Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
BMC Infect Dis ; 24(1): 145, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38291356

ABSTRACT

BACKGROUND: Niemann-Pick Disease type C is a fatal autosomal recessive lipid storage disorder caused by NPC1 or NPC2 gene mutations and characterized by progressive, disabling neurological deterioration and hepatosplenomegaly. Herein, we identified a novel compound heterozygous mutations of the NPC1 gene in a Chinese pedigree. CASE PRESENTATION: This paper describes an 11-year-old boy with aggravated walking instability and slurring of speech who presented as Niemann-Pick Disease type C. He had the maternally inherited c.3452 C > T (p. Ala1151Val) mutation and the paternally inherited c.3557G > A (p. Arg1186His) mutation using next-generation sequencing. The c.3452 C > T (p. Ala1151Val) mutation has not previously been reported. CONCLUSIONS: This study predicted that the c.3452 C > T (p. Ala1151Val) mutation is pathogenic. This data enriches the NPC1 gene variation spectrum and provides a basis for familial genetic counseling and prenatal diagnosis.


Subject(s)
Niemann-Pick Disease, Type C , Child , Humans , Male , Carrier Proteins/genetics , Mutation , Niemann-Pick C1 Protein/genetics , Niemann-Pick Disease, Type C/diagnosis , Niemann-Pick Disease, Type C/genetics , Prenatal Diagnosis
2.
Metab Brain Dis ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39088109

ABSTRACT

Alzheimer's disease (AD) is characterized by cognitive decline stemming from the accumulation of beta-amyloid (Aß) plaques and the propagation of tau pathology through synapses. Exosomes, crucial mediators in neuronal development, maintenance, and intercellular communication, have gained attention in AD research. Yet, the molecular mechanisms involving exosomal miRNAs in AD remain elusive. In this study, we treated APPswe/PSEN1dE9 transgenic (APP/PS1) mice, a model for AD, with either vehicle (ADNS) or fasudil (ADF), while C57BL/6 (control) mice received vehicle (WT). Cognitive function was evaluated using the Y-maze test, and AD pathology was confirmed through immunostaining and western blot analysis of Aß plaques and phosphorylated tau. Exosomal RNAs were extracted, sequenced, and analyzed from each mouse group. Our findings revealed that fasudil treatment improved cognitive function in AD mice, as evidenced by increased spontaneous alternation in the Y-maze test and reduced Aß plaque load and phosphorylated tau protein expression in the hippocampus. Analysis of exosomal miRNAs identified three miRNAs (mmu-let-7i-5p, mmu-miR-19a-3p, mmu-miR-451a) common to both ADNS vs ADF and WT vs ADNS groups. Utilizing miRTarBase software, we predicted and analyzed target genes associated with these miRNAs. Gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of miRNA target genes indicated that mmu-miR-19a-3p and mmu-miR-451a are implicated in signal transduction, immune response, cellular communication, and nervous system pathways. Specifically, mmu-miR-19a-3p targeted genes involved in the sphingolipid signaling pathway, such as Pten and Tnf, while mmu-miR-451a targeted Nsmaf, Gnai3, and Akt3. Moreover, mmu-miR-451a targeted Myc in signaling pathways regulating the pluripotency of stem cells. In conclusion, fasudil treatment enhanced cognitive function by modulating exosomal MicroRNAs, particularly mmu-miR-451a and mmu-miR-19a-3p. These miRNAs hold promise as potential biomarkers and therapeutic targets for novel AD treatments.

3.
Pharm Biol ; 62(1): 544-561, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38946248

ABSTRACT

CONTEXT: Diabetic peripheral neuropathy (DPN) results in an enormous burden and reduces the quality of life for patients. Considering there is no specific drug for the management of DPN, traditional Chinese medicine (TCM) has increasingly drawn attention of clinicians and researchers around the world due to its characteristics of multiple targets, active components, and exemplary safety. OBJECTIVE: To summarize the current status of TCM in the treatment of DPN and provide directions for novel drug development, the clinical effects and potential mechanisms of TCM used in treating DPN were comprehensively reviewed. METHODS: Existing evidence on TCM interventions for DPN was screened from databases such as PubMed, the Cochrane Neuromuscular Disease Group Specialized Register (CENTRAL), and the Chinese National Knowledge Infrastructure Database (CNKI). The focus was on summarizing and analyzing representative preclinical and clinical TCM studies published before 2023. RESULTS: This review identified the ameliorative effects of about 22 single herbal extracts, more than 30 herbal compound prescriptions, and four Chinese patent medicines on DPN in preclinical and clinical research. The latest advances in the mechanism highlight that TCM exerts its beneficial effects on DPN by inhibiting inflammation, oxidative stress and apoptosis, endoplasmic reticulum stress and improving mitochondrial function. CONCLUSIONS: TCM has shown the power latent capacity in treating DPN. It is proposed that more large-scale and multi-center randomized controlled clinical trials and fundamental experiments should be conducted to further verify these findings.


Subject(s)
Diabetic Neuropathies , Drugs, Chinese Herbal , Medicine, Chinese Traditional , Humans , Diabetic Neuropathies/drug therapy , Medicine, Chinese Traditional/methods , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/pharmacology , Animals , Quality of Life , Oxidative Stress/drug effects , Drug Evaluation, Preclinical/methods
4.
Pharm Biol ; 62(1): 592-606, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39028269

ABSTRACT

CONTEXT: The global prevalence of type 2 diabetes mellitus (T2DM) has increased significantly in recent decades. Despite numerous studies and systematic reviews, there is a gap in comprehensive and up-to-date evaluations in this rapidly evolving field. OBJECTIVE: This review provides a comprehensive and current overview of the efficacy of Traditional Chinese Medicine (TCM) in treating T2DM. METHODS: A systematic review was conducted using PubMed, Web of Science, Wanfang Data, CNKI, and Medline databases, with a search timeframe extending up to November 2023. The search strategy involved a combination of subject terms and free words in English, including 'Diabetes,' 'Traditional Chinese Medicine,' 'TCM,' 'Hypoglycemic Effect,' 'Clinical Trial,' and 'Randomized Controlled Trial.' The studies were rigorously screened by two investigators, with a third investigator reviewing and approving the final selection based on inclusion and exclusion criteria. RESULTS: A total of 108 relevant papers were systematically reviewed. The findings suggest that TCMs not only demonstrate clinical efficacy comparable to existing Western medications in managing hypoglycemia but also offer fewer adverse effects and a multitarget therapeutic approach. Five main biological mechanisms through which TCM treats diabetes were identified: improving glucose transport and utilization, improving glycogen metabolism, promoting GLP-1 release, protecting pancreatic islets from damage, and improving intestinal flora. CONCLUSIONS: TCM has demonstrated significant protective effects against diabetes and presents a viable option for the prevention and treatment of T2DM. These findings support the further exploration and integration of TCM into broader diabetes management strategies.


Subject(s)
Diabetes Mellitus, Type 2 , Drugs, Chinese Herbal , Hypoglycemic Agents , Medicine, Chinese Traditional , Diabetes Mellitus, Type 2/drug therapy , Humans , Medicine, Chinese Traditional/methods , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/pharmacology , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Treatment Outcome , Animals , Randomized Controlled Trials as Topic , Blood Glucose/drug effects , Blood Glucose/metabolism
5.
Opt Express ; 31(26): 43698-43711, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38178460

ABSTRACT

We propose a neuromorphic convolution system using a photonic integrated distributed feedback laser with a saturable absorber (DFB-SA) as a photonic spiking neuron. The experiments reveal that the DFB-SA laser can encode different stimulus intensities at different frequencies, similar to biological neurons. Based on this property, optical inputs are encoded into rectangular pulses of varying intensities and injected into the DFB-SA laser, enabling the convolution results to be represented by the firing rate of the photonic spiking neuron. Both experimental and numerical results show that the binary convolution is successfully achieved based on the rate-encoding properties of a single DFB-SA laser neuron. Furthermore, we numerically predict 4-channel quadratic convolution and accomplish MNIST handwritten digit classification using a spiking DFB-SA laser neuron model with rate coding. This work provides a novel approach for convolution computation, indicating the potential of integrating DFB-SA laser into future photonics spiking neural networks.

6.
J Voice ; 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38350807

ABSTRACT

OBJECTIVE: This study aimed to compare the damage of vocal folds caused by four different surgical instruments: CO2 laser, electrosurgical knife, plasma radiofrequency ablation, and steel knife. STUDY DESIGN: Randomized controlled study. METHODS: The CO2 laser, electrosurgical knife, plasma radiofrequency ablation, steel knife, and other instruments were used to simulate the laryngeal microsurgery on experimental dogs. Both total vocal fold resection and punctate ablation were performed. On the day of surgery and 6 days later, the vocal fold tissue from the surgical site was removed for histological evaluation. The extent of vocal fold damage was assessed using the automatic digital pathological scanning system. RESULTS: We detected varying degrees of damage to the laryngeal tissues. Only the steel knife caused epidermal defects on the vocal fold tissue, while other instruments produced thermal damage of different degrees. Furthermore, the steel knife also showed better and faster healing. The plasma radiofrequency ablation was found to cause more severe thermal burns to vocal folds than other surgical instruments (P < 0.05). Six days postsurgery the inflammatory reaction from the steel knife had basically subsided, with only hyperplasia and tissue repair visible microscopically, showing the best healing degree. On the other hand, the radiofrequency ablation group showed the heaviest inflammatory reaction, indicating relatively poor prognosis (P < 0.05). CONCLUSION: Compared with the CO2 laser, the electrotome and steel knife showed less damage and better healing, while the plasma radiofrequency ablation showed the most obvious thermal burns to laryngeal and vocal tissues during surgery, with relatively poor healing.

7.
J Inflamm Res ; 17: 4845-4863, 2024.
Article in English | MEDLINE | ID: mdl-39070135

ABSTRACT

Introduction: Diabetes has been recognized as an independent risk factor for periodontitis. Increasing evidences indicate that hyperglycemia aggravates inflammatory response of human periodontal ligament cells (hPDLCs). Carbon monoxide-releasing molecule-3 (CORM-3) is a water-soluble compound that can release carbon monoxide (CO) in a controllable manner. CORM-3 has been shown the anti-inflammatory effect in different cell lineages. Methods: We stimulated periodontal ligament cells with LPS and high glucose. The expression of inflammatory cytokine was detected by ELISA. RT-qPCR, Western blot and immunofluorescence were used to detect the expression of TLR2, TLR4, RAGE and the activation of NF-κB pathway. We performed silencing and overexpression treatment of RAGE targeting the role of RAGE. We performed the immunostaining of paraffin sections of the periodontitis model in diabetes rats. Results: The results showed that CORM-3 significantly inhibited the expression of inflammatory cytokine in hPDLCs stimulated with LPS and high glucose. CORM-3 also inhibited LPS and high glucose-induced expression of RAGE/NF-κB pathway and TLR2/TLR4/NF-κB pathway. Silence of RAGE resulted in significantly decreased expression of proteins above. Overexpression of RAGE significantly enhanced the expression of these factors. CORM-3 abrogated the effect of RAGE partially. In animal model, CORM-3 suppressed the inflammatory response of periodontal tissues in experimental periodontitis of diabetic rats. Discussion: Our research proved CORM-3 reduced the inflammatory response via RAGE/NF-κB pathway and TLR2/TLR4/NF-κB pathway in the process of high glucose exacerbated periodontitis. These findings demonstrated the role of RAGE in the process of high glucose exacerbated periodontitis and suggested that CORM3 be a potential therapeutic strategy for the treatment of diabetes patients with periodontitis.

SELECTION OF CITATIONS
SEARCH DETAIL