Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Cancer Immunol Immunother ; 73(9): 173, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953982

ABSTRACT

Recent studies have indicated that combining oncolytic viruses with CAR-T cells in therapy has shown superior anti-tumor effects, representing a promising approach. Nonetheless, the localized delivery method of intratumoral injection poses challenges for treating metastatic tumors or distal tumors that are difficult to reach. To address this obstacle, we employed HSV-1-infected CAR-T cells, which systemically delivery HSV into solid tumors. The biological function of CAR-T cells remained intact after loading them with HSV for a period of three days. In both immunocompromised and immunocompetent GBM orthotopic mouse models, B7-H3 CAR-T cells effectively delivered HSV to tumor lesions, resulting in enhanced T-cell infiltration and significantly prolonged survival in mice. We also employed a bilateral subcutaneous tumor model and observed that the group receiving intratumoral virus injection exhibited a significant reduction in tumor volume on the injected side, while the group receiving intravenous infusion of CAR-T cells carrying HSV displayed suppressed tumor growth on both sides. Hence, CAR-THSV cells offer notable advantages in the systemic delivery of HSV to distant tumors. In conclusion, our findings emphasize the potential of CAR-T cells as carriers for HSV, presenting significant advantages for oncolytic virotherapy targeting distant tumors.


Subject(s)
Immunotherapy, Adoptive , Oncolytic Virotherapy , Oncolytic Viruses , Receptors, Chimeric Antigen , Animals , Mice , Oncolytic Virotherapy/methods , Humans , Oncolytic Viruses/immunology , Oncolytic Viruses/genetics , Immunotherapy, Adoptive/methods , Receptors, Chimeric Antigen/immunology , Herpesvirus 1, Human/immunology , Xenograft Model Antitumor Assays , Cell Line, Tumor , T-Lymphocytes/immunology , Female , Glioblastoma/therapy , Glioblastoma/immunology
2.
Small ; : e2402086, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38607305

ABSTRACT

Lithophobic Li2CO3/LiOH contaminants and high-resistance lithium-deficient phases produced from the exposure of garnet electrolyte to air leads to a decrease in electrolyte ion transfer ability. Additionally, garnet electrolyte grain boundaries (GBs) with narrow bandgap and high electron conductivity are potential channels for current leakage, which accelerate Li dendrites generation, ultimately leading to short-circuiting of all-solid-state batteries (ASSBs). Herein, a stably lithiophilic Li2ZO3 is in situ constructed at garnet electrolyte surface and GBs by interfacial modification with ZrO2 and Li2CO3 (Z+C) co-sintering to eliminate the detrimental contaminants and lithium-deficient phases. The Li2ZO3 formed on the modified electrolyte (LLZTO-(Z+C)) surface effectively improves the interfacial compatibility and air stability of the electrolyte. Li2ZO3 formed at GBs broadens the energy bandgaps of LLZTO-(Z+C) and significantly inhibits lithium dendrite generation. More Li+ transport paths found in LLZTO-Z+C by first-principles calculations increase Li+ conductivity from 1.04×10-4 to 7.45×10-4 S cm-1. Eventually, the Li|LLZTO-(Z+C)|Li symmetric cell maintains stable cycling for over 2000 h at 0.8 mA cm-2. The capacity retention of LiFePO4|LLZTO-(Z+C)|Li battery retains 70.5% after 5800 ultralong cycles at 4 C. This work provides a potential solution to simultaneously enhance the air stability and modulate chemical characteristics of the garnet electrolyte surface and GBs for ASSBs.

3.
Mol Ther ; 31(1): 134-153, 2023 01 04.
Article in English | MEDLINE | ID: mdl-36056553

ABSTRACT

Glioblastoma (GBM) is the most aggressive primary malignant brain cancer and urgently requires effective treatments. Chimeric antigen receptor T (CAR-T) cell therapy offers a potential treatment method, but it is often hindered by poor infiltration of CAR-T cells in tumors and highly immunosuppressive tumor microenvironment (TME). Here, we armed an oncolytic adenovirus (oAds) with a chemokine CXCL11 to increase the infiltration of CAR-T cells and reprogram the immunosuppressive TME, thus improving its therapeutic efficacy. In both immunodeficient and immunocompetent orthotopic GBM mice models, we showed that B7H3-targeted CAR-T cells alone failed to inhibit GBM growth but, when combined with the intratumoral administration of CXCL11-armed oAd, it achieved a durable antitumor response. Besides, oAd-CXCL11 had a potent antitumor effect and reprogramed the immunosuppressive TME in GL261 GBM models, in which increased infiltration of CD8+ T lymphocytes, natural killer (NK) cells, and M1-polarized macrophages, while decreased proportions of myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs) and M2-polarized macrophages were observed. Furthermore, the antitumor effect of the oAd-CXCL11 was CD8+ T cell dependent. Our findings thus revealed that CXCL11-armed oAd can improve immune-virotherapy and can be a promising adjuvant of CAR-T therapy for GBM.


