Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Pharm Biol ; 60(1): 1771-1780, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36093612

ABSTRACT

CONTEXT: Coreopsis tinctoria Nutt (Asteraceae), named snow chrysanthemum, is known to have a high level of polyphenols. However, the potential prebiotic effect on modulating intestinal microflora is still unclear. OBJECTIVE: The chemical composition, antioxidant properties of snow chrysanthemum polyphenols (SCPs) and their effects on human intestinal microbiota were investigated. MATERIALS AND METHODS: SCPs were extracted using ultrasonic-assisted extraction, and further determined using UPLC-QE Orbitrap/MS. Five assays were used to investigate the antioxidant activities of SCPs. Subsequently, the effects of SCPs on intestinal microbiota in vitro were determined by high throughput sequencing and bioinformatics analysis. RESULTS: Marein, isookanin and cymaroside were the major phenolic compounds, which accounted for 42.17%, 19.53% and 12.25%, respectively. Marein exhibited higher scavenging capacities in DPPH (EC50 = 8.84 µg/mL) and super anion radical assay (EC50 = 282.1 µg/mL) compared to cymaroside and isookanin. The antioxidant capacity of cymaroside was weakest among the three phenolic compounds due to the highest EC50 values, especially for superoxide anion radical assay, EC50 > 800 µg/mL. The result of in vitro fermentation showed that the three phenolic compounds increased the relative abundances of Escherichia/Shigella, Enterococcus, Klebsiella, etc., and isookanin notably increased the relative abundance of Bifidobacterium and Lactobacillus. DISCUSSION AND CONCLUSIONS: SCPs exhibited antioxidant properties and potential prebiotic effects on modulating the gut microbiota composition. The findings indicated that SCPs consumption could exert prebiotic activity that is beneficial for human health.


Subject(s)
Chrysanthemum , Coreopsis , Gastrointestinal Microbiome , Antioxidants/chemistry , Chrysanthemum/chemistry , Coreopsis/chemistry , Humans , Phenols/analysis , Plant Extracts/chemistry , Plant Extracts/pharmacology , Polyphenols/analysis , Polyphenols/pharmacology
2.
Int J Mol Sci ; 22(12)2021 Jun 18.
Article in English | MEDLINE | ID: mdl-34207166

ABSTRACT

Rabies virus (RABV) induces acute, fatal encephalitis in mammals including humans. The circRNAs are important in virus infection process, but whether circRNAs regulated RABV infection remains largely unknown. Here, mice brain with or without the RABV CVS-11 strain were subjected to RNA sequencing and a total of 30,985 circRNAs were obtained. Among these, 9021 candidates were shared in both groups, and 14,610 and 7354 circRNAs were expressed specifically to the control and experimental groups, indicating that certain circRNAs were specifically inhibited or induced on RABV infection. The circRNAs mainly derived from coding exons. In total, 636 circRNAs were differentially expressed in RABV infection, of which 426 significantly upregulated and 210 significantly downregulated (p < 0.05 and fold change ≥2). The expression of randomly selected 6 upregulated and 6 downregulated circRNAs was tested by RT-qPCR, and the expression trend of the 11 out of 12 circRNAs was consistent in RT- qPCR and RNA-seq analysis. Rnase R-resistant assay and Sanger sequencing were conducted to verify the circularity of circRNAs. GO analysis demonstrated that source genes of all differentially regulated circRNAs were mainly related to cell plasticity and synapse function. Both KEGG and GSEA analysis revealed that these source genes were engaged in the cGMP-PKG and MAPK signaling pathway, and HTLV-I infection. Also, pathways related to glucose metabolism and synaptic functions were enriched in KEGG analysis. The circRNA-miRNA-mRNA network was built with 25 of 636 differentially expressed circRNAs, 264 mRNAs involved in RABV infection, and 29 miRNAs. Several miRNAs and many mRNAs in the network were reported to be related to viral infection and the immune response, suggesting that circRNAs could regulate RABV infection via interacting with miRNAs and mRNAs. Taken together, this study first characterized the transcriptomic pattern of circRNAs, and signaling pathways and function that circRNAs are involved in, which may indicate directions for further research to understand mechanisms of RABV pathogenesis.


Subject(s)
Brain/metabolism , Brain/virology , Computational Biology , Gene Expression Profiling , RNA, Circular , Rabies virus , Rabies/genetics , Rabies/virology , Animals , Computational Biology/methods , Gene Expression Profiling/methods , Gene Expression Regulation , Gene Regulatory Networks , Host-Pathogen Interactions/genetics , Mice , MicroRNAs/genetics , RNA Interference , RNA, Messenger/genetics , Rabies virus/physiology , Transcriptome
3.
Front Microbiol ; 14: 1206038, 2023.
Article in English | MEDLINE | ID: mdl-37426000

ABSTRACT

Introduction: Duck circovirus (DuCV) infection is currently recognized as an important immunosuppressive disease in commercial duck flocks in China. Specific antibodies against DuCV viral proteins are required to improve diagnostic assays and understand the pathogenesis of DuCV infection. Methods and results: To generate DuCV-specific monoclonal antibodies (mAbs), a recombinant DuCV capsid protein without the first 36 N-terminal amino acids was produced in Escherichia coli. Using the recombinant protein as an immunogen, a mAb was developed that reacted specifically with the DuCV capsid protein, expressed in E. coli and baculovirus systems. Using homology modeling and recombinant truncated capsid proteins, the antibody-binding epitope was mapped within the region of 144IDKDGQIV151, which is exposed to solvent in the virion capsid model structure. To assess the applicability of the mAb to probe the native virus antigen, the murine macrophage cell line RAW267.4 was tested for DuCV replicative permissiveness. Immunofluorescence and Western blot analysis revealed that the mAb recognized the virus in infected cells and the viral antigen in tissue samples collected from clinically infected ducks. Discussion: This mAb, combined with the in vitro culturing method, would have widespread applications in diagnosing and investigating DuCV pathogenesis.

