Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Ecotoxicol Environ Saf ; 227: 112903, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34673417

ABSTRACT

As a new pollutant, microplastics have increasingly drawn public attention to its toxic behavior in the environment. The aim was to investigate the effect of styrene-butadiene-rubber microplastics (mSBR) with different degrees of aging on petroleum hydrocarbon (PHC) degrading bacteria in an environment with simultaneously existing pollutants. A series of experiments were carried out to investigate the changes in the physical and chemical properties of mSBR with aging and to examine the influence of these changes on the inhibition of PHC-degrading bacteria by mSBR in the vicinity of coexisting pollutants. The results showed that in the early stage of ultraviolet aging (10d), the particle surface shows wrinkles, but the structure is intact. After reaching the late stage of aging (20d), nano-scale fragments were generated on the surface of mSBR, the average particle size decreased from 3.074 µm to 2.297 µm, and the zeta potential increased from - 25.1 mV to - 33.1 mV. The inhibitory effect of bacteria is greater. At the same time, these changes in the physicochemical properties increase the adsorption effect of Cd by 20%, and also improve the stability of mSBR in solution, whereby bacterial growth is inhibited by inhibiting the LPO activity and protein concentration of PHC degrading bacteria.


Subject(s)
Petroleum Pollution , Petroleum , Water Pollutants, Chemical , Bacteria , Biodegradation, Environmental , Butadienes/toxicity , Elastomers , Hydrocarbons , Microplastics , Petroleum/toxicity , Plastics/toxicity , Styrenes , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
2.
Water Sci Technol ; 84(2): 484-498, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34312353

ABSTRACT

To cope with the increasingly severe challenges of zinc oxide nanoparticles (ZnO-NPs) in the field of the aquatic environment, this paper uses poly-aluminum ferric chloride (PAFC) and cationic polyacrylamide (CPAM) as coagulants to enhance the removal of ZnO-NPs from water. In two environments (pure-water environment and kaolin environment) that simulate suspended solids, we studied the dosage, pH, precipitation time, and hydraulic power of ZnO-NPs at three different initial concentrations (1, 2, and 30 mg/L). The effects of various conditions on the performance of PAFC, CPAM, and PAFC/CPAM to remove ZnO-NPs were examined. Results showed that the overall removal rate of ZnO-NPs in the kaolin environment was slightly higher than that in the pure-water environment. In contrast the removal rate of ZnO-NPs in the PAFC/CPAM was significantly higher than that of PAFC or CPAM alone. The coagulation removal conditions of ZnO-NPs were optimized using a response-surface model. Under the best conditions, the removal rate of ZnO-NPs with an initial mass concentration of 30 mg/L in the PAFC/CPAM combination in pure-water and kaolin environments was 98.54% and 99.17%, respectively. Finally, by studying the changes in floc size during coagulation, enhanced coagulation was an efficient method of removing ZnO-NPs from water.


Subject(s)
Nanoparticles , Water Pollutants, Chemical , Zinc Oxide , Acrylic Resins , Chlorides , Ferric Compounds , Water Pollutants, Chemical/analysis
3.
Water Res ; 244: 120533, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37659184

ABSTRACT

Ultrafiltration (UF) is a technology commonly used to treat secondary effluents in wastewater reuse; however, it faces two main challenges: 1) membrane fouling and 2) inadequate nitrogen (N), phosphorus (P), and organic micropollutants (OMPs) removal. To address these two issues, in this study, we applied peracetic acid (PAA), Fe(VI)/PAA, and Fe(II)/PAA as UF pretreatments. The results showed that the most effective pretreatment was Fe(II)/200 µM PAA, which reduced the total fouling resistance by 90.2%. In comparison, the reduction was only 29.7% with 200 µM PAA alone and 64.3% with Fe(VI)/200 µM PAA. Fe(II)/200 µM PAA could effectively remove fluorescent components and hydrophobic organics in effluent organic matter (EfOM), and enhance the repulsive force between foulants and membrane (according to XDLVO analysis), and consequently, mitigate pore blocking and delay cake layer formation. Regarding pollutant removal, Fe(II)/200 µM PAA effectively degraded OMPs (>85%) and improved P removal by 58.2% via in-situ Fe(Ⅲ) co-precipitation. The quencher and probe experiments indicated that FeIVO2+, •OH, and CH3C(O)OO•/CH3C(O)O• all played important roles in micropollutant degradation with Fe(II)/PAA. Interestingly, PAA oxidation produced highly biodegradable products such as acetic acid, which significantly elevated the BOD5 level and increased the BOD5/total nitrogen (BOD5/TN) ratio from 0.8 to 8.6, benefiting N removal with subsequent denitrification. Overall, the Fe(II)/PAA process exhibits great potential as a UF pretreatment to control membrane fouling and improve water quality during secondary effluent treatment.


Subject(s)
Peracetic Acid , Ultrafiltration , Ferric Compounds , Quality Improvement , Water Quality , Nitrogen , Ferrous Compounds
4.
J Hazard Mater ; 460: 132506, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37696210

ABSTRACT

Advanced oxidation is an effective method for removing hard-to-degrade organic pollutants from water. In this paper, a novel structure of a single atom Fe anchored g-C3N4 (FeCN) membrane was proposed to remove pollutants from water by coupling membrane technology with photocatalytic and peroxyacetic acid oxidation. The presence of zero-dimensional Fe atoms in FeCN membranes allows for the removal of acetaminophen (APAP) in mobile membrane filtration systems without compromising permeation performance by simultaneously possessing visible photocatalytic capability and peroxyacetic acid (PAA) activation. Existence of inter-membrane domain-limiting conditions led to 100 % degradation of APAP within 10.5 ms, which is 5 orders of magnitude faster than conventional catalytic systems. Notably, photo-generated electrons/holes generated by light and HClO generated by Cl- promote the conversion of Fe(V) and the removal of pollutants during the catalytic process. The spatial separation ability of the membrane catalytic layer surface mitigates the catalyst's passivation by macromolecular organics. Furthermore, surface photocatalysis of the membrane and interlayer catalysis generated by PAA mitigate the surface and interlayer pollutants of the membrane, respectively. This study explores a novel approach for the development of highly efficient atom-catalyzed membrane systems with multiple purposes.

5.
RSC Adv ; 13(23): 15843-15855, 2023 May 22.
Article in English | MEDLINE | ID: mdl-37250218

ABSTRACT

Self-cleaning, antimicrobial ultrafiltration membranes are urgently needed to alleviate the low flux problems caused by membrane fouling in water treatment processes. In this study, in situ generated nano-TiO2 MXene lamellar materials were synthesized and then 2D membranes were fabricated using vacuum filtration. The presence of nano TiO2 particles as an interlayer support layer widened the interlayer channels, and also improved the membrane permeability. The TiO2/MXene composite on the surface also showed an excellent photocatalytic property, resulting in enhanced self-cleaning properties and improved long-term membrane operational stability. The best overall performance of the TiO2/MXene membrane at 0.24 mg cm-2 loading was optimal, with 87.9% retention and 211.5 L m-2 h-1 bar-1 flux at a filtration of 1.0 g L-1 bovine serum albumin solution. Noticeably, the TiO2/MXene membranes showed a very high flux recovery under UV irradiation with a flux recovery ratio (FRR) of 80% as compared to the non-photocatalytic MXene membranes. Moreover, the TiO2/MXene membranes demonstrated over 95% resistance against E. coli. And the XDLVO theory also showed that the loading of TiO2/MXene slowed down the fouling of the membrane surface by protein-based contaminants.

6.
Environ Sci Pollut Res Int ; 30(24): 66102-66112, 2023 May.
Article in English | MEDLINE | ID: mdl-37097580

ABSTRACT

A generation of microplastics caused by improper disposal of disposable masks has become a non-negligible environmental concern. In order to investigate the degradation mechanisms of masks and the release of microplastics under different environmental conditions, the masks are placed in 4 common environments. After 30 days of weathering, the total amount and release kinetics of microplastics released from different layers of the mask were studied. The chemical and mechanical properties of the mask were also discussed. The results showed that the mask released 25141±3543 particles/mask into the soil, which is much more than the sea and river water. The release kinetics of microplastics fit the Elovich model better. All samples correspond to the release rate of microplastics from fast to slow. Experiments show that the middle layer of the mask is released more than the other layers, and the amount of release was highest in the soil. And the tensile capacity of the mask is negatively correlated with its ability to release microplastics in the following order, which are soil > seawater > river > air > new masks. In addition, during the weathering process, the C-C/C-H bond of the mask was broken.


Subject(s)
Masks , Microplastics , Soil Pollutants , Kinetics , Plastics , Soil
7.
Water Res ; 223: 119025, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36058094

ABSTRACT

This study was aimed to evaluate the effects of a pre-treatment involving sulfite (S(IV)) synergistically activated by ultraviolet (UV)/Fe(II) on natural organic matter (NOM)-enhanced Ca2+ scaling during nanofiltration treatment. Based on the variations in the physicochemical properties and correlation analyses of irreversible resistance, the intrinsic fouling mechanisms were revealed from two aspects: bulk crystallization (interaction between NOM and inorganic ions) and surface crystallization (morphology of surface crystallization and a change in the Ca2+ concentration in the scaling layer). Furthermore, the degradation contribution rates of different free radicals during the UV/Fe(II)/S(IV) (UFS) treatment process were evaluated. During the reactions in the UFS, three free radicals (SO·-4, OH·- and e- aq) were generated, and in-situ Fe(III) was formed in-situ. The carboxyl groups of the NOM were attacked by the free radicals, resulting in decreased of carboxyl concentration and density. In addition, the bond between Ca2+ and NOM weakened, and hydrophobic (HPO) substances were mineralized. However, the Fe(III) formed in-situ was active and electropositive, competing with Ca2+ for the complexation active sites on the NOM. The synergy effect of bulk crystallization and surface crystallization led to a significant decrease in the particle size of feed solution. The crystal size and roughness of membrane surface also decreased, which was conducive to reducing the membrane irreversible resistance. Correlation analysis revealed that the HPO ratio, carboxyl density and particle size (> 100 nm) ratio were effective characterization parameters for predicting irreversible resistance. This study not only provides guidance for alleviating membrane fouling caused by NOM-enhanced Ca2+ scaling during the nanofiltration process, but also presents the rationality of irreversible resistance during nanofiltration process and various indicators with strong linear correlation.


Subject(s)
Ultrafiltration , Water Purification , Ferric Compounds , Ferrous Compounds , Ions , Membranes, Artificial , Sulfites , Ultrafiltration/methods , Water Purification/methods
8.
Sci Bull (Beijing) ; 64(17): 1272-1279, 2019 Sep 15.
Article in English | MEDLINE | ID: mdl-36659608

ABSTRACT

In this study, we have for the first time preformed the facile substrate-enhanced electroless deposition (SEED) of metal nanoparticles onto monolithic graphene@Ni foams for construction of disposable three-dimensional (3D) electrochemical immunosensors. Specifically, we firstly used the SEED method to deposit gold nanoparticles (AuNPs) onto the graphene@Ni foam for immobilization of antibody (Ab1). This is followed by a second step SEED deposition to produce silver nanoparticles (AgNPs) for electrochemical stripping detection. Using α-fetoprotein antigen (AFP) as a module analyte, the newly-developed sensor showed a wide linear response, ranging from 5.0 pg/mL to 5.0 ng/mL and a low detection limit down to 2.3 pg/mL. The newly-developed 3D-immunosensor is sensitive, reliable, and easy to be fabricated, showing great potential for clinic applications.

9.
Guang Pu Xue Yu Guang Pu Fen Xi ; 25(1): 92-4, 2005 Jan.
Article in Zh | MEDLINE | ID: mdl-15852829

ABSTRACT

A new method for the determination of albumin in human serum and mouse serum has been developed by spectrophotometry coupled with acid brown SR(ASR) as probe molecule. The maximum absorption wavelength of ASR was at 445 nm, while the maximum absorption wavelength of their product was at 610 nm. However, the reaction of ASR with albumin such as BSA or HSA was so strong that parts of their product were undissoluble in water. The addition of gum water into the system effectively eliminated the deposition. Under optimum reaction conditions, the ranges of working lines for BSA and HSA were 0-91.0 mg x L(-1) and 0-95.2 mg x L(-1), respectively. The detection limits were 5.72 mg x L(-1) for BSA and 5.15 mg x L(-1) for HSA. The relative standard derivation and the recovery of the method for the determination of total proteins in 6 human serum samples were 1.8%-4.4% and 93.6% - 109.1%, respectively. The proposed method has been employed in the assay of protein of human serum and mouse serum. The results of this work were in agreement with those obtained by Biuret method.


Subject(s)
Azo Compounds/chemistry , Benzenesulfonates/chemistry , Coloring Agents/chemistry , Serum Albumin, Bovine/analysis , Serum Albumin/analysis , Spectrophotometry , Amino Acids/chemistry , Animals , Cattle , Humans , Hydrogen-Ion Concentration , Mice , Molecular Structure , Reproducibility of Results , Serum Albumin/chemistry , Serum Albumin, Bovine/chemistry
10.
Anal Chim Acta ; 847: 37-43, 2014 Oct 17.
Article in English | MEDLINE | ID: mdl-25261898

ABSTRACT

An ultrasensitive multiplexed immunoassay method was developed by using streptavidin/nanogold/carbon nanohorn (SA/Au/CNH) as a novel signal tag to induce silver enhancement for signal amplification. The Au/CNH was prepared by in situ growth of nanogold on carboxylated CNH and functionalized with streptavidin. The SA/Au/CNH showed well dispersibility in physiological buffer and could sever as a common tracing tag to recognize biotinylated signal antibody. The immunosensor array was prepared on disposable screen-printed electrodes. Through sandwich-type immunoreaction and biotin-streptavidin affinity reaction, the SA/Au/CNH tag was captured on the immunoconjugates to induce silver deposition and amplify the electrochemical stripping signals. Using α-fetoprotein and carcinoembryonic antigen as model analytes, the proposed method showed wide linear ranges with the detection limits down to 0.024 pg mL(-1) and 0.032 pg mL(-1), respectively, and eliminated completely signal cross-talk between adjacent immunosensors. It provided a convenient, high-efficient and ultrasensitive electrochemical detection route for biological analytes, showing great potential in clinical application.


Subject(s)
Carcinoembryonic Antigen/blood , Gold/chemistry , Immunoassay/instrumentation , Nanostructures/chemistry , Silver/chemistry , Streptavidin/chemistry , alpha-Fetoproteins/analysis , Antibodies, Immobilized/chemistry , Biosensing Techniques/instrumentation , Biotinylation , Electrochemical Techniques/instrumentation , Equipment Design , Humans , Limit of Detection
SELECTION OF CITATIONS
SEARCH DETAIL