Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 388
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 578(7793): 166-171, 2020 02.
Article in English | MEDLINE | ID: mdl-31996845

ABSTRACT

Glioblastoma is a universally lethal form of brain cancer that exhibits an array of pathophysiological phenotypes, many of which are mediated by interactions with the neuronal microenvironment1,2. Recent studies have shown that increases in neuronal activity have an important role in the proliferation and progression of glioblastoma3,4. Whether there is reciprocal crosstalk between glioblastoma and neurons remains poorly defined, as the mechanisms that underlie how these tumours remodel the neuronal milieu towards increased activity are unknown. Here, using a native mouse model of glioblastoma, we develop a high-throughput in vivo screening platform and discover several driver variants of PIK3CA. We show that tumours driven by these variants have divergent molecular properties that manifest in selective initiation of brain hyperexcitability and remodelling of the synaptic constituency. Furthermore, secreted members of the glypican (GPC) family are selectively expressed in these tumours, and GPC3 drives gliomagenesis and hyperexcitability. Together, our studies illustrate the importance of functionally interrogating diverse tumour phenotypes driven by individual, yet related, variants and reveal how glioblastoma alters the neuronal microenvironment.


Subject(s)
Brain Neoplasms/enzymology , Class I Phosphatidylinositol 3-Kinases/metabolism , Glioblastoma/enzymology , Animals , Brain Neoplasms/pathology , Carcinogenesis/genetics , Carcinogenesis/metabolism , Class I Phosphatidylinositol 3-Kinases/chemistry , Class I Phosphatidylinositol 3-Kinases/genetics , Disease Models, Animal , Glioblastoma/pathology , Glypicans/metabolism , Mice
2.
J Cell Mol Med ; 28(10): e18268, 2024 May.
Article in English | MEDLINE | ID: mdl-38775031

ABSTRACT

Colorectal cancer (CRC) is a highly prevalent malignancy affecting the digestive system on a global scale. This study aimed to explore the previously unexplored role of CHPF in the progression of CRC. Our results revealed a significant upregulation of CHPF expression in CRC tumour tissues compared to normal tissues, with its levels correlating with tumour malignancy. In vitro experiments using CRC cell lines demonstrated that inhibiting CHPF expression suppressed cell proliferation, colony formation and cell migration, while promoting apoptosis. Conversely, overexpressing CHPF had the opposite effect. Additionally, our xenograft models in mice confirmed the inhibitory impact of CHPF knockdown on CRC progression using various cell models. Mechanistic investigations unveiled that CHPF may enhance VEGFB expression through E2F1-mediated transcription. Functionally, suppressing VEGFB expression successfully mitigated the oncogenic effects induced by CHPF overexpression. Collectively, these findings suggest that CHPF may act as a tumour promoter in CRC, operating in a VEGFB-dependent manner and could be a potential target for therapeutic interventions in CRC treatment.


Subject(s)
Apoptosis , Cell Movement , Cell Proliferation , Colorectal Neoplasms , Disease Progression , Gene Expression Regulation, Neoplastic , Vascular Endothelial Growth Factor B , Aged , Animals , Female , Humans , Male , Mice , Apoptosis/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Mice, Nude , Transcription, Genetic , Vascular Endothelial Growth Factor B/metabolism , Vascular Endothelial Growth Factor B/genetics
3.
Breast Cancer Res ; 26(1): 98, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867323

ABSTRACT

BACKGROUND: The differential gene expression profile of metastatic versus primary breast tumors represents an avenue for discovering new or underappreciated pathways underscoring processes of metastasis. However, as tumor biopsy samples are a mixture of cancer and non-cancer cells, most differentially expressed genes in metastases would represent confounders involving sample biopsy site rather than cancer cell biology. METHODS: By paired analysis, we defined a top set of differentially expressed genes in breast cancer metastasis versus primary tumors using an RNA-sequencing dataset of 152 patients from The Breast International Group Aiming to Understand the Molecular Aberrations dataset (BIG-AURORA). To filter the genes higher in metastasis for genes essential for breast cancer proliferation, we incorporated CRISPR-based data from breast cancer cell lines. RESULTS: A significant fraction of genes with higher expression in metastasis versus paired primary were essential by CRISPR. These 264 genes represented an essential signature of breast cancer metastasis. In contrast, nonessential metastasis genes largely involved tumor biopsy site. The essential signature predicted breast cancer patient outcome based on primary tumor expression patterns. Pathways underlying the essential signature included proteasome degradation, the electron transport chain, oxidative phosphorylation, and cancer metabolic reprogramming. Transcription factors MYC, MAX, HDAC3, and HCFC1 each bound significant fractions of essential genes. CONCLUSIONS: Associations involving the essential gene signature of breast cancer metastasis indicate true biological changes intrinsic to cancer cells, with important implications for applying existing therapies or developing alternate therapeutic approaches.


Subject(s)
Breast Neoplasms , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Neoplasm Metastasis , Transcriptome , Humans , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Female , Biomarkers, Tumor/genetics , Genes, Essential/genetics , Cell Line, Tumor , Signal Transduction/genetics , Prognosis
4.
Lab Invest ; 104(5): 102042, 2024 May.
Article in English | MEDLINE | ID: mdl-38431117

ABSTRACT

Esophageal squamous cell carcinoma stands as a notably aggressive malignancy within the digestive system. In cases of early esophageal cancer without lymph node metastasis, endoscopic surgical resection offers a viable alternative, often resulting in improved patient quality of life. However, the paucity of methods to preoperatively ascertain lymph node involvement complicates surgical planning. SOX4 gene was previously found to be highly associated with invasive metastasis in our work through single-cell RNA sequencing on 5 paired tumor/peritumor tissues. This research included the collection of 124 tissue samples from 106 patients (106 tumor and 18 lymph node specimens). Samples were methodically arranged into a tissue microarray and treated with immunohistochemical staining. Statistical analysis was conducted to assess the relationship between them. In the univariate analysis, 3 factors were identified as statistically significant in relation to lymph node metastasis: T category (P = .014), vascular invasion (P < .001), and SOX4 intensity (P = .001). Additionally, when evaluating SOX4 intensity alongside other clinical indicators, SOX4 was shown to independently influence lymph node metastasis. Further, the multivariate analysis revealed that vascular invasion (P < .001) and SOX4 intensity (P = .003) were significantly associated with lymph node metastasis, exhibiting hazard ratios of 10.174 and 7.142, respectively. The results of our study indicate that both SOX4 expression and vascular invasion serve as predictors of lymph node metastasis in patients diagnosed with category T1 esophageal squamous cell carcinoma, underscoring the potential utility of SOX4 in prognostic evaluations.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Lymphatic Metastasis , SOXC Transcription Factors , Humans , Male , SOXC Transcription Factors/metabolism , SOXC Transcription Factors/genetics , Female , Middle Aged , Esophageal Neoplasms/pathology , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/genetics , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/secondary , Esophageal Squamous Cell Carcinoma/surgery , Aged , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Lymph Nodes/pathology , Lymph Nodes/metabolism , Adult , Prognosis
5.
Am J Hum Genet ; 108(8): 1478-1487, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34197731

ABSTRACT

Idiopathic achalasia (IA) is a severe motility disorder characterized by neuronal degeneration in the myenteric plexus, but the etiology remains largely unknown. We performed whole-exome sequencing (WES) in 100 IA-affected individuals and 313 non-IA control subjects and validated the results in 230 IA-affected individuals and 1,760 non-IA control subjects. Common missense variants rs1705003 (CUTA, GenBank: NC_000006.11:g.33385953A>G) and rs1126511 (HLA-DPB1, GenBank: NC_000006.11:g.33048466G>T) at 6p21.32 were reproducibly associated with increased risk of IA (rs1126511: OR = 1.83, p = 2.34 × 10-9; rs1705003: OR = 2.37, p = 3.21 × 10-7), meeting exome-wide significance. Both variants can affect the expression of their target genes at the transcript level. An array-based association analysis in 280 affected individuals and 1,121 control subjects determined the same signal at 6p21.32. Further conditional analyses supported that the two missense variants identified in WES-based association study were potential causal variants of IA. For rare variants, the top genes identified by gene-based analysis were significantly enriched in nerve and muscle phenotypic genes in the mouse. Moreover, the functional rare variants in these genes tended to cooccur in IA-affected individuals. In an independent cohort, we successfully validated three rare variants (CREB5, GenBank: NC_000007.13:g.28848865G>T; ESYT3, GenBank: NC_000003.11:g.138183253C>T; and LPIN1, GenBank: NC_000002.11:g.11925128A>G) which heightens the risk of developing IA. Our study identified and validated two common variants and three rare variants associated with IA in immunologic and neurological genes, providing new insight into the etiology of IA.


Subject(s)
Cyclic AMP Response Element-Binding Protein A/genetics , Esophageal Achalasia/pathology , Exome Sequencing/methods , Exome , Genetic Predisposition to Disease , Genetic Variation , Phosphatidate Phosphatase/genetics , Synaptotagmins/genetics , Case-Control Studies , Esophageal Achalasia/genetics , Genetic Testing , Humans , Phenotype
6.
Opt Express ; 32(9): 16548-16562, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38859279

ABSTRACT

Optical computing has gradually demonstrated its efficiency in handling increasingly complex computational demands, attracting widespread attention. Optical switches can effectively control and modulate optical signals, providing flexibility and efficiency for optical computing systems. However, traditional optical switches face performance issues such as power consumption, switching speed, and compactness, severely limiting the implementation of large-scale photonic integrated circuits and optical neural networks. This paper proposes an innovative design structure for a non-volatile multi-level adjustable optical switch by combining a plasmonic slot waveguide with segmented phase-change materials. Modulation of waveguide light transmission is achieved by adjusting the phase state of Ge2Sb2Te5(GST). At a wavelength of 1550 nm, a low insertion loss of 0.5dB has been achieved, with approximately an 85% difference in optical transmittance between amorphous state (aGST) and crystalline state (cGST). The high transmittance difference contributes to achieving a wide range of weight variations and supports precise weight updates. Based on this design, we successfully implemented a handwritten digit recognition task with an accuracy of 95%, laying the foundation for future more efficient memory computing neural morphic networks.

7.
Opt Express ; 32(9): 15336-15357, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38859187

ABSTRACT

Multi-line-of-sight wavefront sensing, crucial for next-generation astronomy and laser applications, often increases system complexity by adding sensors. This research introduces, to the best of our knowledge, a novel method for multi-line-of-sight Hartmann-Shack wavefront sensing by using a single sensor, addressing challenges in centroid estimation and classification under atmospheric turbulence. This method contrasts with existing techniques that rely on multiple sensors, thereby reducing system complexity. Innovations include combining edge detection and peak extraction for precise centroid calculation, improved k-means clustering for robust centroid classification, and a centroid filling algorithm for subapertures with light loss. The method's effectiveness was confirmed through simulations for a five-line-of-sight system and experimental setup for two-line and three-line-of-sight systems, demonstrating its potential in real atmospheric aberration correction conditions. Experimental findings indicate that, when implemented in a closed-loop configuration, the method significantly reduces wavefront residuals from 1 λ to 0.1 λ under authentic atmospheric turbulence conditions. Correspondingly, the quality of the far-field spot is enhanced by a factor of 2 to 4. These outcomes collectively highlight the method's robust capability in enhancing optical system performance in environments characterized by genuine atmospheric turbulence.

8.
Opt Lett ; 49(8): 1965-1968, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38621052

ABSTRACT

We propose a concise hardware architecture supporting efficient exclusive OR (XOR) and exclusive NOR (XNOR) operations, by employing a single photonic spiking neuron based on a passive add-drop microring resonator (ADMRR). The threshold mechanism and inhibitory dynamics of the ADMRR-based spiking neuron are numerically discussed on the basis of the coupled mode theory. It is shown that a precise XOR operation in the ADMRR-based spiking neuron can be implemented by adjusting temporal differences within the inhibitory window. Additionally, within the same framework, the XNOR function can also be carried out by accumulating the input power over time to trigger an excitatory behavior. This work presents a novel, to the best of our knowledge, and pragmatic technique for optical neuromorphic computing and information processing utilizing passive devices.

9.
Opt Lett ; 49(11): 2950-2953, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824300

ABSTRACT

Phase unwrapping (PU) algorithms play a crucial role in various phase measurement techniques. Traditional algorithms cannot work well in strong noise environments, which makes it very difficult to obtain the accurate absolute phase from the noisy wrapped phase. In this Letter, we introduce a novel, to the best of our knowledge, phase unwrapping algorithm named PD-VHS. This algorithm innovatively employs point spread function (PSF) filtering to eliminate noise from the wrapped phase. Furthermore, it combines a phase diversity (PD) wavefront reconstruction technology with a virtual Hartmann-Shack (VHS) technology for phase reconstruction and phase unwrapping of the filtered PSFs. In simulations, hundreds of random noise wrapped phases, containing the first 45 Zernike polynomials (excluding piston and the two tilt terms) and the wavefront RMS = 0.5λ and 1λ, are used to compare the classical quality-map guided algorithm, the VHS algorithm with decent noise immunity, with our PD-VHS algorithm. When signal-to-noise ratio (SNR) drops to just 2 dB, the mean root mean square errors (RMSEs) of the residual wavefront between the unwrapped result and the absolute phase of the quality-map guided algorithm and the VHS algorithm are up to 3.99λ, 0.44λ, 4.29λ, and 0.85λ, respectively; however, our algorithm RMSEs are low: 0.11λ and 0.17λ. Simulation results demonstrated that the PD-VHS algorithm significantly outperforms the quality-map guided algorithm and the VHS algorithm under large-scale noise conditions.

10.
Gastrointest Endosc ; 99(3): 358-370.e11, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37852331

ABSTRACT

BACKGROUND AND AIMS: Increased reports on endoscopic resection (ER) of esophageal giant subepithelial lesions (g-SELs) have emerged in recent years. The aim of this study was to evaluate the efficacy, technical difficulty, and safety through our single-center experience. METHODS: Seventy-five patients with g-SELs undergoing endoscopic resection were included in the training set. Clinicopathologic features, procedure-related characteristics, postprocedural outcomes, and follow-up data were analyzed. A predictive nomogram model for procedural difficulty was proposed based on the multivariable logistic regression analysis. Internal and external validations were conducted to verify the model performance. RESULTS: The overall en bloc resection rate was 93.3%. Intraoperative and postoperative adverse events occurred in 7 (9.3%) and 13 (17.3%) patients, respectively. No recurrence or metastasis was observed. Thirty-two (42.7%) patients underwent a difficult procedure. Age (adjusted odds ratio [aOR], .915; P = .004), maximal tumor diameter ≥8 cm (aOR, 9.896; P = .009), irregular shape (aOR, 4.081; P = .053), extraluminal growth pattern (aOR, 5.419; P = .011), and submucosal tunneling endoscopic resection (aOR, .109; P = .042) were found to be statistically or clinically significant factors for predicting endoscopic resection difficulty, based on which a nomogram model was developed. Internal and external validations of the nomogram via receiver-operating characteristic curves and calibration curves achieved favorable results. CONCLUSIONS: Endoscopic resection serves as a promising therapeutic option for esophageal g-SELs. A younger patient age, large tumor size, irregular shape, and extraluminal growth may indicate increased endoscopic resection difficulty, whereas a submucosal tunneling endoscopic resection procedure tends to be of lower difficulty. Our nomogram model performs well for predicting endoscopic resection difficulty for esophageal g-SELs.


Subject(s)
Endoscopic Mucosal Resection , Esophageal Neoplasms , Humans , Esophageal Neoplasms/surgery , Esophageal Neoplasms/pathology , Endoscopy , Endoscopic Mucosal Resection/methods , Treatment Outcome , Retrospective Studies
11.
Gastrointest Endosc ; 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38431107

ABSTRACT

BACKGROUND & AIMS: Nonampullary duodenal neuroendocrine tumors (NAD-NETs) are rare with limited evidence regarding endoscopic treatment. The study aimed to investigate the efficacy and safety of endoscopic resection of well-differentiated NAD-NETs and evaluate long-term outcomes, including local recurrence and metastasis. METHODS: A total of 78 patients with NAD-NETs who underwent endoscopic resection between January 2011 and August 2022 were included. The clinicopathologic characteristics and treatment outcomes were collected and analyzed. RESULTS: En bloc resection was achieved for 74 of the tumors (94.9%) and R0 resection was obtained in 68 of the tumors (87.2%). Univariate analysis identified tumors in the second part of the duodenum, tumor size ≥ 10 mm and muscularis propria invasion as risk factors for non-curative resection. Two patients with R1 resection (vertical margin involvement) and two patients with lymphovascular invasion underwent additional surgery. Four patients experienced adverse events (5.1%), including two cases of delayed bleeding and two cases of perforation, all successfully managed conservatively. During a median follow-up period of 62.6 months, recurrence and lymph node metastasis were only detected in one patient with R1 resection 3 months after the original procedure. CONCLUSION: Endoscopic resection is safe and effective and provides a favorable long-term outcome for patients with well-differentiated NAD-NETs without regional lymph node or distant metastasis.

12.
Chem Rev ; 122(18): 14554-14593, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-35960873

ABSTRACT

The past decade has witnessed remarkable success in the synthesis of curved polycyclic aromatics through Scholl reactions which enable oxidative aryl-aryl coupling even in company with the introduction of significant steric strain. These curved polycyclic aromatics are not only unique objects of structural organic chemistry in relation to the nature of aromaticity but also play an important role in bottom-up approaches to precise synthesis of nanocarbons of unique topology. Moreover, they have received considerable attention in the fields of supramolecular chemistry and organic functional materials because of their interesting properties and promising applications. Despite the great success of Scholl reactions in synthesis of curved polycyclic aromatics, the outcome of a newly designed substrate in the Scholl reaction still cannot be predicted in a generic and precise manner largely due to limited understanding on the reaction mechanism and possible rearrangement processes. This review provides an overview of Scholl reactions with a focus on their applications in synthesis of curved polycyclic aromatics with interesting structures and properties and aims to shed light on the key factors that affect Scholl reactions in synthesizing sterically strained polycyclic aromatics.

13.
J Gastroenterol Hepatol ; 39(3): 527-534, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37974384

ABSTRACT

BACKGROUND: Endoscopic resection (ER) for jejunoileal lesions (JILs) has been technically challenging. We aimed to characterize the clinicopathologic characteristics, feasibility, and safety of ER for JILs. METHOD: We retrospectively investigated 52 patients with JILs who underwent ER from January 2012 to February 2022. We collected and analyzed clinicopathological characteristics, procedure-related parameters, outcomes, and follow-up data. RESULTS: The mean age was 49.4 years. Of the 52 JILs, 33 ileal tumors within 20 cm from the ileocecal valve were resected with colonoscopy, while 19 tumors in the jejunum or the ileum over 20 cm from the ileocecal valve received enteroscopy resection. The mean procedure duration was 49.0 min. The en bloc resection and en bloc with R0 resection rates were 86.5% and 84.6%, respectively. Adverse events (AEs) included one (1.9%) major AE (delayed bleeding) and five (9.6%) minor AEs. During a median follow-up of 36.5 months, two patients had local recurrence (3.8%), while none had metastases. The 5-year recurrence-free survival (RFS) and disease-specific survival (DSS) were 92.9% and 94.1%, respectively. Compared with the enteroscopy group, overall AEs were significantly lower in the colonoscopy group (P < 0.05), but no statistical differences were observed in RFS (P = 0.412) and DSS (P = 0.579). There were no significant differences in AEs, RFS, and DSS between the endoscopic submucosal dissection (ESD) and the endoscopic mucosal resection (EMR) group. CONCLUSIONS: ER of JILs has favorable short-term and long-term outcomes. Both ESD and EMR can safely and effectively resect JILs in appropriately selected cases.


Subject(s)
Colonoscopy , Endoscopic Mucosal Resection , Humans , Middle Aged , Retrospective Studies , Feasibility Studies , Colonoscopy/adverse effects , Endoscopy, Gastrointestinal , Endoscopic Mucosal Resection/adverse effects , Endoscopic Mucosal Resection/methods , Treatment Outcome , Neoplasm Recurrence, Local/pathology , Intestinal Mucosa/pathology
14.
Mol Cell ; 63(6): 976-89, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27594448

ABSTRACT

Prostate inflammation has been suggested as an etiology for benign prostatic hyperplasia (BPH). We show that decreased expression of the androgen receptor (AR) in luminal cells of human BPH specimens correlates with a higher degree of regional prostatic inflammation. However, the cause-and-effect relationship between the two events remains unclear. We investigated specifically whether attenuating AR activity in prostate luminal cells induces inflammation. Disrupting luminal cell AR signaling in mouse models promotes cytokine production cell-autonomously, impairs epithelial barrier function, and induces immune cell infiltration, which further augments local production of cytokines and chemokines including Il-1 and Ccl2. This inflammatory microenvironment promotes AR-independent prostatic epithelial proliferation, which can be abolished by ablating IL-1 signaling or depleting its major cellular source, the macrophages. This study demonstrates that disrupting luminal AR signaling promotes prostate inflammation, which may serve as a mechanism for resistance to androgen-targeted therapy for prostate-related diseases.


Subject(s)
Epithelial Cells/metabolism , Homeostasis/genetics , Macrophages/metabolism , Prostate/metabolism , Prostatic Hyperplasia/genetics , Receptors, Androgen/genetics , Animals , Cell Proliferation , Chemokine CCL2/genetics , Chemokine CCL2/immunology , Chemokine CXCL10/genetics , Chemokine CXCL10/immunology , Epithelial Cells/immunology , Epithelial Cells/pathology , Gene Expression Regulation , Homeostasis/immunology , Humans , Inflammation , Interleukin-1alpha/genetics , Interleukin-1alpha/immunology , Interleukin-1beta/genetics , Interleukin-1beta/immunology , Leukocyte Common Antigens/genetics , Leukocyte Common Antigens/immunology , Macrophages/immunology , Macrophages/pathology , Male , Mice , Neutrophil Infiltration , Prostate/immunology , Prostate/pathology , Prostatic Hyperplasia/immunology , Prostatic Hyperplasia/metabolism , Prostatic Hyperplasia/pathology , Receptors, Androgen/immunology , Signal Transduction , Stromal Cells/immunology , Stromal Cells/metabolism , Stromal Cells/pathology
15.
Small ; 19(45): e2303301, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37423977

ABSTRACT

Flexible electronic sensors show great potential for health monitoring but are usually limited to single sensing functionality. To enrich their functions, complicated device configurations, sophisticated material systems, and preparation processes are typically involved, obstructing their large-scale deployment and widespread application. Herein, to achieve a good balance between simplicity and multifunctionality, a new paradigm of sensor modality for both mechanical sensing and bioelectrical sensing is presented based on a single material system and a simple solution processing approach. The whole multifunctional sensors are constructed with a pair of highly conductive ultrathin electrodes (WPU/MXene-1) and an elastic micro-structured mechanical sensing layer (WPU/MXene-2), with the human skin serving as the substrate for the whole sensors. The resultant sensors show high pressure sensitivity and low skin-electrode interfacial impedance, enabling to synergetically monitor both physiological pressure (e.g., arterial pulse signals) and epidermal bioelectrical signals (including electrocardiograph and electromyography). The universality and extensibility of this methodology to construct multifunctional sensors with different material systems are also verified. This simplified sensor modality with enhanced multifunctionality provides a novel design concept to construct future smart wearables for health monitoring and medical diagnosis.


Subject(s)
Skin , Wearable Electronic Devices , Humans , Epidermis , Electric Conductivity
16.
Small ; 19(42): e2302621, 2023 10.
Article in English | MEDLINE | ID: mdl-37340585

ABSTRACT

The clinical patency of small-diameter vascular grafts (SDVGs) (ID < 6 mm) is limited, with the formation of mural thrombi being a major threat of this limitation. Herein, a bilayered hydrogel tube based on the essential structure of native blood vessels is developed by optimizing the relation between vascular functions and the molecular structure of hydrogels. The inner layer of the SDVGs comprises a zwitterionic fluorinated hydrogel, avoiding the formation of thromboinflammation-induced mural thrombi. Furthermore, the position and morphology of the SDVGs can be visualized via 19 F/1 H magnetic resonance imaging. The outer poly(N-acryloyl glycinamide) hydrogel layer of SDVGs provides matched mechanical properties with native blood vessels through the multiple and controllable intermolecular hydrogen-bond interactions, which can withstand the accelerated fatigue test under pulsatile radial pressure for 380 million cycles (equal to a service life of 10 years in vivo). Consequently, the SDVGs exhibit higher patency (100%) and more stable morphology following porcine carotid artery transplantation for 9 months and rabbit carotid artery transplantation for 3 months. Therefore, such a bioinspired, antithrombotic, and visualizable SDVG presents a promising design approach for long-term patency products and great potential of helping patients with cardiovascular diseases.


Subject(s)
Hydrogels , Thrombosis , Humans , Animals , Swine , Rabbits , Inflammation , Blood Vessel Prosthesis , Magnetic Resonance Imaging
17.
Biochem Soc Trans ; 51(1): 57-70, 2023 02 27.
Article in English | MEDLINE | ID: mdl-36629496

ABSTRACT

The discovery of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) along with its potent and selective antitumor effects initiated a decades-long search for therapeutic strategies to target the TRAIL pathway. First-generation approaches were focused on the development of TRAIL receptor agonists (TRAs), including recombinant human TRAIL (rhTRAIL) and TRAIL receptor-targeted agonistic antibodies. While such TRAIL pathway-targeted therapies showed promise in preclinical data and clinical trials have been conducted, none have advanced to FDA approval. Subsequent second-generation approaches focused on improving upon the specific limitations of first-generation approaches by ameliorating the pharmacokinetic profiles and agonistic abilities of TRAs as well as through combinatorial approaches to circumvent resistance. In this review, we summarize the successes and shortcomings of first- and second-generation TRAIL pathway-based therapies, concluding with an overview of the discovery and clinical introduction of ONC201, a compound with a unique mechanism of action that represents a new generation of TRAIL pathway-based approaches. We discuss preclinical and clinical findings in different tumor types and provide a unique perspective on translational directions of the field.


Subject(s)
Apoptosis , Receptors, Death Domain , Humans
18.
Opt Express ; 31(18): 28764-28777, 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37710689

ABSTRACT

We propose a time-delayed photonic reservoir computing (RC) architecture utilizing a reflective semiconductor optical amplifier (RSOA) as an active mirror. The performance of the proposed RC structure is investigated by two benchmark tasks, namely the Santa Fe time-series prediction task and the nonlinear channel equalization task. The simulation results show that both the prediction and equalization performance of the proposed system are significantly improved with the contribution of RSOA, with respect to the traditional RC system using a mirror. By increasing the drive current of the RSOA, the greater nonlinearity of the RSOA gain saturation is achieved, as such the prediction and equalization performance are enhanced. It is also shown that the proposed RC architecture shows a wider consistency interval and superior robustness than the traditional RC structure for most of the measured parameters such as coupling strength, injection strength, and frequency detuning. This work provides a performance-enhanced time-delayed RC structure by making use of the nonlinear transformation of the RSOA feedback.

19.
Opt Express ; 31(25): 42165-42175, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38087596

ABSTRACT

Free space optical (FSO) communication has gained widespread attention due to its advantages, including high confidentiality, high communication capacity, and no limitation of spectrum. One of the great challenges in FSO communication is the transmission performance degradation in atmospheric turbulence channel due to wavefront distortion and scintillation. Here, we proposed and experimentally demonstrated a 120 Gbit/s vector beam multiplexed coherent optical communication system with turbulence-resilient capacity. Four multiplexed vector beams, each carrying a 30 Gbit/s quadrature phase-shift keying signal, propagate through different turbulence conditions. The influence of turbulence channel on the vector beam impairments is experimentally investigated. Under the weaker turbulence conditions, the system bit error rates are below the forward error correction threshold of 3.8 × 10-3. In comparison with the Gaussian mode, the communication interruption probability of the vector beams system decreases from 36% to 12%-18% under stronger turbulence conditions.

20.
Opt Lett ; 48(12): 3167-3170, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37319053

ABSTRACT

We propose and demonstrate an all-optical synaptic neuron based on an add-drop microring resonator (ADMRR) with power-tunable auxiliary light. Dual neural dynamics of passive ADMRRs, having spiking response and synaptic plasticity, are numerically investigated. It is demonstrated that, by injecting two beams of power-tunable and opposite-direction continuous light into an ADMRR and maintaining their sum power at a constant value, linear-tunable and single-wavelength neural spikes can be flexibly generated, in virtue of the nonlinear effects triggered by perturbation pulses. Based on this, a weighting operation system based on cascaded ADMRRs is designed; it enables implementation of real-time weighting operations at a number of wavelengths. This work provides a novel, to the best of our knowledge, approach for integrated photonic neuromorphic systems based entirely on optical passive devices.


Subject(s)
Optical Devices , Photons , Optics and Photonics , Neurons
SELECTION OF CITATIONS
SEARCH DETAIL