Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Nature ; 611(7937): 715-720, 2022 11.
Article in English | MEDLINE | ID: mdl-36130726

ABSTRACT

Naturally evolved enzymes, despite their astonishingly large variety and functional diversity, operate predominantly through thermochemical activation. Integrating prominent photocatalysis modes into proteins, such as triplet energy transfer, could create artificial photoenzymes that expand the scope of natural biocatalysis1-3. Here, we exploit genetically reprogrammed, chemically evolved photoenzymes embedded with a synthetic triplet photosensitizer that are capable of excited-state enantio-induction4-6. Structural optimization through four rounds of directed evolution afforded proficient variants for the enantioselective intramolecular [2+2]-photocycloaddition of indole derivatives with good substrate generality and excellent enantioselectivities (up to 99% enantiomeric excess). A crystal structure of the photoenzyme-substrate complex elucidated the non-covalent interactions that mediate the reaction stereochemistry. This study expands the energy transfer reactivity7-10 of artificial triplet photoenzymes in a supramolecular protein cavity and unlocks an integrated approach to valuable enantioselective photochemical synthesis that is not accessible with either the synthetic or the biological world alone.


Subject(s)
Biocatalysis , Cycloaddition Reaction , Enzymes , Photochemical Processes , Biocatalysis/radiation effects , Energy Transfer , Stereoisomerism , Enzymes/genetics , Enzymes/metabolism , Enzymes/radiation effects , Indoles/chemistry , Substrate Specificity , Crystallization , Directed Molecular Evolution/methods
2.
Anal Chem ; 96(5): 1932-1940, 2024 02 06.
Article in English | MEDLINE | ID: mdl-38241704

ABSTRACT

Selective labeling of the protein of interest (POI) in genetically unmodified live cells is crucial for understanding protein functions and kinetics in their natural habitat. In particular, spatiotemporally controlled installation of the labels on a POI under light control without affecting their original activity is in high demand but is a tremendous challenge. Here, we describe a novel ligand-directed photoclick strategy for spatiotemporally controlled labeling of endogenous proteins in live cells. It was realized with a designer labeling reagent skillfully integrating the photochemistries of 2-nitrophenylpropyloxycarbonyl and 3-hydroxymethyl-2-naphthol with an affinity ligand. Highly electrophilic ortho-naphthoquinone methide was photochemically released and underwent a proximity coupling reaction with nucleophilic amino acid residues on the POI in live cells. With fluorescein as a marker, this photoclick strategy enables time-resolved labeling of carbonic anhydrase subtypes localized either on the cell membrane or in the cytoplasm and a discriminable visualization of their metabolic kinetics. Given the versatility underlined by facilely tethering other functional entities (e.g., biotin, a peptide short chain) via acylation or (in cell) Huisgen cycloaddition, this affinity-driven photoclick chemistry opens up enormous opportunities for discovering dynamic functions and mechanistic interrogation of endogenous proteins in live cells.


Subject(s)
Naphthols , Proteins , Ligands , Proteins/chemistry , Naphthols/chemistry , Fluorescein
3.
Plant Physiol ; 191(2): 1272-1287, 2023 02 12.
Article in English | MEDLINE | ID: mdl-36437699

