Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 453
Filter
Add more filters

Publication year range
1.
J Biol Chem ; 300(4): 107171, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38492776

ABSTRACT

Gemcitabine-based chemotherapy is a cornerstone of standard care for gallbladder cancer (GBC) treatment. Still, drug resistance remains a significant challenge, influenced by factors such as tumor-associated microbiota impacting drug concentrations within tumors. Enterococcus faecium, a member of tumor-associated microbiota, was notably enriched in the GBC patient cluster. In this study, we investigated the biochemical characteristics, catalytic activity, and kinetics of the cytidine deaminase of E. faecium (EfCDA). EfCDA showed the ability to convert gemcitabine to its metabolite 2',2'-difluorodeoxyuridine. Both EfCDA and E. faecium can induce gemcitabine resistance in GBC cells. Moreover, we determined the crystal structure of EfCDA, in its apo form and in complex with 2', 2'-difluorodeoxyuridine at high resolution. Mutation of key residues abolished the catalytic activity of EfCDA and reduced the gemcitabine resistance in GBC cells. Our findings provide structural insights into the molecular basis for recognizing gemcitabine metabolite by a bacteria CDA protein and may provide potential strategies to combat cancer drug resistance and improve the efficacy of gemcitabine-based chemotherapy in GBC treatment.


Subject(s)
Antimetabolites, Antineoplastic , Cytidine Deaminase , Deoxycytidine , Drug Resistance, Neoplasm , Enterococcus faecium , Gallbladder Neoplasms , Gemcitabine , Humans , Antimetabolites, Antineoplastic/metabolism , Antimetabolites, Antineoplastic/pharmacology , Antimetabolites, Antineoplastic/therapeutic use , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Cell Line, Tumor , Cytidine Deaminase/metabolism , Cytidine Deaminase/genetics , Cytidine Deaminase/chemistry , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Deoxycytidine/metabolism , Deoxycytidine/chemistry , Enterococcus faecium/enzymology , Enterococcus faecium/genetics , Gallbladder Neoplasms/drug therapy , Gallbladder Neoplasms/genetics , Gallbladder Neoplasms/microbiology , Gemcitabine/metabolism , Gemcitabine/pharmacology , Gemcitabine/therapeutic use
2.
Methods ; 221: 55-64, 2024 01.
Article in English | MEDLINE | ID: mdl-38061496

ABSTRACT

The detection of complex interactions between single nucleotide polymorphisms (SNPs) plays a vital role in genome-wide association analysis (GWAS). The multi-objective evolutionary algorithm is a promising technique for SNP-SNP interaction detection. However, as the scale of SNP data further increases, the exponentially growing search space gradually becomes the dominant factor, causing evolutionary algorithm (EA)-based approaches to fall into local optima. In addition, multi-objective genetic operations consume significant amounts of time and computational resources. To this end, this study proposes a distributed multi-objective evolutionary framework (DM-EF) to identify SNP-SNP interactions on large-scale datasets. DM-EF first partitions the entire search space into several subspaces based on a space-partitioning strategy, which is nondestructive because it guarantees that each feasible solution is assigned to a specific subspace. Thereafter, each subspace is optimized using a multi-objective EA optimizer, and all subspaces are optimized in parallel. A decomposition-based multi-objective firework optimizer (DCFWA) with several problem-guided operators was designed. Finally, the final output is selected from the Pareto-optimal solutions in the historical search of each subspace. DM-EF avoids the preference for a single objective function, handles the heavy computational burden, and enhances the diversity of the population to avoid local optima. Notably, DM-EF is load-balanced and scalable because it can flexibly partition the space according to the number of available computational nodes and problem size. Experiments on both artificial and real-world datasets demonstrate that the proposed method significantly improves the search speed and accuracy.


Subject(s)
Genome-Wide Association Study , Polymorphism, Single Nucleotide , Polymorphism, Single Nucleotide/genetics , Genome-Wide Association Study/methods , Algorithms
3.
Chem Soc Rev ; 53(7): 3302-3326, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38354058

ABSTRACT

Secondary batteries are a core technology for clean energy storage and conversion systems, to reduce environmental pollution and alleviate the energy crisis. Oxide cathodes play a vital role in revolutionizing battery technology due to their high capacity and voltage for oxide-based batteries. However, oxygen vacancies (OVs) are an essential type of defect that exist predominantly in both the bulk and surface regions of transition metal (TM) oxide batteries, and have a crucial impact on battery performance. This paper reviews previous studies from the past few decades that have investigated the intrinsic and anionic redox-mediated OVs in the field of secondary batteries. We focus on discussing the formation and evolution of these OVs from both thermodynamic and kinetic perspectives, as well as their impact on the thermodynamic and kinetic properties of oxide cathodes. Finally, we offer insights into the utilization of OVs to enhance the energy density and lifespan of batteries. We expect that this review will advance our understanding of the role of OVs and subsequently boost the development of high-performance electrode materials for next-generation energy storage devices.

4.
J Cell Mol Med ; 28(8): e18201, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38568078

ABSTRACT

Sensory nerves play a crucial role in maintaining bone homeostasis by releasing Semaphorin 3A (Sema3A). However, the specific mechanism of Sema3A in regulation of bone marrow mesenchymal stem cells (BMMSCs) during bone remodelling remains unclear. The tibial denervation model was used and the denervated tibia exhibited significantly lower mass as compared to sham operated bones. In vitro, BMMSCs cocultured with dorsal root ganglion cells (DRGs) or stimulated by Sema3A could promote osteogenic differentiation through the Wnt/ß-catenin/Nrp1 positive feedback loop, and the enhancement of osteogenic activity could be inhibited by SM345431 (Sema3A-specific inhibitor). In addition, Sema3A-stimulated BMMSCs or intravenous injection of Sema3A could promote new bone formation in vivo. To sum up, the coregulation of bone remodelling is due to the ageing of BMMSCs and increased osteoclast activity. Furthermore, the sensory neurotransmitter Sema3A promotes osteogenic differentiation of BMMSCs via Wnt/ß-catenin/Nrp1 positive feedback loop, thus promoting osteogenesis in vivo and in vitro.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Osteogenesis/genetics , Semaphorin-3A/genetics , Feedback , beta Catenin , Ganglia, Spinal , Neuropilin-1/genetics
5.
BMC Genomics ; 25(1): 397, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654166

ABSTRACT

BACKGROUND: Jasmonate (JA) is the important phytohormone to regulate plant growth and adaption to stress signals. MYC2, an bHLH transcription factor, is the master regulator of JA signaling. Although MYC2 in maize has been identified, its function remains to be clarified. RESULTS: To understand the function and regulatory mechanism of MYC2 in maize, the joint analysis of DAP-seq and RNA-seq is conducted to identify the binding sites and target genes of ZmMYC2. A total of 3183 genes are detected both in DAP-seq and RNA-seq data, potentially as the directly regulating genes of ZmMYC2. These genes are involved in various biological processes including plant growth and stress response. Besides the classic cis-elements like the G-box and E-box that are bound by MYC2, some new motifs are also revealed to be recognized by ZmMYC2, such as nGCATGCAnn, AAAAAAAA, CACGTGCGTGCG. The binding sites of many ZmMYC2 regulating genes are identified by IGV-sRNA. CONCLUSIONS: All together, abundant target genes of ZmMYC2 are characterized with their binding sites, providing the basis to construct the regulatory network of ZmMYC2 and better understanding for JA signaling in maize.


Subject(s)
Gene Expression Regulation, Plant , Plant Proteins , Zea mays , Zea mays/genetics , Zea mays/metabolism , Binding Sites , Plant Proteins/genetics , Plant Proteins/metabolism , Oxylipins/metabolism , Cyclopentanes/metabolism , Genome, Plant , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics
6.
Hum Brain Mapp ; 45(3): e26624, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38376240

ABSTRACT

Spinocerebellar ataxia type 3 (SCA3) is an inherited movement disorder characterized by a progressive decline in motor coordination. Despite the extensive functional connectivity (FC) alterations reported in previous SCA3 studies in the cerebellum and cerebellar-cerebral pathways, the influence of these FC disturbances on the hierarchical organization of cerebellar functional regions remains unclear. Here, we compared 35 SCA3 patients with 48 age- and sex-matched healthy controls using a combination of voxel-based morphometry and resting-state functional magnetic resonance imaging to investigate whether cerebellar hierarchical organization is altered in SCA3. Utilizing connectome gradients, we identified the gradient axis of cerebellar hierarchical organization, spanning sensorimotor to transmodal (task-unfocused) regions. Compared to healthy controls, SCA3 patients showed a compressed hierarchical organization in the cerebellum at both voxel-level (p < .05, TFCE corrected) and network-level (p < .05, FDR corrected). This pattern was observed in both intra-cerebellar and cerebellar-cerebral gradients. We observed that decreased intra-cerebellar gradient scores in bilateral Crus I/II both negatively correlated with SARA scores (left/right Crus I/II: r = -.48/-.50, p = .04/.04, FDR corrected), while increased cerebellar-cerebral gradients scores in the vermis showed a positive correlation with disease duration (r = .48, p = .04, FDR corrected). Control analyses of cerebellar gray matter atrophy revealed that gradient alterations were associated with cerebellar volume loss. Further FC analysis showed increased functional connectivity in both unimodal and transmodal areas, potentially supporting the disrupted cerebellar functional hierarchy uncovered by the gradients. Our findings provide novel evidence regarding alterations in the cerebellar functional hierarchy in SCA3.


Subject(s)
Connectome , Machado-Joseph Disease , Humans , Machado-Joseph Disease/diagnostic imaging , Magnetic Resonance Imaging/methods , Cerebellum/pathology , Cerebellar Cortex
7.
BMC Plant Biol ; 24(1): 555, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877393

ABSTRACT

BACKGROUND: Selenium is essential for livestock and human health. The traditional way of adding selenium to livestock diets has limitations, and there is a growing trend to provide livestock with a safe and efficient source of selenium through selenium-enriched pasture. Therefore, this study was conducted to investigate the effects of selenium enrichment on fermentation characteristics, selenium content, selenium morphology, microbial community and in vitro digestion of silage alfalfa by using unenriched (CK) and selenium-enriched (Se) alfalfa as raw material for silage. RESULTS: In this study, selenium enrichment significantly increased crude protein, soluble carbohydrate, total selenium, and organic selenium contents of alfalfa silage fresh and post-silage samples, and it significantly decreased neutral detergent fiber and acid detergent fiber contents (p < 0.05). Selenium enrichment altered the form of selenium in plants, mainly in the form of SeMet and SeMeCys, which were significantly higher than that of CK (p < 0.05). Selenium enrichment could significantly increase the lactic acid content, reduce the pH value, change the diversity of bacterial community, promote the growth of beneficial bacteria such as Lactiplantibacillus and inhibit the growth of harmful bacteria such as Pantoea, so as to improve the fermentation quality of silage. The in vitro digestibility of dry matter (IVDMD), in vitro digestibility of acid detergent fibers (IVADFD) and in vitro digestibility of acid detergent fibers (IVNDFD) of silage after selenium enrichment were significantly higher than those of CK (p < 0.05). CONCLUSION: This study showed that the presence of selenium could regulate the structure of the alfalfa silage bacterial community and improve alfalfa silage fermentation quality. Selenium enrichment measures can change the morphology of selenium in alfalfa silage products, thus promoting the conversion of organic selenium.


Subject(s)
Fermentation , Medicago sativa , Microbiota , Selenium , Silage , Medicago sativa/metabolism , Silage/analysis , Selenium/metabolism , Animals , Animal Feed/analysis
8.
J Transl Med ; 22(1): 159, 2024 02 16.
Article in English | MEDLINE | ID: mdl-38365731

ABSTRACT

BACKGROUND: Proximal tubular cells (PTCs) play a critical role in the progression of diabetic kidney disease (DKD). As one of important progenitor markers, CD133 was reported to indicate the regeneration of dedifferentiated PTCs in acute kidney disease. However, its role in chronic DKD is unclear. Therefore, we aimed to investigate the expression patterns and elucidate its functional significance of CD133 in DKD. METHODS: Data mining was employed to illustrate the expression and molecular function of CD133 in PTCs in human DKD. Subsequently, rat models representing various stages of DKD progression were established. The expression of CD133 was confirmed in DKD rats, as well as in human PTCs (HK-2 cells) and rat PTCs (NRK-52E cells) exposed to high glucose. The immunofluorescence and flow cytometry techniques were utilized to determine the expression patterns of CD133, utilizing proliferative and injury indicators. After overexpression or knockdown of CD133 in HK-2 cells, the cell proliferation and apoptosis were detected by EdU assay, real-time cell analysis and flow analysis. Additionally, the evaluation of epithelial, progenitor cell, and apoptotic indices was performed through western blot and quantitative RT-PCR analyses. RESULTS: The expression of CD133 was notably elevated in both human and rat PTCs in DKD, and this expression increased as DKD progressed. CD133 was found to be co-expressed with CD24, KIM-1, SOX9, and PCNA, suggesting that CD133+ cells were damaged and associated with proliferation. In terms of functionality, the knockdown of CD133 resulted in a significant reduction in proliferation and an increase in apoptosis in HK-2 cells compared to the high glucose stimulus group. Conversely, the overexpression of CD133 significantly mitigated high glucose-induced cell apoptosis, but had no impact on cellular proliferation. Furthermore, the Nephroseq database provided additional evidence to support the correlation between CD133 expression and the progression of DKD. Analysis of single-cell RNA-sequencing data revealed that CD133+ PTCs potentially play a role in the advancement of DKD through multiple mechanisms, including heat damage, cell microtubule stabilization, cell growth inhibition and tumor necrosis factor-mediated signaling pathway. CONCLUSION: Our study demonstrates that the upregulation of CD133 is linked to cellular proliferation and protects PTC from apoptosis in DKD and high glucose induced PTC injury. We propose that heightened CD133 expression may facilitate cellular self-protective responses during the initial stages of high glucose exposure. However, its sustained increase is associated with the pathological progression of DKD. In conclusion, CD133 exhibits dual roles in the advancement of DKD, necessitating further investigation.


Subject(s)
AC133 Antigen , Diabetes Mellitus , Diabetic Nephropathies , Animals , Humans , Rats , Cell Line , Cell Proliferation , Diabetes Mellitus/pathology , Diabetic Nephropathies/metabolism , Epithelial Cells/pathology , Glucose/metabolism , Hyperplasia/pathology , AC133 Antigen/genetics , AC133 Antigen/metabolism
9.
Blood ; 140(10): 1145-1155, 2022 09 08.
Article in English | MEDLINE | ID: mdl-35820059

ABSTRACT

Developing erythroblasts acquire massive amounts of iron through the transferrin (Tf) cycle, which involves endocytosis, sorting, and recycling of the Tf-Tf receptor (Tfrc) complex. Previous studies on the hemoglobin-deficit (hbd) mouse have shown that the exocyst complex is indispensable for the Tfrc recycling; however, the precise mechanism underlying the efficient exocytosis and recycling of Tfrc in erythroblasts remains unclear. Here, we identify the guanine nucleotide exchange factor Grab as a critical regulator of the Tf cycle and iron metabolism during erythropoiesis. Grab is highly expressed in differentiating erythroblasts. Loss of Grab diminishes the Tfrc recycling and iron uptake, leading to hemoglobinization defects in mouse primary erythroblasts, mammalian erythroleukemia cells, and zebrafish embryos. These defects can be alleviated by supplementing iron together with hinokitiol, a small-molecule natural compound that can mediate iron transport independent of the Tf cycle. Mechanistically, Grab regulates the exocytosis of Tfrc-associated vesicles by activating the GTPase Rab8, which subsequently promotes the recruitment of the exocyst complex and vesicle exocytosis. Our results reveal a critical role for Grab in regulating the Tf cycle and provide new insights into iron homeostasis and erythropoiesis.


Subject(s)
Erythroblasts , Guanine Nucleotide Exchange Factors , Iron , Receptors, Transferrin , Animals , Erythroblasts/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Iron/metabolism , Mammals/metabolism , Mice , Receptors, Transferrin/genetics , Receptors, Transferrin/metabolism , Transferrin/metabolism , Zebrafish/metabolism
10.
Cancer Cell Int ; 24(1): 114, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38528618

ABSTRACT

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is one of the leading causes of digestive system tumor related death in the world. Unfortunately, effective chemopreventive agent is lack for patients with ESCC in clinical practice, which leads to the extremely high mortality rate. METHODS: A library of prescribed drugs was screened for finding critical anti-tumor properties in ESCC cells. The phosphoproteomics, kinase array, pulldown assay and drug affinity responsive target stabilization assay (DARTS) were applied to explore mechanisms and searched for synergistic targets. Established models of PDX in mice were used to determine the therapeutic effect of domperidone. RESULTS: After screening a library of prescribed drugs, we discovered that domperidone has anti-tumor properties. Domperidone, acting as a gastroprokinetic agent, has been widely used in clinic for gastrointestinal motility disorders. Despite limited research, there are indications that domperidone may have anti-tumor properties. In this study, we determined that domperidone significantly inhibited ESCC proliferation in vitro and in vivo. We employed phosphoproteomics to reveal p-ERK, and p-SMAD3 down-regulation upon domperidone treatment. Then, the results of kinase assay and pulldown assay further validated that domperidone directly combined with MEK1/2 and CDK4, leading to the inhibition of their kinase activity. Furthermore, our results revealed that MEK/ERK and CDK4/SMAD3 signal pathway were major pathways in domperidone against ESCC. CONCLUSION: Collectively, these findings suggest that domperidone serves as an effective "multi-target" inhibitor of MEK1/2 and CDK4, offering potential benefits for the chemoprevention of ESCC.

11.
Anal Biochem ; 687: 115425, 2024 04.
Article in English | MEDLINE | ID: mdl-38092295

ABSTRACT

OBJECTIVE: A practical visual detection method was established to detect Porphyromonas gingivalis (P. gingivalis) by employing a combination of recombinase polymerase amplification and lateral flow strips (RPA-LF) assay, designed for conducting point-of-care testing in clinical settings. METHODS: Primers and probes targeting the P. gingivalis pepO gene were designed. The RPA-LF assay was established by optimising reaction temperature and time, determining the limit of detection (LOD). The specificity of the method was determined by assessing its cross-reactivity with deoxyribonucleic acid from 23 pathogenic bacteria. Finally, the clinical samples from healthy controls (n = 30) and individuals with periodontitis (n = 31) were analysed. The results were compared with those obtained using real-time polymerase chain reaction (PCR). RESULTS: The optimal reaction temperature and time were 39 °C and 12 min. The method exhibited a LOD at 6.40 × 10-4 µg/mL and demonstrated high specificity and sensitivity during cross-reactivity assessment. The RPA-LF assay achieved a P. gingivalis detection rate of 84 % in individuals with periodontitis and 3 % in healthy controls. The results were consistent with those obtained through real-time PCR. CONCLUSION: An RPA-LF assay was developed for detecting P. gingivalis, characterised by its high sensitivity, high specificity, simple operational procedure, and rapid reaction time.


Subject(s)
Periodontitis , Recombinases , Humans , Recombinases/genetics , Nucleic Acid Amplification Techniques/methods , Porphyromonas gingivalis/genetics , Sensitivity and Specificity , Nucleotidyltransferases
12.
Arch Microbiol ; 206(5): 239, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38689148

ABSTRACT

Camellia sinensis is an important economic plant grown in southern subtropical hilly areas, especially in China, mainly for the production of tea. Soil acidification is a significant cause of the reduction of yield and quality and continuous cropping obstacles in tea plants. Therefore, chemical and microbial properties of tea growing soils were investigated and phenolic acid-degrading bacteria were isolated from a tea plantation. Chemical and ICP-AES investigations showed that the soils tested were acidic, with pH values of 4.05-5.08, and the pH negatively correlated with K (p < 0.01), Al (p < 0.05), Fe and P. Aluminum was the highest (47-584 mg/kg) nonessential element. Based on high-throughput sequencing, a total of 34 phyla and 583 genera were identified in tea plantation soils. Proteobacteria and Acidobacteria were the main dominant phyla and the highest abundance of Acidobacteria was found in three soils, with nearly 22% for the genus Gp2. Based on the functional abundance values, general function predicts the highest abundance, while the abundance of amino acids and carbon transport and metabolism were higher in soils with pH less than 5. According to Biolog Eco Plate™ assay, the soil microorganisms utilized amino acids well, followed by polymers and phenolic acids. Three strains with good phenolic acid degradation rates were obtained, and they were identified as Bacillus thuringiensis B1, Bacillus amyloliquefaciens B2 and Bacillus subtilis B3, respectively. The three strains significantly relieved the inhibition of peanut germination and growth by ferulic acid, p-coumaric acid, p-hydroxybenzoic acid, cinnamic acid, and mixed acids. Combination of the three isolates showed reduced relief of the four phenolic acids due to the antagonist of B2 against B1 and B3. The three phenolic acid degradation strains isolated from acidic soils display potential in improving the acidification and imbalance in soils of C. sinensis.


Subject(s)
Camellia sinensis , Hydroxybenzoates , Soil Microbiology , Soil , Hydroxybenzoates/metabolism , Soil/chemistry , Hydrogen-Ion Concentration , Camellia sinensis/microbiology , Camellia sinensis/metabolism , China , Bacteria/classification , Bacteria/metabolism , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/drug effects , Tea/microbiology , Tea/chemistry , Acidobacteria/metabolism , Acidobacteria/genetics , Acidobacteria/isolation & purification
13.
Langmuir ; 40(21): 11239-11250, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38751154

ABSTRACT

Water is the lifeblood of everything on earth, nourishing and nurturing all forms of life, while also contributing to the development of civilization. However, with the rapid development of economic construction, especially the accelerated process of modern industrialization, the pollution of oily sewage is becoming increasingly serious, affecting the ecological balance and human health. The efficient elimination of pollutants in sewage is, therefore, particularly urgent. In this paper, a core-shell microbial reactor (MPFA@CNF-SA-AM) was fabricated by using nanocellulose and sodium alginate (SA) particles embedded with microorganisms as the core and lipophilic and hydrophobic fly ash as the outer shell layer. Compared with that of free microorganisms and cellulose and SA aerogel pellets loading with microorganisms (CNF-SA-AM), which has a degradation efficiency of 60.69 and 82.89%, respectively, the MPFA@CNF-SA-AM possesses a highest degradation efficiency of 90.60% within 240 h. So that this self-floating microbial reactor has selective adsorption properties to achieve oil-water separation in oily wastewater and high effective degradation of organic pollutants with low cost. The adsorption curves of MPFA@CNF-SA-AM for diesel and n-hexadecane were studied. The results showed that the adsorption follows the Freundlich model and is a multimolecular layer of physical adsorption. In addition, the degradation mechanism of diesel oil was studied by gas chromatography-mass spectrometry. The results showed that diesel oil was selectively adsorbed to the interior of MPFA@CNF-SA-AM, and it was degraded by enzymes in microorganisms into n-hexadecanol, n-hexadecaldehyde, and n-hexadecanoic acid in turn, and finally converted to water and carbon dioxide. Compared with existing oily wastewater treatment methods, this green and pollution-free dual-functional core-shell microbial reactor has the characteristics of easy preparation, high efficiency, flexibility, and large-scale degradation. It provides a new, effective green choice for oily wastewater purification and on-site oil spill accidents.


Subject(s)
Wastewater , Adsorption , Wastewater/chemistry , Water Pollutants, Chemical/chemistry , Alginates/chemistry , Cellulose/chemistry , Oils/chemistry , Biodegradation, Environmental , Polymers/chemistry
14.
Langmuir ; 40(9): 4739-4750, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38373152

ABSTRACT

The degradation of organic dye from waterbodies is of great significance for clean production and environmental remediation. Herein, two porphyrin-based conjugated microporous polymers (CMPs) loaded with nanoscale zerovalent iron (named as Por-CMPs-1-2@nZVI) were successfully fabricated by Sonogashira-Hagihara coupling reactions and the liquid-phase method. The as-synthesized Por-CMPs-1-2@nZVI composites were characterized by various means of analysis, and it was confirmed that Por-CMPs-1-2 loaded with nZVI had good photocatalytic performance. Calculated by ultraviolet-visible spectrum, the band-gap energies of Por-CMPs-1@nZVI and Por-CMPs-2@nZVI were 1.45 and 1.32 eV, respectively, indicating that both can be activated by visible light. The photodegradation of organic dye experiments demonstrated that Por-CMPs-2@nZVI degraded 98.0% of 10 ppm Methylene Blue (MB) within 150 min, which is higher than that of Por-CMPs-1-2 and Por-CMPs-1@nZVI. The experiment of active substance capture and mechanism of ESR confirmed that superoxide anion and hydroxyl radical were the primary valid substances in the photodegradation process of MB. In addition, the preparation of membrane materials was shown to be a successful strategy to realize engineered scale-up production.

15.
Eur J Neurol ; : e16368, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38923784

ABSTRACT

BACKGROUND AND PURPOSE: Human motor planning and control depend highly on optimal feedback control systems, such as the neocortex-cerebellum circuit. Here, diffusion tensor imaging was used to verify the disruption of the neocortex-cerebellum circuit in spinocerebellar ataxia type 3 (SCA3), and the circuit's disruption correlation with SCA3 motor dysfunction was investigated. METHODS: This study included 45 patients with familial SCA3, aged 17-67 years, and 49 age- and sex-matched healthy controls, aged 21-64 years. Tract-based spatial statistics and probabilistic tractography was conducted using magnetic resonance images of the patients and controls. The correlation between the local probability of probabilistic tractography traced from the cerebellum and clinical symptoms measured using specified symptom scales was also calculated. RESULTS: The cerebellum-originated probabilistic tractography analysis showed that structural connectivity, mainly in the subcortical cerebellar-thalamo-cortical tract, was significantly reduced and the cortico-ponto-cerebellar tract was significantly stronger in the SCA3 group than in the control group. The enhanced tract was extended to the right lateral parietal region and the right primary motor cortex. The enhanced neocortex-cerebellum connections were highly associated with disease progression, including duration and symptomatic deterioration. Tractography probabilities from the cerebellar to parietal and sensorimotor areas were significantly negatively correlated with motor abilities in patients with SCA3. CONCLUSION: To our knowledge, this study is the first to reveal that disrupting the neocortex-cerebellum loop can cause SCA3-induced motor dysfunctions. The specific interaction between the cerebellar-thalamo-cortical and cortico-ponto-cerebellar pathways in patients with SCA3 and its relationship with ataxia symptoms provides a new direction for future research.

16.
Fish Shellfish Immunol ; : 109741, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964436

ABSTRACT

Decay-accelerating factor (DAF) is an essential member of the complement regulatory protein family that plays an important role in immune response and host homeostasis in mammals. However, the immune function of DAF has not been well characterized in bony fish. In this study, a complement regulatory protein named CiDAF was firstly characterized from Ctenopharyngodon idella and its potential roles were investigated in intestine following bacterial infection. Similar to mammalian DAFs, CiDAF has multiple complement control protein (CCP) functional domains, suggesting the evolutionary conservation of DAFs. CiDAF was broadly expressed in all tested tissues, with a relatively high expression level detected in the spleen and kidney. In vivo immune challenge experiments revealed that CiDAF strongly responded to bacterial pathogens (Aeromonas hydrophila and Aeromonas veronii) and PAMPs (lipopolysaccharide (LPS) or muramyl dipeptide (MDP)) challenges. In vitro RNAi experiments indicated that knockdown of CiDAF could upregulate the expression of complement genes (C4b, C5 and C7) and inflammatory cytokines (TNF-α, IL-1ß and IL-8). Moreover, 2000 ng/mL of CiDAF agonist progesterone effectively alleviated LPS- or MDP-induced intestinal inflammation by regulating expression of complement factors, TLR/PepT1 pathway genes and inflammatory cytokines. Overall, these findings revealed that CiDAF may act as a negative regulator of intestinal complement pathway and immune response to bacterial challenge in grass carp.

17.
Brain Cogn ; 180: 106185, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38878607

ABSTRACT

Accumulated functional magnetic resonance imaging (fMRI) and electroencephalography evidence indicate that numerosity is first processed in the occipito-parietal cortex. fMRI evidence also indicates right-lateralized processing of numerosity, but there is no consistent evidence from event-related potential (ERP) studies. This study investigated the ERP of numerosity processing in the left, right, and bilateral visual fields. The single-trial ERP-behavioral correlation was applied to show how the ERP was associated with behavioral responses. The results showed a significant early behavioral-ERP correlation on the right N1 component when stimuli were presented in the left visual field rather than in the right visual field. The behavioral ERP correlation was termed BN1. There was bilateral BN1 based on the reaction time or error rate, but the right BN1 was larger than that the left BN1 when the stimulus was present in the bilateral visual field. Therefore, this study provided a new neural marker for individual differences in processing numerosity and suggested that processing numerosity was supported by the right occipito-parietal cortex.

18.
Lipids Health Dis ; 23(1): 64, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38424549

ABSTRACT

BACKGROUND: Extensive evidence demonstrates correlations among gut microbiota, lipid metabolism and cognitive function. However, there is still a lack of researches in the field of late-life depression (LLD). This research targeted at investigating the relationship among gut microbiota, lipid metabolism indexes, such as total free fatty acids (FFAs), and cognitive functions in LLD. METHODS: Twenty-nine LLD patients from the Cognitive Outcome Cohort Study of Depression in Elderly were included. Cognitive functions were estimated through the Chinese version of Montreal Cognitive Assessment (MoCA). Blood samples were collected to evaluate serum lipid metabolism parameters. Fecal samples were evaluated for gut microbiota determination via 16S rRNA sequencing. Spearman correlation, linear regression and mediation analysis were utilized to explore relationship among gut microbiota, lipid metabolism and cognitive function in LLD patients. RESULTS: Spearman correlation analysis revealed significant correlations among Akkermansia abundance, total Free Fatty Acids (FFAs) and MoCA scores (P < 0.05). Multiple regression indicated Akkermansia and total FFAs significantly predicted MoCA scores (P < 0.05). Mediation analysis demonstrated that the correlation between decreased Akkermansia relative abundance and cognitive decline in LLD patients was partially mediated by total FFAs (Bootstrap 95%CI: 0.023-0.557), accounting for 43.0% of the relative effect. CONCLUSION: These findings suggested a significant relationship between cognitive functions in LLD and Akkermansia, as well as total FFAs. Total FFAs partially mediated the relationship between Akkermansia and cognitive functions. These results contributed to understanding the gut microbial-host lipid metabolism axis in the cognitive function of LLD.


Subject(s)
Gastrointestinal Microbiome , Humans , Aged , Gastrointestinal Microbiome/genetics , Fatty Acids, Nonesterified , Depression , Mediation Analysis , Cohort Studies , RNA, Ribosomal, 16S/genetics , Cognition
19.
Sex Health ; 212024 Mar.
Article in English | MEDLINE | ID: mdl-38538087

ABSTRACT

Coronavirus disease 2019, which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remains an ongoing global public health challenge. This disease causes damage not only to the respiratory system, affecting the normal physiological function of the lungs, but also to other vital organs, such as the heart and testicles. Existing studies have shown that co-expression of angiotensin-converting enzyme 2 and transmembrane serine protease 2 is the main mechanism by which SARS-CoV-2 invades host cells. Angiotensin-converting enzyme 2-expressing cells are widespread in the corpus cavernosum, reproductive tract and testis of men, which has raised concerns. Furthermore, abnormal sex hormone levels and decreased semen parameters were observed in coronavirus disease 2019 patients. This study comprehensively assessed the effects of SARS-CoV-2 infection on the testis, semen parameters, sex hormone levels and erectile function, and discussed possible transmission routes during sexual intercourse and the effect of vaccination on male fertility.


Subject(s)
COVID-19 , Humans , Male , COVID-19/prevention & control , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Peptidyl-Dipeptidase A , Fertility , Gonadal Steroid Hormones , Vaccination
20.
Phytother Res ; 38(4): 1799-1814, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38330236

ABSTRACT

Futoquinol (Fut) is a compound extracted from Piper kadsura that has a nerve cell protection effect. However, it is unclear whether Fut has protective effects in Alzheimer's disease (AD). In this study, we aimed to explore the therapeutic effect of Fut in AD and its underlying mechanism. UPLC-MS/MS method was performed to quantify Fut in the hippocampus of mice brain. The cognition ability, neuronal and mitochondria damage, and levels of Aß1-42, Aß1-40, p-Tau, oxidative stress, apoptosis, immune cells, and inflammatory factors were measured in Aß25-35-induced mice. The content of bacterial meta-geometry was predicted in the microbial composition based on 16S rDNA. The protein levels of HK II, p-p38MAPK, and p38MAPK were detected. PC-12 cells were cultured in vitro, and glucose was added to activate glycolysis to further explore the mechanism of action of Fut intervention in AD. Fut improved the memory and learning ability of Aß25-35 mice, and reduced neuronal damage and the deposition of Aß and Tau proteins. Moreover, Fut reduced mitochondrial damage, the levels of oxidative stress, apoptosis, and inflammatory factors. Fut significantly inhibited the expression of HK II and p-p38MAPK proteins. The in vitro experiment showed that p38MAPK was activated and Fut action inhibited after adding 10 mM glucose. Fut might inhibit the activation of p38MAPK through the glycolysis pathway, thereby reducing oxidative stress, apoptosis, and inflammatory factors and improving Aß25-35-induced memory impairment in mice. These data provide pharmacological rationale for Fut in the treatment of AD.


Subject(s)
Alzheimer Disease , Gastrointestinal Microbiome , Lignans , Animals , Mice , Alzheimer Disease/chemically induced , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Apoptosis , Chromatography, Liquid , Gastrointestinal Microbiome/drug effects , Glucose/pharmacology , Lignans/pharmacology , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Peptide Fragments/adverse effects , Peptide Fragments/metabolism , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL