Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Ecotoxicol Environ Saf ; 223: 112613, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34388656

ABSTRACT

Perfluorinated compounds (PFCs) are a type of ubiquitous contaminants spreading in the estuarine and coastal areas. Anadromous fish should deal with hypoosmotic challenge with PFCs stress during their migration from seawater to estuaries. However, few studies have been carried out to investigate the adverse impact of PFCs on fish osmoregulation and the underlying mechanism. In this study, Oryzias melastigma, an euryhaline fish model, were exposed to four representative PFC congeners including perfluorobutane sulfonate (PFBS), perfluorooctane sulfonates (PFOS), perfluorooctanoic acid (PFOA), and perfluorododecanoic acid (PFDoA) separately under both seawater and freshwater conditions. Histopathological changes in gills, ion homeostasis, Na+/K+-ATPase (NKA) activity, as well as the expression of related genes was detected upon exposure. Results showed that PFCs induced morphological changes in gills, disturbed the levels of major ions (Na+, Ca2+, Mg2+), and inhibited the NKA activity. Transcriptome analysis in fish gills during the acclimation to freshwater revealed that PFCs influenced the osmoregulation mainly by interfering with the endocrine system, signal transduction, as well as cellular community and motility. Validation with qRT-PCR confirmed that the mRNA expressions of osmoregulatory genes encoding hormones and receptors, as well as ion transmembrane transporters were disturbed by PFCs. Longer chain homolog (PFOS) showed a greater impact on osmoregulation than the shorter chain homolog (PFBS). Within the same carbon chain, sulfonic congener (PFOS) induced more serious injury to gills than carboxylic congener (PFOA). The interaction between PFCs and salinity varied in different adverse outcome. These results help to further understand the mechanism of how PFCs influence osmoregulation and elicit the need to assess the ecological risk of PFCs and other pollutants on anadromous migration.


Subject(s)
Fluorocarbons , Oryzias , Acclimatization , Animals , Fluorocarbons/analysis , Gills/metabolism , Osmoregulation , Seawater
2.
J Hazard Mater ; 442: 129996, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36152547

ABSTRACT

Microplastics could accumulate and enrich antibiotics in the aquatic environment. Despite this, the joint effects of microplastics and antibiotics on aquatic organisms are not clear. Here, we investigated the changes of microbial interactions in both gill and gut of marine medaka exposed to polystyrene microbeads (PS) and/or tetracycline for 30 days by using co-occurrence network analysis based on 16S rRNA gene amplicon sequences. We found that the single and combined effects of PS and tetracycline were more profound on the gut than on the gill microbiome. SourceTracker analysis showed that the relative contributions from the gill microbiome to the gut microbiome increased under combined exposure. Moreover, the combined exposure reduced the complexity and stability of the gut microbial network more than those induced by any single exposure, suggesting the synergistic effects of PS and tetracycline on the gut microbiome. The PS and tetracycline combined exposure also caused a shift in the keystone taxa of the gut microbial network. However, no similar pattern was found for gill microbial networks. Furthermore, single and combined exposure to PS and/or tetracycline altered the associations between the gut network taxa and indicator liver metabolites. Altogether, these findings enhanced our understanding of the hazards of the co-occurring environmental microplastics and antibiotics to the fish commensal microbiome.


Subject(s)
Microbiota , Oryzias , Animals , Microplastics/toxicity , Oryzias/genetics , RNA, Ribosomal, 16S/genetics , Plastics , Gills , Polystyrenes/toxicity , Tetracycline/toxicity , Anti-Bacterial Agents/toxicity
3.
Sci Total Environ ; 905: 167359, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37769716

ABSTRACT

The co-existence of microplastics (MPs) and antibiotics in the coastal environment poses a combined ecological risk. Single toxic effects of MPs or antibiotics on aquatic organisms have been verified, however, the exploration of their combined toxic effects remains limited. Here, foodborne polystyrene microplastics (PS-MPs, 10 µm, 0.1 % w/w in food) and waterborne tetracyclines (TC, 50 µg/L) were used to expose an estuarine fish Oryzias melastigma for four weeks. We found that the aqueous availability of TC was not significantly altered coexisting with MPs. The fish body weight gain was significantly slower in TC alone or combined groups than the control group, consistent with the lower lipid content in livers. The body length gain was significantly inhibited by the combined presence compared to the single exposure. Both exposures led to a shift of gut microbiota composition and diversity. TC and the combined group possessed similar gut microbiota which is distinct from PS-MPs and the control group. The Firmicutes/Bacteroidetes (F/B) ratio in the TC and combined groups were significantly lower compared to the control, while the PS-MPs group showed no significant impact. Metabolomic analysis of the fish liver confirmed the shift of metabolites in specific pathways after different exposures. More, a number of gut microbiota-related metabolites on lipid metabolism was perturbed, which were annotated in arachidonic acid metabolism and linoleic acid metabolism. In all, TC modulates bacterial composition in the fish gut and disturbs their liver metabolites via the gut-liver axis, which led to the slower growth of O. melastigma. More, the adverse impact was aggravated by the co-exposure to foodborne PS-MPs.


Subject(s)
Gastrointestinal Microbiome , Oryzias , Animals , Microplastics/toxicity , Plastics , Polystyrenes/toxicity , Tetracycline , Anti-Bacterial Agents , Tetracyclines
4.
Environ Pollut ; 313: 120185, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36108884

ABSTRACT

Microplastics (MPs) serve as vectors for microorganisms and antibiotic resistance genes (ARGs) and contribute to the spread of pathogenic bacteria and ARGs across various environments. Patterns of microbial communities and ARGs in the biofilm on the surface of MPs, also termed as plastisphere, have become an issue of global concern. Although antibiotic resistome in the plastisphere has been detected, how watershed urbanization affects patterns of potential pathogens and ARGs in the microplastic biofilms is still unclear. Here, we compared the bacterial communities, the interaction between bacterial taxa, pathogenic bacteria, and ARGs between the plastisphere and their surrounding water, and revealed the extensive influence of urbanization on them. Our results showed that bacterial communities and interactions in the plastisphere differed from those in their surrounding water. Microplastics selectively enriched Bacteroidetes from water. In non-urbanized area, the abundance of Oxyphotobacteria was significantly (p < 0.05) higher in plastisphere than that in water, while α-Proteobacteria was significantly (p < 0.05) higher in plastisphere than those in water of urbanized area. Pathogenic bacteria, ARGs, and mobile genetic elements (MGEs) were significantly (p < 0.05) higher in the urbanized area than those in non-urbanized area. MPs selectively enriched ARG-carrying potential pathogens, i.e., Klebsiella pneumoniae and Enterobacter cloacae, and exhibited a distinct effect on the relative abundance of ARG and pathogens in water with different urbanization levels. We further found ARGs were significantly correlated to MGEs and pathogenic bacteria. These results suggested that MPs would promote the dissemination of ARGs among microbes including pathogenic bacteria, and urbanization would affect the impact of MPs on microbes, pathogens, and ARGs in water. A high level of urbanization could enhance the enrichment of pathogens and ARGs by MPs in aquatic systems and increase microbial risk in aquatic environments. Our findings highlighted the necessity of controlling the spread of ARGs among pathogens and the usage of plastic products in ecosystems of urban areas.


Subject(s)
Microplastics , Plastics , Anti-Bacterial Agents/pharmacology , Bacteria/genetics , Drug Resistance, Microbial/genetics , Ecosystem , Genes, Bacterial , Rivers , Urbanization , Water
5.
Environ Sci Pollut Res Int ; 29(49): 74173-74184, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35644000

ABSTRACT

The interaction of nanoplastics (NPls) and engineered nanoparticles (ENPs) with organic matter and environmental pollutants is particularly important. Therefore, their behavior should be investigated under the different salinity conditions, mimicking rivers and coastal environments, to understand this phenomenon in those areas. In this work, we analyzed the elementary characteristics of polystyrene-PS (unmodified surface and modified with amino or carboxyl groups) and titanium dioxide-TiO2 nanoparticles. The effect of salinity on their colloidal properties was studied too. Also, the interaction with different types of proteins (bovine serum albumin-BSA and tilapia proteins), as well as the formation of the BSA corona and its effect on the colloidal stability of nanoparticles, were evaluated. The morphology and dispersion of sizes were more uniform in unmodified-surface PS-NPs (70.5 ± 13.7 nm) than in TiO2-NPs (131.2 ± 125.6 nm). Likewise, Rama spectroscopy allowed recognizing peaks associated with the PS phenyl group aromatic ring in unmodified-surface PS-NPs (621, 1002, 1582, and 1602 cm-1). For TiO2-NPs, the data suggest belonging to the tetragonal form, also known as rutile (445, 610 cm-1). The elevation of salinity dose-dependently decreased NP colloid stability, with more significant variation in the PS-NPs compared to TiO2-NPs. The organic matter is also involved in this phenomenon, differentially as a function of time compared to its absence (unmodified-surface PS-NPs 30 psu/TOC 5 mgL-1/24 h: 2876.6 ± 378.03 nm; unmodified-surface PS-NPs 30 psu/24 h: 2133 ± 49.57 nm). In general, the TiO2-NPs demonstrated greater affinity with all proteins tested (0.066 g/L). It was observed that morphology, size, and surface chemical modification intervene in a relevant way in the interaction of the nanoparticles with bovine serum albumin (unmodified-surface PS-NPs 298 K: 6.08E+02; 310 K: 6.63E+02; TiO2-NPs 298 K: 8.76E+02; 310 K: 1.05E+03 L mol-1) and tilapia tissues proteins (from blood, gills, liver, and brain). Their morphology and size also determined the protein corona formation and the NPs' agglomeration. These findings can provide references during knowledge transfer between NPls and ENPs.


Subject(s)
Environmental Pollutants , Nanoparticles , Protein Corona , Animals , Colloids , Microplastics , Nanoparticles/chemistry , Polystyrenes , Salinity , Serum Albumin, Bovine , Titanium/chemistry
6.
Sci Total Environ ; 755(Pt 1): 142512, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33011596

ABSTRACT

Wet precipitation, as an important process of geochemical cycling and the most effective way of cleaning fine atmospheric particles (PM2.5), can introduce the toxic substances in the atmosphere into the water environment. The adverse effect of wet precipitation of PM2.5 on marine fish is still unclear. In this study, PM2.5 samples were collected from six locations along coastal areas of the south China sea for 30 days and used to simulate the impacts of multiday discontinuity wet precipitation of PM2.5 on marine medaka (Oryzias melastigma) in the case of 30 days discontinuity heavy rain (rainfall ≥ 7.6 mm/h and persist 1 h each day). Results showed that wet precipitation of PM2.5 significantly inhibited the body weight gain of fish. In accordance, the size and number of lipid droplets in liver of the exposed groups were lower than those in normal control (NC) group. The expressions of genes involving in lipid degradation including lipoprotein lipase gene (LPL) and carnitine palmitoyltransferase gene (CPT) were up-regulated after exposure. The composition, diversity and function of gut microbiome were affected by wet precipitation of PM2.5. PM2.5 from industrial areas that have higher concentrations of metal profiles show more obvious impacts than PM2.5 from agricultural leisure areas that possessed lower concentrations. All together, the results indicated that wet precipitation of PM2.5 can decrease the diversity of gut microbiome, affect the lipid metabolism, and finally suppress the growth of marine medaka. It confirmed the potential ecological risks of long-term rainfall in air pollution areas to the aquatic organisms.


Subject(s)
Gastrointestinal Microbiome , Oryzias , Water Pollutants, Chemical , Animals , China , Particulate Matter/toxicity , Thiazoles , Water Pollutants, Chemical/toxicity
7.
Chemosphere ; 229: 618-630, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31102917

ABSTRACT

Bisphenol-A (BPA) is a representative exogenous endocrine disruptor, which is extensively composed in plastic products. Due to the capability of passing through the blood-brain barrier, evidence has linked BPA exposure with multiple neuropsychological dysfunctions, neurobehavioral disorders and neurodegenerative diseases. However, the underlying mechanism by which BPA induces neurodegeneration still remains unclear. Our study used human embryonic stem cells-derived human cortical neurons (hCNs) as a cellular model to investigate the adverse neurotoxic effects of BPA. hCNs were treated with 0, 0.1, 1 and 10 µM BPA for 14 days. Impacts of BPA exposure on cell morphology, cell viability and neural marker (MAP2) were measured for evaluating the neurodegeneration. The intracellular calcium homeostasis, reactive oxygen species (ROS) generation and organelle functions were also taken into consideration. Results revealed that chronic exposure of BPA damaged the neural morphology, induced neuronal apoptosis and decreased MAP2 expression at the level of both transcription and translation. The intracellular calcium levels were elevated in hCNs after BPA exposure through NMDARs-nNOS-PSD-95 mediating. Meanwhile, BPA led to oxidative stress by raising the ROS generation and attenuating the antioxidant defense in hCNs. Furthermore, BPA triggered ER stress and increased cytochrome c release by impairing the mitochondrial function. Ultimately, BPA triggered the cell apoptosis by regulating Bcl-2 family and caspase-dependent signaling pathway. Taken together, BPA exerted neurotoxic effects on hCNs by eliciting apoptosis, which might due to the intracellular calcium homeostasis perturbation and cell organellar dysfunction.


Subject(s)
Benzhydryl Compounds/toxicity , Calcium/metabolism , Human Embryonic Stem Cells/cytology , Neurons/drug effects , Phenols/toxicity , Animals , Apoptosis/drug effects , Cells, Cultured , Disks Large Homolog 4 Protein/metabolism , Homeostasis/drug effects , Humans , Mitochondria/drug effects , Mitochondria/metabolism , Neurons/metabolism , Neurons/pathology , Nitric Oxide Synthase Type I/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism
8.
Sci Total Environ ; 545-546: 465-75, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26760267

ABSTRACT

Canopy stomatal ozone (O3) flux (Fst,O3) in a plantation of Schima superba, an ecologically and economically important evergreen pioneer tree species in subtropical China, was quantified based on sap flow measurements during a 2-year period. Mean Fst,O3 and accumulated Fst,O3 (AFst0) were significantly higher in wet seasons from April to September (4.62 nmol m(-2) s(-1) and 35.37 mmol m(-2), respectively) than in dry seasons from October to March (3.90 nmol m(-2) s(-1) and 24.15 mmol m(-1), respectively), yet comparable between the 2 years of the experiment, being 4.23 nmol m(-2) s(-1) and 58.23 mmol m(-2) in April 2013-March 2014 and 4.29 nmol m(-2) s(-1) and 60.80 mmol m(-2) in April 2014-March 2015, respectively. At the diurnal scale, Fst,O3 generally peaked in the early to middle afternoon hours (13:00-15:00), while the maximum stomatal conductance (Gst,O3) typically occurred in the middle to late morning hours (09:00-11:00). Monthly integrated AFst0 reached the maximum in July, although accumulated O3 exposure (SUM0) was highest in October. Seasonally or yearly, the accumulated O3 doses, either exposure-based or flux-based, notably exceeded the currently adopted critical thresholds for the protection of forest trees. These results, on the one hand, demonstrated the decoupling between the stomatal uptake of O3 and its environmental exposure level; on the other hand, indicated the potential O3 risk for S. superba in the experimental site. Therefore, the present study endorses the use of sap flow measurements as a feasible tool for estimating Fst,O3, and the transition from the exposure-based toward flux-based metrics for assessing O3 risk for forest trees. Further studies are urgently needed to relate stomatal O3 uptake doses with tree growth reductions for an improved understanding of O3 effects on trees under natural conditions.


Subject(s)
Air Pollutants/metabolism , Environmental Monitoring , Ozone/metabolism , Theaceae/metabolism , China , Plant Stomata/metabolism
9.
Ying Yong Sheng Tai Xue Bao ; 25(4): 931-9, 2014 Apr.
Article in Zh | MEDLINE | ID: mdl-25011282

ABSTRACT

The xylem sap flows of two pioneer tree species, i.e., Acacia mangium and Schima superba, in degraded hill lands of South China, were continually monitored with Granier' s thermal dissipation probes during 2004-2007 and 2008-2012, respectively, and their seasonal transpiration changes at different tree age levels were compared. The results showed that the annual transpiration of both species increased with tree ages, and S. superba demonstrated a higher value than A. mangium. The average annual whole-tree transpiration of S. superba (7014.76 kg) was higher than that of A. mangium (3704.97 kg). A. mangium (511.46-1802.17 kg) had greater seasonal variation than S. superba (1346.48-2349.35 kg). The standard regression coefficients (beta) of transpiration (Eh), photosynthetically active radiation (PAR) and vapor pressure deficit (VPD) for both species increased with soil moisture, suggesting the increase of soil moisture generated a greater sensitivity of plants to environmental factors. Partial correlation analysis revealed that soil moisture played an important role in the seasonal variation of transpiration of both species. The optimum soil moistures of S. superba and A. mangium were 0.22-0.40 and 0.29-0.30 (V/V), respectively, indicating the native pioneer species S. superba better adapted to water deficit compared with exotic pioneer species A. mangium.


Subject(s)
Acacia/physiology , Plant Transpiration , Theaceae/physiology , Water/physiology , China , Ecosystem , Photosynthesis , Seasons , Soil , Trees , Xylem
SELECTION OF CITATIONS
SEARCH DETAIL