ABSTRACT

Increasing planting density is one of the most effective ways to improve crop yield. However, one major factor that limits crop planting density is the weakened immunity of plants to pathogens and insects caused by dim light (DL) under shade conditions. The molecular mechanism underlying how DL compromises plant immunity remains unclear. Here, we report that DL reduces rice (Oryza sativa) resistance against brown planthopper (BPH; Nilaparvata lugens) by elevating ethylene (ET) biosynthesis and signaling in a Phytochrome B (OsPHYB)-dependent manner. The DL-reduced BPH resistance is relieved in osphyB mutants, but aggravated in OsPHYB overexpressing plants. Further, we found that DL reduces the nuclear accumulation of OsphyB, thus alleviating Phytochrome Interacting Factor Like14 (OsPIL14) degradation, consequently leading to the up-regulation of 1-Aminocyclopropane-1-Carboxylate Oxidase1 (OsACO1) and an increase in ET levels. In addition, we found that nuclear OsphyB stabilizes Ethylene Insensitive Like2 (OsEIL2) by competitively interacting with EIN3 Binding F-Box Protein (OsEBF1) to enhance ET signaling in rice, which contrasts with previous findings that phyB blocks ET signaling by facilitating Ethylene Insensitive3 (EIN3) degradation in other plant species. Thus, enhanced ET biosynthesis and signaling reduces BPH resistance under DL conditions. Our findings provide insights into the molecular mechanism of the light-regulated ET pathway and host-insect interactions and potential strategies for sustainable insect management.


Subject(s)
Ethylenes , Hemiptera , Oryza , Phytochrome B , Animals , Ethylenes/metabolism , Hemiptera/metabolism , Oryza/metabolism , Phytochrome B/genetics , Phytochrome B/metabolism
4.
Anal Chem ; 95(24): 9244-9251, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37285171

ABSTRACT

Identification of α-thalassemia silent carriers is challenging with conventional phenotype-based screening methods. A liquid chromatography tandem mass spectrometry (LC-MS/MS)-based approach may offer novel biomarkers to address this conundrum. In this study, we collected dried blood spot samples from individuals with three α-thalassemia subtypes for biomarker discovery and validation. We observed differential expression patterns of hemoglobin subunits among various α-thalassemia subtypes and normal controls through proteomic profiling of 51 samples in the discovery phase. Then, we developed and optimized a multiple reaction monitoring (MRM) assay to measure all detectable hemoglobin subunits. The validation phase was conducted in a cohort of 462 samples. Among the measured hemoglobin subunits, subunit µ was significantly upregulated in all the α-thalassemia groups with distinct fold changes. The hemoglobin subunit µ exhibits great potential as a novel biomarker for α-thalassemia, especially for silent α-thalassemia. We constructed predictive models based on the concentrations of hemoglobin subunits and their ratios to classify the various subtypes of α-thalassemia. In the binary classification problems of silent α-thalassemia vs normal, non-deletional α-thalassemia vs normal, and deletional α-thalassemia vs normal, the best performance of the models achieved average ROCAUCs of 0.9505, 0.9430, and 0.9976 in the cross-validation, respectively. In the multiclass model, the best performance achieved an average ROCAUC of 0.9290 in cross-validation. The performance of our MRM assay and models demonstrated that the hemoglobin subunit µ would play a vital role in screening silent α-thalassemia in clinical practice.


Subject(s)
Hemoglobin Subunits , alpha-Thalassemia , Humans , Chromatography, Liquid , Tandem Mass Spectrometry/methods , alpha-Thalassemia/diagnosis , Proteomics , Biomarkers
5.
Int J Mol Sci ; 23(11)2022 May 25.
Article in English | MEDLINE | ID: mdl-35682620

ABSTRACT

Plants have evolved a sophisticated defense system that employs various hormone pathways to defend against attacks by insect pests. Cytokinin (CK) plays an important role in plant growth and stress tolerance, but the role of CKs in plant-insect interaction remains largely unclear. Here, we report that CKs act as a positive regulator in rice resistance against brown planthopper (BPH), a devastating insect pest of rice. We found that BPH feeding promotes CK biosynthesis and signaling in rice. Exogenous application of CKs significantly increased the rice resistance to BPH. Increasing endogenous CKs by knocking out cytokinin oxidase/dehydrogenase (OsCKXs) led to enhanced resistance to BPH. Moreover, the levels of the plant hormone jasmonic acid (JA) and the expression of JA-responsive genes were elevated by CK treatment and in OsCKXs knockout plants. Furthermore, JA-deficient mutant og1 was more susceptible to BPH, and CK-induced BPH resistance was suppressed in og1. These results indicate that CK-mediated BPH resistance is JA-dependent. Our findings provide the direct evidence for the novel role of CK in promoting insect resistance, and demonstrate that CK-induced insect resistance is JA-dependent. These results provide important guidance for effective pest management strategies in the future.


Subject(s)
Hemiptera , Oryza , Animals , Cyclopentanes , Cytokinins/metabolism , Gene Expression Regulation, Plant , Oryza/metabolism , Oxylipins
6.
Angew Chem Int Ed Engl ; 58(25): 8581-8584, 2019 06 17.
Article in English | MEDLINE | ID: mdl-30969469

ABSTRACT

Natural products represent a rich source of antibiotics that address versatile cellular targets. The deconvolution of their targets via chemical proteomics is often challenged by the introduction of large photocrosslinkers. Here we applied elegaphenone, a largely uncharacterized natural product antibiotic bearing a native benzophenone core scaffold, for affinity-based protein profiling (AfBPP) in Gram-positive and Gram-negative bacteria. This study utilizes the alkynylated natural product scaffold as a probe to uncover intriguing biological interactions with the transcriptional regulator AlgP. Furthermore, proteome profiling of a Pseudomonas aeruginosa AlgP transposon mutant provided unique insights into the mode of action. Elegaphenone enhanced the elimination of intracellular P. aeruginosa in macrophages exposed to sub-inhibitory concentrations of the fluoroquinolone antibiotic norfloxacin.


Subject(s)
Anti-Bacterial Agents/pharmacology , Benzophenones/pharmacology , Biological Products/pharmacology , Pseudomonas aeruginosa/drug effects , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Benzophenones/chemical synthesis , Benzophenones/chemistry , Biological Products/chemical synthesis , Biological Products/chemistry , Cells, Cultured , Dose-Response Relationship, Drug , Humans , Macrophages/drug effects , Macrophages/microbiology , Microbial Sensitivity Tests , Molecular Structure , Norfloxacin/antagonists & inhibitors , Norfloxacin/chemistry , Norfloxacin/pharmacology , Pseudomonas aeruginosa/cytology , Structure-Activity Relationship
7.
Angew Chem Int Ed Engl ; 57(44): 14440-14475, 2018 10 26.
Article in English | MEDLINE | ID: mdl-29939462

ABSTRACT

The public view on antibiotics as reliable medicines changed when reports about "resistant superbugs" appeared in the news. While reasons for this resistance development are easily spotted, solutions for re-establishing effective antibiotics are still in their infancy. This Review encompasses several aspects of the antibiotic development pipeline from very early strategies to mature drugs. An interdisciplinary overview is given of methods suitable for mining novel antibiotics and strategies discussed to unravel their modes of action. Select examples of antibiotics recently identified by using these platforms not only illustrate the efficiency of these measures, but also highlight promising clinical candidates with therapeutic potential. Furthermore, the concept of molecules that disarm pathogens by addressing gatekeepers of virulence will be covered. The Review concludes with an evaluation of antibacterials currently in clinical development. Overall, this Review aims to connect select innovative antimicrobial approaches to stimulate interdisciplinary partnerships between chemists from academia and industry.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/drug effects , Drug Discovery , Humans
8.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(9): 2984-90, 2016 Sep.
Article in Zh | MEDLINE | ID: mdl-30085491

ABSTRACT

Transfer radiometer is the critical calibration facility of remote sensing instruments on satellites to achieve spectral radiometric calibration on-orbit. It's also the core for spectral calibration with high accuracy in the laboratory on earth. This paper compares the similarities and differences between several transfer radiometers developed by various institutes covering 200~700, 700~2 000 nm spectrum bandwidth separately through describing their construction, design and operational principles and the method of transferring radiometric calibration benchmark. It shows the realizable accuracy of every transfer radiometers by introducing their central technology applied in the calibration procedures of different wavelength range. The advantages and shortcomings together with every transfer radiometer determine the application circumstance. According to the Introduction of the process of the calibration traceability based on radiance standard in international institutes of standard technology,it emphasizes the importance of transfer radiometers in the procedure. It demonstrates the significance of transfer radiometer in radiometric calibration of aeronautics and space through its application of monitoring the calibration light source for spectrometers. Finally, it presents the prospect for the development and crucial issues of transfer radiometer's technology in the future research through describing the new transfer radiometer designed in internal institute. Simultaneously, it predicts and summarizes difficult problems required to be solved in the future as to high-accuracy calibration transferring system on-orbit against SI-traceable primary standard, which consists of cryogenic radiometers and transfer radiometers.

9.
Angew Chem Int Ed Engl ; 55(3): 1187-91, 2016 Jan 18.
Article in English | MEDLINE | ID: mdl-26609793

ABSTRACT

Vibrio is a model organism for the study of quorum sensing (QS) signaling and is used to identify QS-interfering drugs. Naturally occurring fimbrolides are important tool compounds known to affect QS in various organisms; however, their cellular targets have so far remained elusive. Here we identify the irreversible fimbrolide targets in the proteome of living V. harveyi and V. campbellii via quantitative mass spectrometry utilizing customized probes. Among the major hits are two protein targets with essential roles in Vibrio QS and bioluminescence. LuxS, responsible for autoinducer 2 biosynthesis, and LuxE, a subunit of the luciferase complex, were both covalently modified at their active-site cysteines leading to inhibition of activity. The identification of LuxE unifies previous reports suggesting inhibition of bioluminescence downstream of the signaling cascade and thus contributes to a better mechanistic understanding of these QS tool compounds.


Subject(s)
Biological Products/metabolism , Luciferases/metabolism , Luminescence , Vibrio/metabolism
10.
RSC Chem Biol ; 5(2): 73-89, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38333198

ABSTRACT

With the rapid emergence and the dissemination of microbial resistance to conventional chemotherapy, the shortage of novel antimicrobial drugs has raised a global health threat. As molecular interactions between microbial pathogens and their mammalian hosts are crucial to establish virulence, pathogenicity, and infectivity, a detailed understanding of these interactions has the potential to reveal novel therapeutic targets and treatment strategies. Bidirectional molecular communication between microbes and eukaryotes is essential for both pathogenic and commensal organisms to colonise their host. In particular, several devastating pathogens exploit host signalling to adjust the expression of energetically costly virulent behaviours. Chemical proteomics has emerged as a powerful tool to interrogate the protein interaction partners of small molecules and has been successfully applied to advance host-pathogen communication studies. Here, we present recent significant progress made by this approach and provide a perspective for future studies.

11.
Chem Commun (Camb) ; 60(20): 2764-2767, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38353608

ABSTRACT

In this article, we report a general protocol for the direct decarboxylative chlorination, iodination, and bromination of aliphatic carboxylic acids catalyzed by iron salts under visible light. This method enjoys a broad substrate scope with good functional group compatibility, including complex natural products. Benzylic and allylic C(sp3)-H bonds can be retained under the oxidative halogenation conditions. This method also shows application potential for late-stage functionalization.

12.
Chem Commun (Camb) ; 60(22): 3035-3038, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38348672

ABSTRACT

An effective synthetic approach for various 1,2,2-triarylethanones from triaryl substituted alkenes has been developed via an electrochemical Wacker-type oxygenation with O2 as the sole oxygen source. It presents the first instance of the Wacker-type oxidation expanding its substrate scope to trisubstituted alkenes. The approach is transition-metal-free, compatible with various functional groups, and can be carried out under mild conditions resulting in satisfactory yields. Mechanistic experiments suggest the CO bond formation occurs through reactions between cationic carbon species and the superoxide radical, which involves the 1,2-shift of the electron-rich substituent.

13.
Se Pu ; 42(7): 711-720, 2024 Jul.
Article in Zh | MEDLINE | ID: mdl-38966979

ABSTRACT

Protein citrullination is an irreversible post-translational modification process regulated by peptidylarginine deiminases (PADs) in the presence of Ca2+. This process is closely related to the occurrence and development of autoimmune diseases, cancers, neurological disorders, cardiovascular and cerebrovascular diseases, and other major diseases. The analysis of protein citrullination by biomass spectrometry confronts great challenges owing to its low abundance, lack of affinity tags, small mass-to-charge ratio change, and susceptibility to isotopic and deamidation interferences. The methods commonly used to study the protein citrullination mainly involve the chemical derivatization of the urea group of the guanine side chain of the peptide to increase the mass-to-charge ratio difference of the citrullinated peptide. Affinity-enriched labels are then introduced to effectively improve the sensitivity and accuracy of protein citrullination by mass spectrometry. 2,3-Butanedione or phenylglyoxal compounds are often used as derivatization reagents to increase the mass-to-charge ratio difference of the citrullinated peptide, and the resulting derivatives have been observed to contain α-dicarbonyl structures. To date, however, no relevant studies on the reactivity of dicarbonyl compounds with citrullinated peptides have been reported. In this study, we determined whether six α-dicarbonyl and two ß-dicarbonyl compounds undergo derivatization reactions with standard citrullinated peptides using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS). Among the α-dicarbonyl compounds, 2,3-butanedione and glyoxal reacted efficiently with several standard citrullinated peptides, but yielded a series of by-products. Phenylglyoxal, methylglyoxal, 1,2-cyclohexanedione, and 1,10-phenanthroline-5,6-dione also derivated efficiently with standard citrullinated peptides, generating a single derivative. Thus, a new derivatization method that could yield a single derivative was identified. Among the ß-dicarbonyl compounds, 1,3-cyclohexanedione and 2,4-pentanedione successfully reacted with the standard citrullinated peptides, and generated a single derivative. However, their reaction efficiency was very low, indicating that the ß-dicarbonyl compounds are unsuitable for the chemical derivatization of citrullinated peptides. The above results indicate that the α-dicarbonyl structure is necessary for realizing the efficient and specific chemical derivatization of citrullinated peptides. Moreover, the side chains of the α-dicarbonyl structure determine the structure of the derivatives, derivatization efficiency, and generation (or otherwise) of by-products. Therefore, the specific enrichment and precise identification of citrullinated peptides can be achieved by synthesizing α-dicarbonyl structured compounds containing affinity tags. The proposed method enables the identification of citrullinated proteins and their modified sites by MS, thereby providing a better understanding of the distribution of citrullinated proteins in different tissues. The findings will be beneficial for studies on the mechanism of action of citrullinated proteins in a variety of diseases.


Subject(s)
Citrullination , Peptides , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Peptides/chemistry
14.
Parasit Vectors ; 16(1): 224, 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37415211

ABSTRACT

A meeting, sponsored by the Bill and Melinda Gates Foundation (BMGF) and organised by Clinglobal, was held at The International Livestock Research Institute (ILRI) in Nairobi, Kenya, from 19th - to 21st October 2022. The meeting assembled a unique group of experts on tick control in Africa. Academia, international agencies (FAO and ILRI), the private Animal Health sector and government veterinary services were represented. The significant outcomes included: (i) a shared commitment to standardisation and improvement of acaricide resistance bioassay protocols, particularly the widely used larval packet test (LPT); (ii) development of novel molecular assays for detecting acaricide resistance; (3) creation of platforms for disseminating acaricide resistance data to farmers, veterinary service providers and veterinary authorities to enable more rational evidence-based control of livestock ticks. Implementation of enhanced control will be facilitated by several recently established networks focused on control of parasites in Africa and globally, whose activities were presented at the meeting. These include a newly launched community of practice on management of livestock ticks, coordinated by FAO, an African module of the World Association for the Advancement of Veterinary Parasitology (WAAVP-AN) and the MAHABA (Managing Animal Health and Acaricides for a Better Africa) initiative of Elanco Animal Health.


Subject(s)
Acaricides , Cattle Diseases , Rhipicephalus , Tick Infestations , Tick-Borne Diseases , Animals , Cattle , Acaricides/pharmacology , Kenya/epidemiology , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/prevention & control , Tick-Borne Diseases/veterinary , Cattle Diseases/diagnosis , Cattle Diseases/drug therapy , Cattle Diseases/epidemiology , Tick Infestations/epidemiology , Tick Infestations/prevention & control , Tick Infestations/veterinary
15.
Chem Sci ; 13(5): 1390-1397, 2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35222923

ABSTRACT

While chiral allylic organophosphorus compounds are widely utilized in asymmetric catalysis and for accessing bioactive molecules, their synthetic methods are still very limited. We report the development of asymmetric nickel/Brønsted acid dual-catalyzed hydrophosphinylation of 1,3-dienes with phosphine oxides. This reaction is characterized by an inexpensive chiral catalyst, broad substrate scope, and high regio- and enantioselectivity. This study allows the construction of chiral allylic phosphine oxides in a highly economic and efficient manner. Preliminary mechanistic investigations suggest that the 1,3-diene insertion into the chiral Ni-H species is a highly regioselective process and the formation of the chiral C-P bond is an irreversible step.

16.
PLoS Negl Trop Dis ; 16(1): e0010047, 2022 01.
Article in English | MEDLINE | ID: mdl-35041668

ABSTRACT

BACKGROUND: In the 20th century, epidemics of human African trypanosomiasis (HAT) ravaged communities in a number of African countries. The latest surge in disease transmission was recorded in the late 1990s, with more than 35,000 cases reported annually in 1997 and 1998. In 2013, after more than a decade of sustained control efforts and steady progress, the World Health Assembly resolved to target the elimination of HAT as a public health problem by 2020. We report here on recent progress towards this goal. METHODOLOGY/PRINCIPAL FINDINGS: With 992 and 663 cases reported in 2019 and 2020 respectively, the first global target was amply achieved (i.e. fewer than 2,000 HAT cases/year). Areas at moderate or higher risk of HAT, where more than 1 case/10,000 people/year are reported, shrunk to 120,000 km2 for the five-year period 2016-2020. This reduction of 83% from the 2000-2004 baseline (i.e. 709,000 km2) is slightly below the target (i.e. 90% reduction). As a result, the second global target for HAT elimination as a public health problem cannot be considered fully achieved yet. The number of health facilities able to diagnose and treat HAT expanded (+9.6% compared to a 2019 survey), thus reinforcing the capacity for passive detection and improving epidemiological knowledge of the disease. Active surveillance for gambiense HAT was sustained. In particular, 2.8 million people were actively screened in 2019 and 1.6 million in 2020, the decrease in 2020 being mainly caused by COVID-19-related restrictions. Togo and Côte d'Ivoire were the first countries to be validated for achieving elimination of HAT as a public health problem at the national level; applications from three additional countries are under review by the World Health Organization (WHO). CONCLUSIONS/SIGNIFICANCE: The steady progress towards the elimination of HAT is a testament to the power of multi-stakeholder commitment and coordination. At the end of 2020, the World Health Assembly endorsed a new road map for 2021-2030 that set new bold targets for neglected tropical diseases. While rhodesiense HAT remains among the diseases targeted for elimination as a public health problem, gambiense HAT is targeted for elimination of transmission. The goal for gambiense HAT is expected to be particularly arduous, as it might be hindered by cryptic reservoirs and a number of other challenges (e.g. further integration of HAT surveillance and control into national health systems, availability of skilled health care workers, development of more effective and adapted tools, and funding for and coordination of elimination efforts).


Subject(s)
Trypanosoma brucei brucei/pathogenicity , Trypanosoma brucei gambiense/pathogenicity , Trypanosoma brucei rhodesiense/pathogenicity , Trypanosomiasis, African/prevention & control , Africa South of the Sahara/epidemiology , Animals , Endemic Diseases , Humans , Insect Control , Insect Vectors/parasitology , Trypanosomiasis, African/epidemiology , Tsetse Flies/parasitology , World Health Organization
17.
Org Lett ; 24(37): 6816-6821, 2022 09 23.
Article in English | MEDLINE | ID: mdl-36099167

ABSTRACT

We report the molecular design of a novel multifunctional reagent and its application for light-controlled selective protein labeling. This molecule integrates functions of protein-ligand recognition, bioconjugation, ligand cleavage, and photoactivation by merging the photochemistries of 2-nitrophenylpropyloxycarbonyl and 3-hydroxymethyl-2-naphthol with an affinity ligand and fluorescein. Highly electrophilic o-naphthoquinone methide was photochemically released and underwent proximity-driven selective labeling with the protein of interest (e.g., carbonic anhydrases), which retains its native function after labeling.


Subject(s)
Carbonic Anhydrases , Tumor Necrosis Factor Ligand Superfamily Member 14 , Fluoresceins , Ligands , Naphthoquinones , Proteins/chemistry
18.
Parasit Vectors ; 15(1): 72, 2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35246216

ABSTRACT

BACKGROUND: African animal trypanosomosis (AAT), transmitted by tsetse flies, is arguably the main disease constraint to integrated crop-livestock agriculture in sub-Saharan Africa, and African heads of state and governments adopted a resolution to rid the continent of this scourge. In order to sustainably reduce or eliminate the burden of AAT, a progressive and evidence-based approach is needed, which must hinge on harmonized, spatially explicit information on the occurrence of AAT and its vectors. METHODS: A digital repository was assembled, containing tsetse and AAT data collected in Burkina Faso between 1990 and 2019. Data were collected either in the framework of control activities or for research purposes. Data were systematically verified, harmonized, georeferenced and integrated into a database (PostgreSQL). Entomological data on tsetse were mapped at the level of individual monitoring traps. When this was not possible, mapping was done at the level of site or location. Epidemiological data on AAT were mapped at the level of location or village. RESULTS: Entomological data showed the presence of four tsetse species in Burkina Faso. Glossina tachinoides, present from the eastern to the western part of the country, was the most widespread and abundant species (56.35% of the catches). Glossina palpalis gambiensis was the second most abundant species (35.56%), and it was mainly found in the west. Glossina morsitans submorsitans was found at lower densities (6.51%), with a patchy distribution in the southern parts of the country. A single cluster of G. medicorum was detected (less than 0.25%), located in the south-west. Unidentified tsetse flies accounted for 1.33%. For the AAT component, data for 54,948 animal blood samples were assembled from 218 geographic locations. The samples were tested with a variety of diagnostic methods. AAT was found in all surveyed departments, including the tsetse-free areas in the north. Trypanosoma vivax and T. congolense infections were the dominant ones, with a prevalence of 5.19 ± 18.97% and 6.11 ± 21.56%, respectively. Trypanosoma brucei infections were detected at a much lower rate (0.00 ± 0.10%). CONCLUSIONS: The atlas provides a synoptic view of the available information on tsetse and AAT distribution in Burkina Faso. Data are very scanty for most of the tsetse-free areas in the northern part of the country. Despite this limitation, this study generated a robust tool for targeting future surveillance and control activities. The development of the atlas also strengthened the collaboration between the different institutions involved in tsetse and AAT research and control in Burkina Faso, which will be crucial for future updates and the sustainability of the initiative.


Subject(s)
Trypanosoma , Trypanosomiasis, African , Tsetse Flies , Animals , Burkina Faso/epidemiology , Insect Vectors , Trypanosomiasis, African/epidemiology , Trypanosomiasis, African/prevention & control , Trypanosomiasis, African/veterinary
19.
PLoS Negl Trop Dis ; 16(11): e0010885, 2022 11.
Article in English | MEDLINE | ID: mdl-36342910

ABSTRACT

BACKGROUND: Sleeping sickness, or human African trypanosomiasis (HAT), is transmitted by tsetse flies in endemic foci in sub-Saharan Africa. Because of international travel and population movements, cases are also occasionally diagnosed in non-endemic countries. METHODOLOGY/PRINCIPAL FINDINGS: Antitrypanosomal medicines to treat the disease are available gratis through the World Health Organization (WHO) thanks to a public-private partnership, and exclusive distribution of the majority of them enables WHO to gather information on all exported cases. Data collected by WHO are complemented by case reports and scientific publications. During 2011-2020, 49 cases of HAT were diagnosed in 16 non-endemic countries across five continents: 35 cases were caused by Trypanosoma brucei rhodesiense, mainly in tourists visiting wildlife areas in eastern and southern Africa, and 14 cases were due to T. b. gambiense, mainly in African migrants originating from or visiting endemic areas in western and central Africa. CONCLUSIONS/SIGNIFICANCE: HAT diagnosis in non-endemic countries is rare and can be challenging, but alertness and surveillance must be maintained to contribute to WHO's elimination goals. Early detection is particularly important as it considerably improves the prognosis.


Subject(s)
Trypanosomiasis, African , Tsetse Flies , Animals , Humans , Trypanosomiasis, African/diagnosis , Trypanosomiasis, African/epidemiology , Trypanosomiasis, African/therapy , Trypanosoma brucei rhodesiense , Black People , Africa, Southern , Trypanosoma brucei gambiense
20.
Parasit Vectors ; 15(1): 491, 2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36578020

ABSTRACT

BACKGROUND: With the largest cattle population in Africa and vast swathes of fertile lands infested by tsetse flies, trypanosomosis is a major challenge for Ethiopian farmers. Managing the problem strategically and rationally requires comprehensive and detailed information on disease and vector distribution at the national level. To this end, the National Institute for Control and Eradication of Tsetse and Trypanosomosis (NICETT) developed a national atlas of tsetse and African animal trypanosomosis (AAT) for Ethiopia. METHODS: This first edition of the atlas focused on the tsetse-infested areas in western Ethiopia. Data were collected between 2010 and 2019 in the framework of national surveillance and control activities. Over 88,000 animals, mostly cattle, were tested with the buffy-coat technique (BCT). Odour-enhanced traps were deployed in approximately 14,500 locations for the entomological surveys. Animal- and trap-level data were geo-referenced, harmonized and centralized in a single database. RESULTS: AAT occurrence was confirmed in 86% of the districts surveyed (107/124). An overall prevalence of 4.8% was detected by BCT in cattle. The mean packed cell volume (PCV) of positive animals was 22.4, compared to 26.1 of the negative. Trypanosoma congolense was responsible for 61.9% of infections, T. vivax for 35.9% and T. brucei for 1.7%. Four tsetse species were found to have a wide geographic distribution. The highest apparent density (AD) was reported for Glossina pallidipes in the Southern Nations, Nationalities and People's Region (SNNPR) (3.57 flies/trap/day). Glossina tachinoides was the most abundant in Amhara (AD 2.39), Benishangul-Gumuz (2.38), Gambela (1.16) and Oromia (0.94) regions. Glossina fuscipes fuscipes and G. morsitans submorsitans were detected at lower densities (0.19 and 0.42 respectively). Only one specimen of G. longipennis was captured. CONCLUSIONS: The atlas establishes a reference for the distribution of tsetse and AAT in Ethiopia. It also provides crucial evidence to plan surveillance and monitor control activities at the national level. Future work on the atlas will focus on the inclusion of data collected by other stakeholders, the broadening of the coverage to tsetse-free areas and continuous updates. The extension of the atlas to data on control activities is also envisaged.


Subject(s)
Trypanosomiasis, African , Trypanosomiasis , Tsetse Flies , Animals , Cattle , Ethiopia/epidemiology , Insect Vectors , Trypanosomiasis, African/epidemiology , Trypanosomiasis, African/prevention & control , Trypanosomiasis, African/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL