Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Plant Cell ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38735686

ABSTRACT

Increasing grain yield is a major goal of breeders due to the rising global demand for food. We previously reported that the miR397-LACCASE (OsLAC) module regulates brassinosteroid (BR) signaling and grain yield in rice (Oryza sativa). However, the precise roles of laccase enzymes in the BR pathway remain unclear. Here, we report that OsLAC controls grain yield by preventing the turnover of TRANSTHYRETIN-LIKE (OsTTL), a negative regulator of BR signaling. Overexpressing OsTTL decreased BR sensitivity in rice, while loss-of-function of OsTTL led to enhanced BR signaling and increased grain yield. OsLAC directly binds to OsTTL and regulates its phosphorylation-mediated turnover. The phosphorylation site Ser226 of OsTTL is essential for its ubiquitination and degradation. Overexpressing the dephosphorylation-mimic form of OsTTL (OsTTLS226A) resulted in more severe defects than did overexpressing OsTTL. These findings provide insight into the role of an ancient laccase in BR signaling and suggest that the OsLAC-OsTTL module could serve as a target for improving grain yield.

2.
Plant Physiol ; 194(4): 2101-2116, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-37995372

ABSTRACT

The precise timing of flowering plays a pivotal role in ensuring successful plant reproduction and seed production. This process is intricately governed by complex genetic networks that integrate internal and external signals. This study delved into the regulatory function of microRNA397 (miR397) and its target gene LACCASE-15 (OsLAC15) in modulating flowering traits in rice (Oryza sativa). Overexpression of miR397 led to earlier heading dates, decreased number of leaves on the main stem, and accelerated differentiation of the spikelet meristem. Conversely, overexpression of OsLAC15 resulted in delayed flowering and prolonged vegetative growth. Through biochemical and physiological assays, we uncovered that miR397-OsLAC15 had a profound impact on carbohydrate accumulation and photosynthetic assimilation, consequently enhancing the photosynthetic intensity in miR397-overexpressing rice plants. Notably, we identified that OsLAC15 is at least partially localized within the peroxisome organelle, where it regulates the photorespiration pathway. Moreover, we observed that a high CO2 concentration could rescue the late flowering phenotype in OsLAC15-overexpressing plants. These findings shed valuable insights into the regulatory mechanisms of miR397-OsLAC15 in rice flowering and provided potential strategies for developing crop varieties with early flowering and high-yield traits through genetic breeding.


Subject(s)
Oryza , Oryza/metabolism , Flowers/physiology , Plant Breeding , Plant Leaves/genetics , Plant Leaves/metabolism , Reproduction , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant
3.
Plant Cell ; 33(8): 2685-2700, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34003932

ABSTRACT

MEIOSIS ARRESTED AT LEPTOTENE1 (MEL1), a rice (Oryza sativa) Argonaute (AGO) protein, has been reported to function specifically at premeiotic and meiotic stages of germ cell development and is associated with a novel class of germ cell-specific small noncoding RNAs called phased small RNAs (phasiRNAs). MEL1 accumulation is temporally and spatially regulated and is eliminated after meiosis. However, the metabolism and turnover (i.e. the homeostasis) of MEL1 during germ cell development remains unknown. Here, we show that MEL1 is ubiquitinated and subsequently degraded via the proteasome pathway in vivo during late sporogenesis. Abnormal accumulation of MEL1 after meiosis leads to a semi-sterile phenotype. We identified a monocot-specific E3 ligase, XBOS36, a CULLIN RING-box protein, that is responsible for the degradation of MEL1. Ubiquitination at four K residues at the N terminus of MEL1 by XBOS36 induces its degradation. Importantly, inhibition of MEL1 degradation either by XBOS36 knockdown or by MEL1 overexpression prevents the formation of pollen at the microspore stage. Further mechanistic analysis showed that disrupting MEL1 homeostasis in germ cells leads to off-target cleavage of phasiRNA target genes. Our findings thus provide insight into the communication between a monocot-specific E3 ligase and an AGO protein during plant reproductive development.