4.
Viruses ; 13(2)2021 01 31.
Article in English | MEDLINE | ID: mdl-33572652

ABSTRACT

Rabies virus (RABV) causes fatal neurological encephalitis and results in approximately 6000 human death cases worldwide every year. The large (L) protein of RABV, possessing conserved domains, is considered as the target for detection. In this study, three monoclonal antibodies (mAbs), designated as 3F3, 3A6 and L-C, against L protein were generated by using the recombinant truncated L protein (aa 1431-1754) and the epitopes were also identified using a series of overlapping truncated polypeptides for testing the reactivity of mAbs with different RABV strains. The 1479EIFSIP1484, 1659RALSK1663 and 1724VFNSL1728 were identified as the minimal linear epitopes recognized by mAbs 3F3, 3A6 and L-C, respectively. Amino acid alignment showed epitope 1724VFNSL1728 recognized by mAb L-C is completely conserved among RABV strains, indicating that mAb L-C could be used to detect all of the RABV strains. Epitope 1479EIFSIP1484 is highly conserved among RABV strains except for a P1484S substitution in a China I sub-lineage strain of Asian lineage, which eliminated the reactivity of the epitope with mAb 3F3. However, the epitope 1659RALSK1663 was only completely conserved in the Africa-2 and Indian lineages, and a single A1660T substitution, mainly appeared in strains of the China I belonging to Asian lineage and a Cosmopolitan lineage strain, still retained the reactivity of the epitope with mAb 3A6. While both A1660T and K1663R substitutions in a China I lineage strain, single K1663R/Q substitution in some China II strains of Asian lineage and some Arctic-like lineage strains and R1659Q mutation in a strain of Africa-3 lineage eliminated the reactivity of the epitope with mAb 3A6, suggesting mAb 3A6 could be used for differentiation of variable epitopes of some strains in different lineages. Thus, variability and conservation of the three epitopes of L protein showed the reactive difference of mAbs among RABV strains of different lineages. These results may facilitate future studies in development of detection methods for RABV infection, the structure and function of RABV L protein.


Subject(s)
Antibodies, Monoclonal/analysis , DNA-Directed RNA Polymerases/immunology , Epitopes/immunology , Rabies virus/immunology , Rabies/virology , Viral Proteins/immunology , Amino Acid Sequence , Antibodies, Monoclonal/immunology , DNA-Directed RNA Polymerases/chemistry , DNA-Directed RNA Polymerases/genetics , Epitope Mapping , Epitopes/chemistry , Epitopes/genetics , Humans , Phylogeny , Rabies virus/chemistry , Rabies virus/classification , Rabies virus/genetics , Sequence Alignment , Viral Proteins/chemistry , Viral Proteins/genetics
5.
Transbound Emerg Dis ; 67(6): 2901-2910, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32946195

ABSTRACT

Astroviruses (AstVs) are major causative agents of gastroenteritis in children and have been reported in many species. Canine astrovirus (CaAstV), as an enteric pathogen, has been widely detected worldwide, but little is known about their genetic diversity and evolution, partly owing to a lack of genomic data. Here, we sequenced 12 nearly full-length CaAstV genomes to address the gap in knowledge. We found 14 (13.2%) and 7 (3.35%) CaAstV-positive samples from pet dogs with and without diarrhoea, respectively. Co-infections were with co-infection with Torque teno canis virus (TTCaV) reported for the first time. Phylogenetic analysis of the ORF2 gene revealed four major lineages. In particular, lineage 4 might have evolved from a recombinant virus from lineage 2 and lineage 3. The strains sequenced here clustered with lineages 2, 3 and 4 in contrast with other Chinese strains identified previously that clustered with lineages 2 and 4. Amino acid sequence alignment within lineage revealed intralineage amino acid diversity and that the type of epidemic strains within lineages changes over time. Three amino acids substitutions located in predicted B-cell epitopes, which might be involved escape of host immunity. Moreover, frequent inter-clade ORF2 gene recombinants were identified. The identification of individual recombination events and a recombinant lineage indicated that recombination plays a crucial role in CaAstV genetic evolution and diversity by generating divergent viruses. Moreover, phylogenetic analysis of ORF1b, the most conserved gene of astrovirus, revealed a close relationship between CaAstV and California sea lion astroviruses. Overall, we report detailed information on the genetic evolution and diversity of CaAstV, which indicates that CaAstV may pose challenges for diagnostics and future control strategies.


Subject(s)
Astroviridae Infections/veterinary , Dog Diseases/epidemiology , Evolution, Molecular , Genetic Variation , Genome, Viral , Mamastrovirus/genetics , Animals , Astroviridae Infections/epidemiology , Astroviridae Infections/virology , China/epidemiology , Dog Diseases/virology , Dogs
SELECTION OF CITATIONS
SEARCH DETAIL