference increased continuously. A substantially higher cumulative incidence of mortality and a greater loss in life expectancy were associated with younger age at type 2 diabetes diagnosis. Longer disease duration was associated with generally higher relative and absolute risk of mortality. CONCLUSION: Early onset of type 2 diabetes and longer disease duration are associated with substantially increased risk of all-cause and cause-specific mortality and greater loss in life expectancy.


Subject(s)
Age of Onset , Cause of Death , Diabetes Mellitus, Type 2 , Life Expectancy , Humans , Diabetes Mellitus, Type 2/mortality , Female , Male , Middle Aged , Adult , Prospective Studies , Risk Factors , Aged , Incidence , Cardiovascular Diseases/mortality , Proportional Hazards Models , Follow-Up Studies
18.
Plant Biotechnol J ; 22(3): 722-737, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37915111

ABSTRACT

Carotenoids contribute to fruit coloration and are valuable sources of provitamin A in the human diet. Abscisic acid (ABA) plays an essential role in fruit coloration during citrus fruit ripening, but little is known about the underlying mechanisms. Here, we identified a novel bZIP transcription activator called CsbZIP44, which serves as a central regulator of ABA-mediated citrus carotenoid biosynthesis. CsbZIP44 directly binds to the promoters of four carotenoid metabolism-related genes (CsDXR, CsGGPPs, CsBCH1 and CsNCED2) and activates their expression. Furthermore, our research indicates that CsHB5, a positive regulator of ABA and carotenoid-driven processes, activates the expression of CsbZIP44 by binding to its promoter. Additionally, CsHB5 interacts with CsbZIP44 to form a transcriptional regulatory module CsHB5-CsbZIP44, which is responsive to ABA induction and promotes carotenoid accumulation in citrus. Interestingly, we also discover a positive feedback regulation loop between the ABA signal and carotenoid biosynthesis mediated by the CsHB5-CsbZIP44 transcriptional regulatory module. Our findings show that CsHB5-CsbZIP44 precisely modulates ABA signal-mediated carotenoid metabolism, providing an effective strategy for quality improvement of citrus fruit and other crops.


Subject(s)
Abscisic Acid , Citrus , Humans , Abscisic Acid/metabolism , Citrus/genetics , Gene Expression Regulation, Plant/genetics , Carotenoids/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Fruit/genetics , Fruit/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
19.
Clin Exp Immunol ; 215(1): 27-36, 2024 01 09.
Article in English | MEDLINE | ID: mdl-37724585

ABSTRACT

The overlapping of two or more types of neural autoantibodies in one patient has increasingly been documented in recent years. The coexistence of myelin oligodendrocyte glycoprotein (MOG) and N-methyl-d-aspartate receptor (NMDAR) antibodies is most common, which leads to a unique condition known as the MOG antibody and NMDAR antibody overlapping syndrome (MNOS). Here, we have reviewed the pathogenesis, clinical manifestations, paraclinical features, and treatment of MNOS. Forty-nine patients with MNOS were included in this study. They were young males with a median onset age of 23 years. No tumors were observed in the patients, and 24 of them reported prodromal symptoms. The most common clinical presentations were psychiatric symptoms (35/49) and seizures (25/49). Abnormalities on magnetic resonance imaging involved the brainstem (11/49), cerebellum (9/49), and parietal lobe (9/49). Most patients mostly responded to immunotherapy and had a good long-term prognosis. However, the overall recurrence rate of MNOS was higher than that of mono antibody-positive diseases. The existence of concurrent NMDAR antibodies should be suspected in patients with MOG antibody-associated disease having psychiatric symptoms, seizures, movement disorders, or autonomic dysfunction. Similarly, serum MOG antibody testing should be performed when patients with anti-NMDAR encephalitis present with atypical clinical manifestations, such as visual impairment and limb weakness, and neuroradiological findings, such as optic nerve, spinal cord, or infratentorial involvement or meningeal enhancement. Early detection of the syndrome and prompt treatment can be beneficial for these patients, and maintenance immunosuppressive therapy is recommended due to the high overall recurrence rate of the syndrome.


Subject(s)
Anti-N-Methyl-D-Aspartate Receptor Encephalitis , Receptors, N-Methyl-D-Aspartate , Humans , Male , Young Adult , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/diagnosis , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/complications , Autoantibodies , Myelin-Oligodendrocyte Glycoprotein , Seizures/complications , Syndrome
20.
Nat Mater ; 22(6): 710-716, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37081170

ABSTRACT

Hydrogen embrittlement jeopardizes the use of high-strength steels in critical load-bearing applications. However, uncertainty regarding how hydrogen affects dislocation motion, owing to the lack of quantitative experimental evidence, hinders our understanding of hydrogen embrittlement. Here, by studying the well-controlled, cyclic, bow-out motions of individual screw dislocations in α-iron, we find that the critical stress for initiating dislocation motion in a 2 Pa electron-beam-excited H2 atmosphere is 27-43% lower than that in a vacuum environment, proving that hydrogen enhances screw dislocation motion. Moreover, we find that aside from vacuum degassing, cyclic loading and unloading facilitates the de-trapping of hydrogen, allowing the dislocation to regain its hydrogen-free behaviour. These findings at the individual dislocation level can inform hydrogen embrittlement modelling and guide the design of hydrogen-resistant steels.

SELECTION OF CITATIONS
SEARCH DETAIL