Subject(s)
Oryza/physiology , Plant Proteins/metabolism , Spores/growth & development , Ubiquitin/metabolism , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Gene Expression Regulation, Plant , Lysine/metabolism , Meiosis , Oryza/genetics , Plant Proteins/genetics , Plants, Genetically Modified , Pollen/genetics , Pollen/growth & development , Proteasome Endopeptidase Complex/metabolism , Proteolysis , RNA, Plant/genetics , RNA, Plant/metabolism , RNA, Small Untranslated/genetics , RNA, Small Untranslated/metabolism , Spores/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
4.
Proc Natl Acad Sci U S A ; 117(1): 727-732, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31871204

ABSTRACT

The intine, the inner layer of the pollen wall, is essential for the normal development and germination of pollen. However, the composition and developmental regulation of the intine in rice (Oryza sativa) remain largely unknown. Here, we identify a microRNA, OsmiR528, which regulates the formation of the pollen intine and thus male fertility in rice. The mir528 knockout mutant aborted pollen development at the late binucleate pollen stage, significantly decreasing the seed-setting rate. We further demonstrated that OsmiR528 affects pollen development by directly targeting the uclacyanin gene OsUCL23 (encoding a member of the plant-specific blue copper protein family of phytocyanins) and regulating intine deposition. OsUCL23 overexpression phenocopied the mir528 mutant. The OsUCL23 protein localized in the prevacuolar compartments (PVCs) and multivesicular bodies (MVBs). We further revealed that OsUCL23 interacts with a member of the proton-dependent oligopeptide transport (POT) family of transporters to regulate various metabolic components, especially flavonoids. We propose a model in which OsmiR528 regulates pollen intine formation by directly targeting OsUCL23 and in which OsUCL23 interacts with the POT protein on the PVCs and MVBs to regulate the production of metabolites during pollen development. The study thus reveals the functions of OsmiR528 and an uclacyanin during pollen development.


Subject(s)
Metalloproteins/genetics , MicroRNAs/metabolism , Oryza/physiology , Plant Proteins/genetics , Pollen/metabolism , Gene Expression Regulation, Plant , Microscopy, Electron, Transmission , Plants, Genetically Modified , Pollen/ultrastructure
5.
Nucleic Acids Res ; 48(D1): D307-D313, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31598693

ABSTRACT

RNA binding proteins (RBPs) are a large protein family that plays important roles at almost all levels of gene regulation through interacting with RNAs, and contributes to numerous biological processes. However, the complete list of eukaryotic RBPs including human is still unavailable. Here, we systematically identified RBPs in 162 eukaryotic species based on both computational analysis of RNA binding domains (RBDs) and large-scale RNA binding proteomic data, and established a comprehensive eukaryotic RBP database, EuRBPDB (http://EuRBPDB.syshospital.org). We identified a total of 311 571 RBPs with RBDs (corresponding to 6368 ortholog groups) and 3,651 non-canonical RBPs without known RBDs. EuRBPDB provides detailed annotations for each RBP, including basic information and functional annotation. Moreover, we systematically investigated RBPs in the context of cancer biology based on published literatures, PPI-network and large-scale omics data. To facilitate the exploration of the clinical relevance of RBPs, we additionally designed a cancer web interface to systematically and interactively display the biological features of RBPs in various types of cancers. EuRBPDB has a user-friendly web interface with browse and search functions, as well as data downloading function. We expect that EuRBPDB will be a widely-used resource and platform for both the communities of RNA biology and cancer biology.


Subject(s)
Neoplasms , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , Databases, Protein , Eukaryota , Humans , Internet , Mutation , Neoplasms/chemistry , RNA-Binding Motifs , RNA-Binding Proteins/genetics
6.
PLoS Genet ; 15(5): e1008120, 2019 05.
Article in English | MEDLINE | ID: mdl-31116744

ABSTRACT

N6-Methyladenosine (m6A) RNA methylation plays important roles during development in different species. However, knowledge of m6A RNA methylation in monocots remains limited. In this study, we reported that OsFIP and OsMTA2 are the components of m6A RNA methyltransferase complex in rice and uncovered a previously unknown function of m6A RNA methylation in regulation of plant sporogenesis. Importantly, OsFIP is essential for rice male gametogenesis. Knocking out of OsFIP results in early degeneration of microspores at the vacuolated pollen stage and simultaneously causes abnormal meiosis in prophase I. We further analyzed the profile of rice m6A modification during sporogenesis in both WT and OsFIP loss-of-function plants, and identified a rice panicle specific m6A modification motif "UGWAMH". Interestingly, we found that OsFIP directly mediates the m6A methylation of a set of threonine protease and NTPase mRNAs and is essential for their expression and/or splicing, which in turn regulates the progress of sporogenesis. Our findings revealed for the first time that OsFIP plays an indispensable role in plant early sporogenesis. This study also provides evidence for the different functions of the m6A RNA methyltransferase complex between rice and Arabidopsis.


Subject(s)
Gametogenesis, Plant , Gene Expression Regulation, Plant , Methyltransferases/genetics , Oryza/genetics , Plant Proteins/genetics , Protein Subunits/genetics , Adenosine/analogs & derivatives , Amino Acid Motifs , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Loss of Function Mutation , Meiotic Prophase I , Methylation , Methyltransferases/metabolism , Nucleoside-Triphosphatase/genetics , Nucleoside-Triphosphatase/metabolism , Oryza/growth & development , Oryza/metabolism , Plant Proteins/metabolism , Pollen/genetics , Pollen/growth & development , Pollen/metabolism , Protein Subunits/metabolism , RNA, Plant , Species Specificity
7.
Plant Physiol ; 182(1): 204-214, 2020 01.
Article in English | MEDLINE | ID: mdl-31694901

ABSTRACT

MicroRNAs (miRNAs) are small noncoding RNAs of ∼21 nt in length, which have regulatory roles in many biological processes. In animals, proper functioning of the circadian clock, which is closely linked to the fitness of almost all living organisms, is regulated by miRNAs. However, to date, there have been no reports of the roles of miRNA in regulation of the plant circadian rhythm. Here, we report a natural variant of miR397 that lengthens the circadian period and controls flowering time in Arabidopsis (Arabidopsis thaliana). Highly conserved among angiosperms, the miRNA miR397 has two members in Arabidopsis: miR397a and miR397b. However, only miR397b significantly delayed flowering. Our results suggest that miR397b controls flowering by targeting CASEIN KINASE II SUBUNIT BETA3 (CKB3), in turn modulating the circadian period of CIRCADIAN CLOCK ASSOCIATED1 (CCA1). We further demonstrated that CCA1 directly bound to the promoter of MIR397B and suppressed its expression, forming a miR397b-CKB3-CCA1 circadian regulation feedback circuit. Evolutionary analysis revealed that miR397b is a newly evolved genetic variant in Arabidopsis, and the miR397b targeting mode may have a role in enhancing plant fitness. Our results provide evidence for miRNA-mediated circadian regulation in plants and suggest the existence of a feedback loop to manipulate plant flowering through the regulation of circadian rhythm.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Arabidopsis/physiology , Circadian Rhythm/physiology , MicroRNAs/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Circadian Rhythm/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , MicroRNAs/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
8.
Int J Mol Sci ; 22(9)2021 Apr 29.
Article in English | MEDLINE | ID: mdl-33947059

ABSTRACT

Crop domestication, which gives rise to a number of desirable agronomic traits, represents a typical model system of plant evolution. Numerous genomic evidence has proven that noncoding RNAs such as microRNAs and phasiRNAs, as well as protein-coding genes, are selected during crop domestication. However, limited data shows plant long noncoding RNAs (lncRNAs) are also involved in this biological process. In this study, we performed strand-specific RNA sequencing of cultivated rice Oryza sativa ssp. japonica and O. sativa ssp. indica, and their wild progenitor O. rufipogon. We identified a total of 8528 lncRNAs, including 4072 lncRNAs in O. rufipogon, 2091 lncRNAs in japonica rice, and 2365 lncRNAs in indica rice. The lncRNAs expressed in wild rice were revealed to be shorter in length and had fewer exon numbers when compared with lncRNAs from cultivated rice. We also identified a number of conserved lncRNAs in the wild and cultivated rice. The functional study demonstrated that several of these conserved lncRNAs are associated with domestication-related traits in rice. Our findings revealed the feature and conservation of lncRNAs during rice domestication and will further promote functional studies of lncRNAs in rice.


Subject(s)
Domestication , Genome-Wide Association Study , Oryza/genetics , RNA, Long Noncoding/genetics , RNA, Plant/genetics , Base Sequence , Conserved Sequence , Crops, Agricultural/genetics , Exons/genetics , Gene Library , Molecular Sequence Annotation , RNA, Long Noncoding/isolation & purification , RNA, Plant/isolation & purification , Sequence Alignment , Sequence Homology, Nucleic Acid , Species Specificity , Transcriptome
9.
Plant Biotechnol J ; 18(3): 679-690, 2020 03.
Article in English | MEDLINE | ID: mdl-31419052

ABSTRACT

Plant defence is multilayered and is essential for surviving in a changing environment. The discovery of long noncoding RNAs (lncRNAs) has dramatically extended our understanding of post-transcriptional gene regulation in diverse biological processes. However, the expression profile and function of lncRNAs in disease resistance are still largely unknown, especially in monocots. Here, we performed strand-specific RNA sequencing of rice leaves infected by Xanthomonas oryzae pv. Oryzae (Xoo) in different time courses and systematically identified 567 disease-responsive rice lncRNAs. Target analyses of these lncRNAs showed that jasmonate (JA) pathway was significantly enriched. To reveal the interaction between lncRNAs and JA-related genes, we studied the coexpression of them and found 39 JA-related protein-coding genes to be interplayed with 73 lncRNAs, highlighting the potential modulation of lncRNAs in JA pathway. We subsequently identified an lncRNA, ALEX1, whose expression is highly induced by Xoo infection. A T-DNA insertion line constructed using enhancer trap system showed a higher expression of ALEX1 and exerted a significant resistance to rice bacterial blight. Functional study revealed that JA signalling is activated and the endogenous content of JA and JA-Ile is increased. Overexpressing ALEX1 in rice further confirmed the activation of JA pathway and resistance to bacterial blight. Our findings reveal the expression of pathogen-responsive lncRNAs in rice and provide novel insights into the connection between lncRNAs and JA pathway in the regulation of plant disease resistance.


Subject(s)
Cyclopentanes/metabolism , Disease Resistance , Oryza/genetics , Oxylipins/metabolism , Plant Diseases/genetics , RNA, Long Noncoding/genetics , Gene Expression Regulation, Plant , Plant Diseases/microbiology , Plant Proteins/genetics , Xanthomonas/pathogenicity
10.
Future Oncol ; 15(15): 1771-1780, 2019 May.
Article in English | MEDLINE | ID: mdl-30997850

ABSTRACT

Aim: MTHFD1 was the enzyme providing one-carbon derivatives of tetrahydrofolate. We sought to investigate the impact of MTHFD1 on hepatocellular carcinoma (HCC). Methods: Bioinformatic analysis, western blot and immunohistochemistry were conducted to detect MTHFD1 expression in HCC. The relationships between MTHFD1 and prognosis of 172 HCCs were analyzed by Kaplan-Meier method and Cox proportional hazards model. Results: High MTHFD1 expression in HCC represented poor prognosis (overall survival p = 0.025; time to recurrence p = 0.044). Combining MTHFD1 with serum AFP, survival analysis demonstrated the prognosis of the MTHFD1 low expression and AFP ≤20 ng/ml group was better than that of the MTHFD1 high expression or AFP >20 ng/ml group and the MTHFD1 high expression and AFP >20 ng/ml group (overall survival p < 0.0001; time to recurrence p < 0.0001). Conclusion: High MTHFD1 expression in HCC indicated poorer prognosis. Combining MTHFD1 with serum AFP improved the accuracy of prognostic prediction.


Subject(s)
Biomarkers, Tumor , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/mortality , Gene Expression , Liver Neoplasms/genetics , Liver Neoplasms/mortality , Methylenetetrahydrofolate Dehydrogenase (NADP)/genetics , Minor Histocompatibility Antigens/genetics , Adult , Aged , Carcinoma, Hepatocellular/pathology , Female , Humans , Immunohistochemistry , Kaplan-Meier Estimate , Liver Neoplasms/pathology , Male , Methylenetetrahydrofolate Dehydrogenase (NADP)/metabolism , Middle Aged , Minor Histocompatibility Antigens/metabolism , Neoplasm Recurrence, Local , Neoplasm Staging , Prognosis , ROC Curve , Reproducibility of Results , Risk Factors , Tumor Burden , alpha-Fetoproteins/metabolism
11.
Biochim Biophys Acta Mol Cell Res ; 1864(10): 1703-1713, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28601598

ABSTRACT

Several studies have shown that long non-coding RNAs (lncRNAs) may play an essential role in Epithelial-Mesenchymal Transition (EMT), which is an important step in tumor metastasis; however, little is known about the global change of lncRNA transcriptome during EMT. To investigate how lncRNA transcriptome alterations contribute to EMT progression regulation, we deep-sequenced the whole-transcriptome of MCF10A as the cells underwent TGF-ß-induced EMT. RESULTS: Deep-sequencing results showed that the long RNA transcriptome of MCF10A had undergone global changes as early as 8h after treatment with TGF-ß. The expression of 3403 known and novel lncRNAs, and 570 known and novel circRNAs were altered during EMT. To identify the key lncRNA-regulator, we constructed the co-expression network and found all junction nodes in the network are lncRNAs. One junction node, RP6-65G23.5, was further verified as a key regulator of EMT. Intriguingly, we identified 216 clusters containing lncRNAs which were located in "gene desert" regions. The expressions of all lncRNAs in these clusters changed concurrently during EMT, strongly suggesting that these clusters might play important roles in EMT. Our study reveals a global reprogramming of lncRNAs transcriptome during EMT and provides clues for the future study of the molecular mechanism of EMT.


Subject(s)
Breast Neoplasms/genetics , Epithelial-Mesenchymal Transition/genetics , High-Throughput Nucleotide Sequencing , RNA, Long Noncoding/biosynthesis , Breast Neoplasms/pathology , Cell Line, Tumor , Cellular Reprogramming/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Neoplasm Metastasis , RNA, Long Noncoding/genetics , Transcriptome/genetics
12.
Plant Physiol ; 175(3): 1175-1185, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28904074

ABSTRACT

Increasing grain yield is the most important object of crop breeding. Here, we report that the elevated expression of a conserved microRNA, OsmiR408, could positively regulate grain yield in rice (Oryza sativa) by increasing panicle branches and grain number. We further showed that OsmiR408 regulates grain yield by down-regulating its downstream target, OsUCL8, which is an uclacyanin (UCL) gene of the phytocyanin family. The knock down or knock out of OsUCL8 also increases grain yield, while the overexpression of OsUCL8 results in an opposite phenotype. Spatial and temporal expression analyses showed that OsUCL8 was highly expressed in pistils, young panicles, developing seeds, and inflorescence meristem and was nearly complementary to that of OsmiR408. Interestingly, the OsUCL8 protein was localized to the cytoplasm, distinct from a majority of phytocyanins, which localize to the plasma membrane. Further studies revealed that the cleavage of OsUCL8 by miR408 affects copper homeostasis in the plant cell, which, in turn, affects the abundance of plastocyanin proteins and photosynthesis in rice. To our knowledge, this is the first report of the effects of miR408-OsUCL8 in regulating rice photosynthesis and grain yield. Our study further broadens the perspective of microRNAs and UCLs and provides important information for breeding high-yielding crops through genetic engineering.


Subject(s)
MicroRNAs/metabolism , Oryza/genetics , Oryza/physiology , Photosynthesis , Plastocyanin/metabolism , Seeds/genetics , Seeds/physiology , Gene Expression Profiling , Gene Expression Regulation, Plant , MicroRNAs/genetics , Oryza/anatomy & histology , Phenotype , Photosynthesis/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , RNA Interference
13.
Biochem Biophys Res Commun ; 488(2): 382-386, 2017 06 24.
Article in English | MEDLINE | ID: mdl-28501625

ABSTRACT

As a novel class of endogenous non-coding RNAs, circular RNAs (circRNAs) have become a new research hotspot in recent years. The wide distribution of circRNAs in different plant species has been proven. Furthermore, circRNAs show significant tissue-specific expression patterns in plant development and are responsive to a variety of biotic and abiotic stresses, indicating that circRNAs might have important biological functions in plant development. Here, we summarize the current knowledge of plant circRNAs in recent years and discuss views and perspectives on the possible regulatory roles of plant circRNAs, including the function of miRNA sponges, regulating the expression of their parental genes or linear mRNAs, translating into peptides or proteins and responses to different stresses. These advances have sculpted a framework of plant circRNAs and provide new insights for functional RNA regulation research in the future.


Subject(s)
Gene Expression Regulation, Plant , Plants/genetics , Plants/metabolism , RNA, Plant/metabolism , RNA/metabolism , RNA, Circular
14.
Proc Natl Acad Sci U S A ; 111(39): 14159-64, 2014 Sep 30.
Article in English | MEDLINE | ID: mdl-25225396

ABSTRACT

Small RNAs (sRNAs), including microRNAs and endogenous siRNAs (endo-siRNAs), regulate most important biologic processes in eukaryotes, such as cell division and differentiation. Although sRNAs have been extensively studied in various eukaryotes, the role of sRNAs in the early emergence of eukaryotes is unclear. To address these questions, we deep sequenced the sRNA transcriptome of four different stages in the differentiation of Giardia lamblia, one of the most primitive eukaryotes. We identified a large number of endo-siRNAs in this fascinating parasitic protozoan and found that they were produced from live telomeric retrotransposons and three genomic regions (i.e., endo-siRNA generating regions [eSGRs]). eSGR-derived endo-siRNAs were proven to target mRNAs in trans. Gradual up-regulation of endo-siRNAs in the differentiation of Giardia suggested that they might be involved in the regulation of this process. This hypothesis was supported by the impairment of the differentiation ability of Giardia when GLDICER, essential for the biogenesis of endo-siRNAs, was knocked down. Endo-siRNAs are not the only sRNA regulators in Giardia differentiation, because a great number of tRNAs-derived sRNAs showed more dramatic expression changes than endo-siRNAs in this process. We totally identified five novel kinds of tRNAs-derived sRNAs and found that the biogenesis in four of them might be correlated with that of stress-induced tRNA-derived RNA (sitRNA), which was discovered in our previous studies. Our studies reveal an unexpected complex panorama of sRNA in G. lamblia and shed light on the origin and functional evolution of eukaryotic sRNAs.