Subject(s)
Brain Neoplasms , Chemokine CXCL11 , Glioblastoma , Immunotherapy, Adoptive , Oncolytic Virotherapy , Receptors, Chimeric Antigen , Animals , Mice , Adenoviridae/genetics , Cell Line, Tumor , Chemokine CXCL11/genetics , Glioblastoma/therapy , Receptors, Chimeric Antigen/genetics , Tumor Microenvironment , Xenograft Model Antitumor Assays , Brain Neoplasms/therapy
4.
J Nanobiotechnology ; 22(1): 279, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783333

ABSTRACT

BACKGROUND: BCMA-directed autologous chimeric antigen receptor T (CAR-T) cells have shown excellent clinical efficacy in relapsed or refractory multiple myeloma (RRMM), however, the current preparation process for autologous CAR-T cells is complicated and costly. Moreover, the upregulation of CD47 expression has been observed in multiple myeloma, and anti-CD47 antibodies have shown remarkable results in clinical trials. Therefore, we focus on the development of BCMA/CD47-directed universal CAR-T (UCAR-T) cells to improve these limitations. METHODS: In this study, we employed phage display technology to screen nanobodies against BCMA and CD47 protein, and determined the characterization of nanobodies. Furthermore, we simultaneously disrupted the endogenous TRAC and B2M genes of T cells using CRISPR/Cas9 system to generate TCR and HLA double knock-out T cells, and developed BCMA/CD47-directed UCAR-T cells and detected the antitumor activity in vitro and in vivo. RESULTS: We obtained fourteen and one specific nanobodies against BCMA and CD47 protein from the immunized VHH library, respectively. BCMA/CD47-directed UCAR-T cells exhibited superior CAR expression (89.13-98.03%), and effectively killing primary human MM cells and MM cell lines. BCMA/CD47-directed UCAR-T cells demonstrated excellent antitumor activity against MM and prolonged the survival of tumor-engrafted NCG mice in vivo. CONCLUSIONS: This work demonstrated that BCMA/CD47-directed UCAR-T cells exhibited potent antitumor activity against MM in vitro and in vivo, which provides a potential strategy for the development of a novel "off-the-shelf" cellular immunotherapies for the treatment of multiple myeloma.


Subject(s)
B-Cell Maturation Antigen , CD47 Antigen , Immunotherapy, Adoptive , Multiple Myeloma , Receptors, Chimeric Antigen , Multiple Myeloma/therapy , Multiple Myeloma/immunology , Humans , Animals , CD47 Antigen/immunology , B-Cell Maturation Antigen/immunology , Mice , Immunotherapy, Adoptive/methods , Cell Line, Tumor , Receptors, Chimeric Antigen/immunology , Single-Domain Antibodies/immunology , Single-Domain Antibodies/pharmacology , T-Lymphocytes/immunology , CRISPR-Cas Systems , Female
5.
J Transl Med ; 21(1): 23, 2023 01 13.
Article in English | MEDLINE | ID: mdl-36635683

ABSTRACT

BACKGROUND: Chimeric antigen receptor (CAR) T cells and immune checkpoint blockades (ICBs) have made remarkable breakthroughs in cancer treatment, but the efficacy is still limited for solid tumors due to tumor antigen heterogeneity and the tumor immune microenvironment. The restrained treatment efficacy prompted us to seek new potential therapeutic methods. METHODS: In this study, we conducted a small molecule compound library screen in a human BC cell line to identify whether certain drugs contribute to CAR T cell killing. Signaling pathways of tumor cells and T cells affected by the screened drugs were predicted via RNA sequencing. Among them, the antitumor activities of JK184 in combination with CAR T cells or ICBs were evaluated in vitro and in vivo. RESULTS: We selected three small molecule drugs from a compound library, among which JK184 directly induces tumor cell apoptosis by inhibiting the Hedgehog signaling pathway, modulates B7-H3 CAR T cells to an effector memory phenotype, and promotes B7-H3 CAR T cells cytokine secretion in vitro. In addition, our data suggested that JK184 exerts antitumor activities and strongly synergizes with B7-H3 CAR T cells or ICBs in vivo. Mechanistically, JK184 enhances B7-H3 CAR T cells infiltrating in xenograft mouse models. Moreover, JK184 combined with ICB markedly reshaped the tumor immune microenvironment by increasing effector T cells infiltration and inflammation cytokine secretion, inhibiting the recruitment of MDSCs and the transition of M2-type macrophages in an immunocompetent mouse model. CONCLUSION: These data show that JK184 may be a potential adjutant in combination with CAR T cells or ICB therapy.


Subject(s)
Hedgehog Proteins , Neoplasms , Humans , Animals , Mice , Drug Evaluation, Preclinical , Early Detection of Cancer , Immunotherapy , Cytokines , Immunotherapy, Adoptive/methods , Cell Line, Tumor , Xenograft Model Antitumor Assays , Tumor Microenvironment , Neoplasms/therapy
6.
Int J Urol ; 30(2): 155-160, 2023 02.
Article in English | MEDLINE | ID: mdl-36349911

ABSTRACT

OBJECTIVES: There is substantial concern about traditional transperitoneal laparoscopic radical cystectomy (TLRC) due to multiple postoperative complications. In contrast, extraperitoneal laparoscopic radical cystectomy (ELRC) appears to cause a lower rate of morbidity. The present study aimed to compare the efficacy of ELRC and TLRC for bladder cancer (BCa). METHODS: The clinical data of patients undergoing laparoscopic radical cystectomy for BCa from April 2018 to October 2021 were retrospectively analyzed, as ELRC and TLRC groups. The postoperative follow-up data of 275 patients were collected and the incidence of postoperative complications and other perioperative outcomes were compared between the two groups. RESULTS: Surgery was successfully completed in all patients without conversion to open surgery. There was no significant difference in the duration of cystectomy surgery (67.32 ± 23.53 vs 72.17 ± 25.72 min, p = 0.106), intraoperative blood loss (178.06 ± 110.4 vs. 174.56 ± 127.40 ml, p = 0.413), or the number of lymph node dissection (15.1 ± 5.7 vs. 14.5 ± 5.1, p = 0.380) between the two groups. The length of stay (11.6 ± 3.8 vs 14.7 ± 5.6 d, p < 0.001), time to resume food intake after surgery (2.3 ± 0.9 vs 3.0 ± 1.3 d, p < 0.001), and the incidence of ileus (p < 0.001) in the ELRC group were significantly lower than in the TLRC group. CONCLUSIONS: ELRC is a safe procedure that can reduce the incidence of postoperative complications, shorten postoperative hospital stay, reduce the duration of recovery of patients, and, therefore, should be promoted.


Subject(s)
Laparoscopy , Urinary Bladder Neoplasms , Urinary Diversion , Humans , Cystectomy/adverse effects , Cystectomy/methods , Urinary Diversion/methods , Retrospective Studies , Laparoscopy/adverse effects , Laparoscopy/methods , Treatment Outcome , Urinary Bladder Neoplasms/surgery , Postoperative Complications/epidemiology , Postoperative Complications/etiology , Postoperative Complications/surgery
7.
Angew Chem Int Ed Engl ; 62(9): e202217026, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36577697

ABSTRACT

Photoelectrochemical (PEC) water splitting is a promising approach for renewable solar light conversion. However, surface Fermi level pinning (FLP), caused by surface trap states, severely restricts the PEC activities. Theoretical calculations indicate subsurface oxygen vacancy (sub-Ov ) could release the FLP and retain the active structure. A series of metal oxide semiconductors with sub-Ov were prepared through precisely regulated spin-coating and calcination. Etching X-ray photoelectron spectroscopy (XPS), scanning transmission electron microscopy (STEM), and electron energy loss spectra (EELS) demonstrated Ov located at sub ∼2-5 nm region. Mott-Schottky and open circuit photovoltage results confirmed the surface trap states elimination and Fermi level de-pinning. Thus, superior PEC performances of 5.1, 3.4, and 2.1 mA cm-2 at 1.23 V vs. RHE were achieved on BiVO4 , Bi2 O3 , TiO2 with outstanding stability for 72 h, outperforming most reported works under the identical conditions.

8.
World J Surg Oncol ; 20(1): 174, 2022 Jun 02.
Article in English | MEDLINE | ID: mdl-35650630

ABSTRACT

BACKGROUND: Mammalian LEM-domain proteins (LEMs) are encoded by seven genes, including LAP2, EMD, LEMD1, LEMD2, LEMD3, ANKLE1, and ANKLE2. Though some LEMs were involved in various tumor progression, the expression and prognostic values of LEMs in prostate adenocarcinoma (PRAD) have yet to be analyzed. METHODS: Herein, we investigated the expression, survival data, and immune infiltration levels of LEMs in PRAD patients from ATCG, TIMER, LinkedOmics, and TISIDB databases. We also further validated the mRNA and protein expression levels of ANKLE1, EMD, and LEMD2 in human prostate tumor specimens by qPCR, WB, and IHC. RESULTS: We found that all LEM expressions, except for that of LAP2, were markedly altered in PRAD compared to the normal samples. Among all LEMs, only the expressions of ANKLE1, EMD, and LEMD2 were correlated with advanced tumor stage and survival prognosis in PRAD. Consistent with the predicted computational results, the mRNA and protein expression levels of these genes were markedly increased in the PRAD group. We then found that ANKLE1, EMD, and LEMD2 expressions were markedly correlated with immune cell infiltration levels. High ANKLE1, EMD, and LEMD2 expressions predicted a worse prognosis in PRAD based on immune cells. DNA methylation or/and copy number variations may contribute to the abnormal upregulation of ANKLE1, EMD, and LEMD2 in PRAD. CONCLUSIONS: Taken together, this study implied that ANKLE1, EMD, and LEMD2 were promising prognosis predictors and potential immunotherapy targets for PRAD patients.


Subject(s)
DNA Copy Number Variations , Prostatic Neoplasms , Endonucleases/genetics , Humans , Male , Membrane Proteins/genetics , Nuclear Proteins/genetics , Prognosis , Prostate/pathology , Prostatic Neoplasms/pathology , RNA, Messenger/genetics
9.
Cancer Immunol Immunother ; 70(9): 2453-2465, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33543339

ABSTRACT

BACKGROUND: T cell with chimeric antigen receptors (CAR-T) has presented remarkable efficacy for blood cancer as an emerging immunotherapy. However, for solid tumors, the therapeutic efficacy is much impaired due to the lack of infiltration and persistence of CAR-T in tumor tissue. Thus, we constructed an interleukin-7-loaded oncolytic adenovirus and combined the use of oncolytic virus and CAR-T to improve the therapeutic outcome. METHODS: We constructed an interleukin-7-loaded oncolytic adenovirus (oAD-IL7) and a B7H3-targeted CAR-T and explored the efficacy of the single use of oAD-IL7, B7H3-CAR-T, or the combined therapy for glioblastoma in vitro and in vivo. The improved CAR-T anti-tumor efficacy was evaluated according to the proliferation, survival, persistence, exhaustion of T cells, and tumor regression. RESULTS: Constructed oAD-IL7 and B7H3-CAR-T presented moderate cytotoxicity during in vitro study, but failed to induce a thorough and persistent anti-tumor therapeutic efficacy in vivo. The combination of oAD-IL7 and B7H3-CAR-T in vitro resulted in enhanced T cell proliferation and reduced T cell apoptosis. The joint efficacy was further confirmed using tumor-bearing xenograft mice. During in vivo study, the mice treated with both oAD-IL7 and B7H3-CAR-T showed prolonged survival and reduced tumor burden. According to the ex vivo study, oAD-IL7 improved the proliferation and persistence of tumor-infiltrating B7H3-CAR-T, but failed to reverse the exhaustion. CONCLUSIONS: Our results indicated that oAD-IL7 is a promising auxiliary therapy to improve the therapeutic efficacy of B7H3-CAR-T in glioblastoma by providing the activating signals for tumor-infiltrating T cells. Our results also lay the basis for the future clinical trials for the combination of IL7-loaded oncolytic adenovirus and CAR-T therapy for glioblastoma.


Subject(s)
Genetic Therapy , Genetic Vectors/genetics , Immunotherapy, Adoptive , Interleukin-7/genetics , Oncolytic Virotherapy , Oncolytic Viruses/genetics , Adenoviridae/genetics , Animals , Apoptosis/genetics , Apoptosis/immunology , B7 Antigens/antagonists & inhibitors , B7 Antigens/immunology , B7 Antigens/metabolism , Cytokines/metabolism , Cytotoxicity, Immunologic , Disease Models, Animal , Genetic Therapy/methods , Genetic Vectors/administration & dosage , Glioblastoma/etiology , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/therapy , Humans , Immunophenotyping , Immunotherapy, Adoptive/methods , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Mice , Oncolytic Virotherapy/methods , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Xenograft Model Antitumor Assays
10.
J Nanobiotechnology ; 19(1): 33, 2021 Jan 29.
Article in English | MEDLINE | ID: mdl-33514385

ABSTRACT

BACKGROUND: The outbreak and pandemic of coronavirus SARS-CoV-2 caused significant threaten to global public health and economic consequences. It is extremely urgent that global people must take actions to develop safe and effective preventions and therapeutics. Nanobodies, which are derived from single­chain camelid antibodies, had shown antiviral properties in various challenge viruses. In this study, multivalent nanobodies with high affinity blocking SARS-CoV-2 spike interaction with ACE2 protein were developed. RESULTS: Totally, four specific nanobodies against spike protein and its RBD domain were screened from a naïve VHH library. Among them, Nb91-hFc and Nb3-hFc demonstrated antiviral activity by neutralizing spike pseudotyped viruses in vitro. Subsequently, multivalent nanobodies were constructed to improve the neutralizing capacity. As a result, heterodimer nanobody Nb91-Nb3-hFc exhibited the strongest RBD-binding affinity and neutralizing ability against SARS-CoV-2 pseudoviruses with an IC50 value at approximately 1.54 nM. CONCLUSIONS: The present study indicated that naïve VHH library could be used as a potential resource for rapid acquisition and exploitation of antiviral nanobodies. Heterodimer nanobody Nb91-Nb3-hFc may serve as a potential therapeutic agent for the treatment of COVID-19.


Subject(s)
Single-Domain Antibodies/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Binding Sites , HEK293 Cells , Humans , Neutralization Tests , Protein Binding , Protein Domains , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/antagonists & inhibitors
11.
Biochem Biophys Res Commun ; 516(2): 515-520, 2019 08 20.
Article in English | MEDLINE | ID: mdl-31230744

ABSTRACT

Glioma is the most common primary brain tumor with high mortality. Given the poor outcomes with standard-of-care treatments, novel treatment strategies are needed. Oncolytic viral therapy for glioma has developed as an exciting therapeutic method in recent years. Zika virus, a member of flavivirus family, has oncolytic activity against glioma cells but the mechanism is unknown. Here, we aimed to determine which viral protein might play a critical role in mitigating glioma cell growth. We examined the tumor suppressor function of four nonstructural proteins NS1, NS3, NS4B and NS5 in human glioma cell line U87. As a result, we found that only NS5 significantly inhibited proliferation, migration and invasion of U87 cells. Moreover, expression of NS5 suppressed tumorigenicity of mouse GL261 glioma cell in vivo. Our findings provide some clues for further exploration of oncolytic Zika virus in the treatment of glioma.


Subject(s)
Glioma/pathology , Viral Nonstructural Proteins/pharmacology , Zika Virus/metabolism , Animals , Carcinogenesis/drug effects , Carcinogenesis/pathology , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , HEK293 Cells , Humans , Male , Mice, Inbred C57BL , Neoplasm Invasiveness , Spheroids, Cellular/drug effects , Spheroids, Cellular/pathology
12.
ScientificWorldJournal ; 2014: 292450, 2014.
Article in English | MEDLINE | ID: mdl-25121115

ABSTRACT

The parameters of the constitutive model, the creep model, and the wetting model of materials of the Nuozhadu high earth-rockfill dam were back-analyzed together based on field monitoring displacement data by employing an intelligent back-analysis method. In this method, an artificial neural network is used as a substitute for time-consuming finite element analysis, and an evolutionary algorithm is applied for both network training and parameter optimization. To avoid simultaneous back-analysis of many parameters, the model parameters of the three main dam materials are decoupled and back-analyzed separately in a particular order. Displacement back-analyses were performed at different stages of the construction period, with and without considering the creep and wetting deformations. Good agreement between the numerical results and the monitoring data was obtained for most observation points, which implies that the back-analysis method and decoupling method are effective for solving complex problems with multiple models and parameters. The comparison of calculation results based on different sets of back-analyzed model parameters indicates the necessity of taking the effects of creep and wetting into consideration in the numerical analyses of high earth-rockfill dams. With the resulting model parameters, the stress and deformation distributions at completion are predicted and analyzed.


Subject(s)
Algorithms , Materials Testing/methods , Models, Theoretical , Neural Networks, Computer , Structure Collapse/prevention & control , China , Water
13.
Signal Transduct Target Ther ; 9(1): 16, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38212320

ABSTRACT

Multiple myeloma (MM) remains a challenging hematologic malignancy despite advancements in chimeric antigen receptor T-cell (CAR-T) therapy. Current targets of CAR-T cells used in MM immunotherapy have limitations, with a subset of patients experiencing antigen loss resulting in relapse. Therefore, novel targets for enhancing CAR-T cell therapy in MM remain needed. Fc receptor-like 5 (FCRL5) is a protein marker with considerably upregulated expression in MM and has emerged as a promising target for CAR-T cell therapeutic interventions, offering an alternative treatment for MM. To further explore this option, we designed FCRL5-directed CAR-T cells and assessed their cytotoxicity in vitro using a co-culture system and in vivo using MM cell-derived xenograft models, specifically focusing on MM with gain of chromosome 1q21. Given the challenges in CAR-T therapies arising from limited T cell persistence, our approach incorporates interleukin-15 (IL-15), which enhances the functionality of central memory T (TCM) cells, into the design of FCRL5-directed CAR-T cells, to improve cytotoxicity and reduce T-cell dysfunction, thereby promoting greater CAR-T cell survival and efficacy. Both in vitro and xenograft models displayed that FCRL5 CAR-T cells incorporating IL-15 exhibited potent antitumor efficacy, effectively inhibiting the proliferation of MM cells and leading to remarkable tumor suppression. Our results highlight the capacity of FCRL5-specific CAR-T cells with the integration of IL-15 to improve the therapeutic potency, suggesting a potential novel immunotherapeutic strategy for MM treatment.


Subject(s)
Multiple Myeloma , Receptors, Chimeric Antigen , Humans , Multiple Myeloma/genetics , Multiple Myeloma/therapy , Receptors, Chimeric Antigen/genetics , Interleukin-15/genetics , Interleukin-15/metabolism , Cell Line, Tumor , T-Lymphocytes , Receptors, Fc/metabolism
14.
Cancer Lett ; 585: 216660, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38266806

ABSTRACT

In the treatment of relapsed or refractory multiple myeloma patients, BCMA-directed autologous CAR-T cells have showed excellent anti-tumor activity. However, their widespread application is limited due to the arguably cost and time-consuming. Multiple myeloma cells highly expressed CD47 molecule and interact with the SIRPα ligand on the surface of macrophages, in which evade the clearance of macrophages through the activation of "don't eat me" signal. In this study, a BCMA-directed universal CAR-T cells, BC404-UCART, secreting a CD47-SIRPα blocker was developed using CRISPR/Cas9 gene-editing system. BC404-UCART cells significantly inhibited tumor growth and prolonged the survival of mice in the xenograft model. The anti-tumor activity of BC404-UCART cells was achieved via two mechanisms, on the one hand, the UCAR-T cells directly killed tumor cells, on the other hand, the BC404-UCART cells enhanced the phagocytosis of macrophages by secreting anti-CD47 nanobody hu404-hfc fusion that blocked the "don't eat me" signal between macrophages and tumor cells, which provides a potential strategy for the development of novel "off-the-shelf" cellular immunotherapies for the treatment of multiple myeloma.


Subject(s)
Multiple Myeloma , Neoplasms , Humans , Mice , Animals , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , B-Cell Maturation Antigen , CD47 Antigen/genetics , Receptors, Immunologic/genetics , T-Lymphocytes , Antigens, Differentiation , Neoplasms/pathology , Phagocytosis
15.
Hum Immunol ; 85(3): 110774, 2024 May.
Article in English | MEDLINE | ID: mdl-38521664

ABSTRACT

One of the ways in which macrophages support tumorigenic growth is by producing adenosine, which acts to dampen antitumor immune responses and is generated by both tumor and immune cells in the tumor microenvironment (TME). Two cell surface expressed molecules, CD73 and CD39, boost catalytic adenosine triphosphate, leading to further increased adenosine synthesis, under hypoxic circumstances in the TME. There are four receptors (A1, A2A, A2B, and A3) expressed on macrophages that allow adenosine to perform its immunomodulatory effect. Researchers have shown that adenosine signaling is a key factor in tumor progression and an attractive therapeutic target for treating cancer. Several antagonistic adenosine-targeting biological therapies that decrease the suppressive action of tumor-associated macrophages have been produced and explored to transform this result from basic research into a therapeutic advantage. Here, we'll review the newest findings from studies of pharmacological compounds that target adenosine receptors, and their potential therapeutic value based on blocking the suppressive action of macrophages in tumors.


Subject(s)
Adenosine , Immunotherapy , Neoplasms , Receptors, Purinergic P1 , Signal Transduction , Tumor Microenvironment , Humans , Adenosine/metabolism , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/metabolism , Neoplasms/drug therapy , Immunotherapy/methods , Tumor Microenvironment/immunology , Animals , Receptors, Purinergic P1/metabolism , Macrophages/immunology , Macrophages/metabolism , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Molecular Targeted Therapy , Purinergic P1 Receptor Antagonists/pharmacology , Purinergic P1 Receptor Antagonists/therapeutic use
16.
Transl Oncol ; 45: 101981, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38703658

ABSTRACT

The development of innovative therapeutic strategies for head and neck squamous cell carcinoma (HNSCC) is a critical medical requirement. Antibody-drug conjugates (ADC) targeting tumor-specific surface antigens have demonstrated clinical effectiveness in treating hematologic and solid malignancies. Our investigation revealed high expression levels of SLC3A2 in HNSCC tissue and cell lines. This study aimed to develop a novel anti-SLC3A2 ADC and assess its antitumor effects on HNSCC both in vitro and in vivo. This study developed a potent anti-SLC3A2 ADC (19G4-MMAE) and systematically investigated its drug delivery potential and antitumor efficacy in preclinical models. This study revealed that 19G4-MMAE exhibited specific binding to SLC3A2 and effectively targeted lysosomes. Moreover, 19G4-MMAE induced a significant accumulation of reactive oxygen species (ROS) and apoptosis in SLC3A2-positive HNSCC cells. The compound demonstrated potent antitumor effects derived from MMAE against SLC3A2-expressing HNSCC in preclinical models, displaying a favorable safety profile. These findings suggest that targeting SLC3A2 with an anti-SLC3A2 ADC could be a promising therapeutic approach for treating HNSCC patients.

17.
Cancer Lett ; 588: 216760, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38428724

ABSTRACT

Oncolytic viruses have emerged as a promising modality for cancer treatment due to their unique abilities to directly destroy tumor cells and modulate the tumor microenvironment. Bispecific T-cell engagers (BsAbs) have been developed to activate and redirect cytotoxic T lymphocytes, enhancing the antitumor response. To take advantage of the specific infection capacity and carrying ability of exogenous genes, we generated a recombinant herpes simplex virus type 1 (HSV-1), HSV-1dko-B7H3nb/CD3 or HSV-1dko-B7H3nb/mCD3, carrying a B7H3nb/CD3 or B7H3nb/mCD3 BsAb that replicates and expresses BsAb in tumor cells in vitro and in vivo. The new generation of oncolytic viruses has been genetically modified using CRISPR/Cas9 technology and the cre-loxp system to increase the efficiency of HSV genome editing. Additionally, we used two fully immunocompetent models (GL261 and MC38) to assess the antitumor effect of HSV-1dko-B7H3nb/mCD3. Compared with the HSV-1dko control virus, HSV-1dko-B7H3nb/mCD3 induced enhanced anti-tumor immune responses and T-cell infiltration in both GL261 and MC38 models, resulting in improved treatment efficacy in the latter. Furthermore, flow cytometry analysis of the tumor microenvironment confirmed an increase in NK cells and effector CD8+ T cells, and a decrease in immunosuppressive cells, including FOXP3+ regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), and CD206+ macrophages (M2). Overall, our study identified a novel camel B7H3 nanobody and described the genetic modification of the HSV-1 genome using CRISPR/Cas9 technology and the cre-loxp system. Our findings indicate that expressing B7H3nb/CD3 BsAb could improve the antitumor effects of HSV-1 based oncolytic virus.


Subject(s)
Herpesvirus 1, Human , Neoplasms , Oncolytic Virotherapy , Oncolytic Viruses , Humans , Herpesvirus 1, Human/genetics , CD8-Positive T-Lymphocytes , Oncolytic Viruses/genetics , Neoplasms/genetics , Oncolytic Virotherapy/methods , Tumor Microenvironment
18.
Neurol Res ; 45(3): 260-267, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36215435

ABSTRACT

OBJECTIVES: Medulloblastoma is the most common malignant brain tumor in childhood. Although metastasis constitutes one of the poorest prognostic indicators in this disease, the mechanisms that drive metastasis have received less attention. The aim of our study is to provide valid biological information for the metastasis mechanism of medulloblastoma. METHODS: Gene expression profile of GSE468 was downloaded from GEO database and was analyzed using limma R package. Function and enrichment analyses of DEGs were performed based on PANTHER database. PPI network construction, hub gene selection and module analysis were conducted in Cytoscape software. RESULTS: Nine upregulated genes and 34 downregulated genes were selected as DEGs. The upregulated genes were mainly enriched in molecular function and cell component, which mainly included protein binding and nucleus respectively. A total of 120 enriched GO terms and 40 KEGG pathways were identified. The main enriched GO terms were the biological process such as apoptosis and MAPK activity. Besides, the enriched KEGG pathways also included MAPK signaling pathway. A PPI network was obtained, and JUN was identified as a hub gene. Also, we firstly investigated the role and regulatory mechanism of JUN in the metastasis of medulloblastoma. CONCLUSIONS: Through the bioinformatics analysis of the gene microarray in GEO, we found some crucial genes and pathways associated with the metastasis of medulloblastoma.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Humans , Transcriptome , Gene Expression Profiling , Protein Interaction Maps/genetics , Gene Regulatory Networks/genetics , Medulloblastoma/genetics , Cerebellar Neoplasms/genetics , Computational Biology , Gene Expression Regulation, Neoplastic/genetics
19.
Front Immunol ; 14: 1194421, 2023.
Article in English | MEDLINE | ID: mdl-37435070

ABSTRACT

Negative checkpoint regulators (NCRs) reduce the T cell immune response against self-antigens and limit autoimmune disease development. V-domain Ig suppressor of T cell activation (VISTA), a novel immune checkpoint in the B7 family, has recently been identified as one of the NCRs. VISTA maintains T cell quiescence and peripheral tolerance. VISTA targeting has shown promising results in treating immune-related diseases, including cancer and autoimmune disease. In this review, we summarize and discuss the immunomodulatory role of VISTA, its therapeutic potential in allergic, autoimmune disease, and transplant rejection, as well as the current therapeutic antibodies, to present a new method for regulating immune responses and achieving durable tolerance for the treatment of autoimmune disease and transplantation.


Subject(s)
Autoimmune Diseases , Hypersensitivity , Humans , Autoantigens , Autoimmune Diseases/therapy , Cell Division , Graft Rejection , Immune Checkpoint Proteins
20.
J Chin Med Assoc ; 86(1): 34-38, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36599140

ABSTRACT

BACKGROUND: To explore the extraperitoneal laparoscopic urachal mass excision technique and its safety and efficacy in treating urachal mass. METHODS: Baseline characteristics were collected from patients who underwent surgery to diagnose a urachal cyst or abscess in our hospital between January 2020 and August 2021. The full-length of the urachus and part of the top bladder wall were completely removed through the extraperitoneal approach. Patient outcomes were collected to evaluate surgical safety and efficacy, including operation time, intraoperative blood loss, drainage tube removal time, length of stay (LOS), and postoperative complications. RESULTS: All 20 surgeries were successfully performed laparoscopically, and no case was converted to open surgery. The mean body mass index of the patients was 24.6 ± 2.2. The mean patient age was 49.3 ± 8.7 years. The mean size of the cysts was 3.0 ± 0.4 cm. The mean operation time was 56.3 ± 12.0 min. The mean intraoperative blood loss was 28.0 ± 6.4 mL. The mean drainage tube removal time was 3.0 ± 0.5 days. The mean LOS was 5.2 ± 0.4 days. The mean follow-up was 13.4 ± 2.1 months. No postoperative complications were observed during the follow-up period. The short-term follow-up and small patient cohort limited our outcome evaluation. CONCLUSION: Our results indicated that the extraperitoneal laparoscopic approach was a safe and effective method to treat urachal mass. Given the limitations of the study, further multiple and larger sample-sized trials are required to confirm our findings.


Subject(s)
Laparoscopy , Urachal Cyst , Urachus , Humans , Adult , Middle Aged , Urachus/surgery , Blood Loss, Surgical , Retrospective Studies , Urachal Cyst/surgery , Laparoscopy/methods , Postoperative Complications/surgery
SELECTION OF CITATIONS
SEARCH DETAIL