Subject(s)
Giardia lamblia/genetics , RNA, Protozoan/genetics , Base Sequence , Evolution, Molecular , Genome, Protozoan , Giardia lamblia/cytology , Giardia lamblia/growth & development , High-Throughput Nucleotide Sequencing , Models, Genetic , Nucleic Acid Conformation , RNA, Protozoan/chemistry , RNA, Small Interfering/chemistry , RNA, Small Interfering/genetics , RNA, Transfer/chemistry , RNA, Transfer/genetics , Retroelements/genetics , Transcriptome
15.
Plant Biotechnol J ; 12(8): 1132-42, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24975689

ABSTRACT

Plant laccase (LAC) enzymes belong to the blue copper oxidase family and polymerize monolignols into lignin. Recent studies have established the involvement of microRNAs in this process; however, physiological functions and regulation of plant laccases remain poorly understood. Here, we show that a laccase gene, LAC4, regulated by a microRNA, miR397b, controls both lignin biosynthesis and seed yield in Arabidopsis. In transgenic plants, overexpression of miR397b (OXmiR397b) reduced lignin deposition. The secondary wall thickness of vessels and the fibres was reduced in the OXmiR397b line, and both syringyl and guaiacyl subunits are decreased, leading to weakening of vascular tissues. In contrast, overexpression of miR397b-resistant laccase mRNA results in an opposite phenotype. Plants overexpressing miR397b develop more than two inflorescence shoots and have an increased silique number and silique length, resulting in higher seed numbers. In addition, enlarged seeds and more seeds are formed in these miR397b overexpression plants. The study suggests that miR397-mediated development via regulating laccase genes might be a common mechanism in flowering plants and that the modulation of laccase by miR397 may be potential for engineering plant biomass production with less lignin.


Subject(s)
Arabidopsis/genetics , Gene Expression Regulation, Plant , Laccase/genetics , Lignin/biosynthesis , MicroRNAs/genetics , Arabidopsis/enzymology , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cell Wall/metabolism , Gene Expression , Laccase/metabolism , Lignin/analysis , Meristem/genetics , Meristem/growth & development , Phenotype , Plant Shoots/genetics , Plant Shoots/growth & development , Plant Vascular Bundle/genetics , Plant Vascular Bundle/growth & development , Plants, Genetically Modified , Seeds/genetics , Seeds/growth & development
16.
Biochem Biophys Res Commun ; 436(2): 111-4, 2013 Jun 28.
Article in English | MEDLINE | ID: mdl-23726911

ABSTRACT

Plant long noncoding RNAs (lncRNAs) play important roles in a wide range of biological processes, especially in plant reproductive development and response to stresses. They are transcribed by RNA polymerase II (Pol II), Pol III and Pol V, and exert their functions by a variety of regulation pathways. In this review, we summarized the current knowledge of lncRNAs discoveries in plant, including their identification, functions and regulation pathways as well as production and mediators, with an emphasizing on the novel regulation mechanisms in plant development.


Subject(s)
Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Plant Development/genetics , RNA, Long Noncoding/genetics , RNA, Plant/genetics , Models, Genetic
17.
Fundam Res ; 3(5): 718-726, 2023 Sep.
Article in English | MEDLINE | ID: mdl-38933294

ABSTRACT

Molecular breeding is one of the most effective methods for improving the performance of crops. Understanding the genome features of crops, especially the physiological functions of individual genes, is of great importance to molecular breeding. Evidence has shown that genomes of both animals and plants transcribe numerous non-coding RNAs, which are involved in almost every aspect of development. In crops, an increasing number of studies have proven that non-coding RNAs are new genetic resources for regulating crop traits. In this review, we summarize the current knowledge of non-coding RNAs, which are potential crop trait regulators, and focus on the functions of long non-coding RNAs (lncRNAs) in determining crop grain yield, phased small-interfering RNAs (phasiRNAs) in regulating fertility, small interfering RNAs (siRNAs) and microRNAs (miRNAs) in facilitating plant immune response and disease resistance, and miRNAs mediating nutrient and metal stress. Finally, we also discuss the next-generation method for ncRNA application in crop domestication and breeding.

18.
Plant Genome ; : e20277, 2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36345558

ABSTRACT

In addition to coding proteins, RNA molecules, especially long noncoding RNAs (lncRNAs), have well-established functions in regulating gene expression. The number of studies focused on the roles played by different types of lncRNAs in a variety of plant biological processes has markedly increased. These lncRNA roles involve plant vegetative and reproductive growth and responses to biotic and abiotic stresses. In this review, we examine the classification, mechanisms, and functions of lncRNAs and then emphasize the roles played by these lncRNAs in the communication between plants and the environment mainly with respect to the following environmental factors: temperature, light, water, salt stress, and nutrient deficiencies. We also discuss the consensus among researchers and the remaining challenges and underscore the exciting ways lncRNAs may affect the biology of plants.

19.
Genome Biol ; 23(1): 28, 2022 01 19.
Article in English | MEDLINE | ID: mdl-35045887

ABSTRACT

BACKGROUND: Plants have the remarkable ability to generate callus, a pluripotent cell mass that acquires competence for subsequent tissue regeneration. Global chromatin remodeling is required for this cell fate transition, but how the process is regulated is not fully understood. Chromatin-enriched noncoding RNAs (cheRNAs) are thought to play important roles in maintaining chromatin state. However, whether cheRNAs participate in somatic cell regeneration in plants has not yet been clarified. RESULTS: To uncover the characteristics and functions of cheRNAs during somatic cell reprogramming in plants, we systematically investigate cheRNAs during callus induction, proliferation and regeneration in rice. We identify 2284 cheRNAs, most of which are novel long non-coding RNAs or small nucleolar RNAs. These cheRNAs, which are highly conserved across plant species, shuttle between chromatin and the nucleoplasm during somatic cell regeneration. They positively regulate the expression of neighboring genes via specific RNA motifs, which may interact with DNA motifs around cheRNA loci. Large-scale mutant analysis shows that cheRNAs are associated with plant size and seed morphology. Further detailed functional investigation of two che-lncRNAs demonstrates that their loss of function impairs cell dedifferentiation and plant regeneration, highlighting the functions of cheRNAs in regulating the expression of neighboring genes via specific motifs. These findings support cis- regulatory roles of cheRNAs in influencing a variety of rice traits. CONCLUSIONS: cheRNAs are a distinct subclass of regulatory non-coding RNAs that are required for somatic cell regeneration and regulate rice traits. Targeting cheRNAs has great potential for crop trait improvement and breeding in future.


Subject(s)
Oryza , RNA, Long Noncoding , Chromatin/genetics , Oryza/genetics , Oryza/metabolism , Plant Breeding , RNA, Long Noncoding/genetics , RNA, Untranslated/genetics
20.
RNA Biol ; 8(3): 538-47, 2011.
Article in English | MEDLINE | ID: mdl-21525786

ABSTRACT

Small RNAs constitute a new and unanticipated layer of gene regulation present in the three domains of life. In plants, all organs are ultimately derived from a few pluripotent stem cells localized in specialized structures called apical meristems. The development of meristems involves a coordinated balance between undifferentiated growth and differentiation, a phenomenon requiring a tight regulation of gene expression. We used in vitro cultured embryogenic calli as a model to investigate the roles of meristem-associated small RNAs. Using high throughput sequencing, we sequenced 20 million short reads with size of 18-30 nt from rice undifferentiated and differentiated calli. We confirmed 50 known microRNA families, representing one third of annotated rice microRNAs. Using a specific computational pipeline for plant microRNA identification, we identified 24 novel microRNA families. Among them, 53 microRNA or microRNA* sequences appear to vary in expression between differentiated and undifferentiated calli, suggesting a role in meristem development. Our analysis also revealed a new class of plant small RNAs derived from 5' or 3' ends of mature tRNA analogous to the tRFs in human cancer cell. We independently verified the expression of these small RNAs from 5' end of mature tRNA using qRT-PCR.


Subject(s)
Genome, Plant , MicroRNAs/analysis , Oryza/embryology , Oryza/genetics , RNA, Plant/analysis , RNA, Small Interfering/analysis , Base Sequence , Gene Expression Regulation, Plant , Meristem/metabolism , Molecular Sequence Data , RNA, Transfer/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL