Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 279
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Am Chem Soc ; 146(4): 2333-2338, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38241610

ABSTRACT

Odd-electron bonds, i.e., the two-center, three-electron (2c/3e), or one-electron (2c/1e) bonds, have attracted tremendous interest owing to their novel bonding nature and radical properties. Herein, complex [K(THF)6][LSn:···Sn:L] (1), featuring the first and unsupported 2c/1e Sn···Sn σ-bond with a long distance (3.2155(9) Å), was synthesized by reduction of stannylene [LSn:] (L = N,N-dpp-o-phenylene diamide) with KC8. The one-electron Sn-Sn bond in 1 was confirmed by the crystal structure, DFT calculations, EPR spectroscopy, and reactivity studies. This compound can be viewed as a stabilized radical by delocalizing to two metal centers and can readily mediate radical reactions such as C-C coupling of benzaldehyde.

2.
J Am Chem Soc ; 146(18): 12485-12495, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38651836

ABSTRACT

Understanding the mechanisms of C-H activation of alkanes is a very important research topic. The reactions of metal clusters with alkanes have been extensively studied to reveal the electronic features governing C-H activation, while the experimental cluster reactivity was qualitatively interpreted case by case in the literature. Herein, we prepared and mass-selected over 100 rhodium-based clusters (RhxVyOz- and RhxCoyOz-) to react with light alkanes, enabling the determination of reaction rate constants spanning six orders of magnitude. A satisfactory model being able to quantitatively describe the rate data in terms of multiple cluster electronic features (average electron occupancy of valence s orbitals, the minimum natural charge on the metal atom, cluster polarizability, and energy gap involved in the agostic interaction) has been constructed through a machine learning approach. This study demonstrates that the general mechanisms governing the very important process of C-H activation by diverse metal centers can be discovered by interpreting experimental data with artificial intelligence.

3.
Small ; : e2311667, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38507721

ABSTRACT

The designing and fabricating highly active hydrogen evolution reaction (HER) electrocatalysts that can superior to Pt/C is extremely desirable but challenging. Herein, the fabrication of Ru/TiO2/N-doped carbon (Ru/TiO2/NC) nanofiber is reported as a novel and highly active HER electrocatalyst through electrospinning and subsequent pyrolysis treatment, in which Ru nanoclusters are dispersed into TiO2/NC hybrid nanofiber. As a novel support, experimental and theoretical calculation results reveal that TiO2/NC can more effectively accelerate water dissociation as well as optimize the adsorption strength of *H than TiO2 and NC, thus leading to a significantly enhanced HER activity, which merely requires an overpotential of 18 mV to reach 10 mA cm-2, outperforming Pt/C in an alkaline solution. The electrolytic cell composed of Ru/TiO2/NC nanofiber and NiFe LDH/NF can generate 500 and 1000 mA cm-2 at voltages of 1.631 and 1.753 V, respectively. Furthermore, the electrolytic cell also exhibits remarkable durability for at least 100 h at 200 mA cm-2 with negligible degradation in activity. The present work affords a deep insight into the influence of support on the activity of electrocatalyst and the strategy proposed in this research can also be extended to fabricate various other types of electrocatalysts for diverse electrocatalytic applications.

4.
Inorg Chem ; 63(9): 4288-4298, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38369784

ABSTRACT

Ba3Lu(BO3)3(BLB):Ce3+,Tb3+/Mn2+ phosphors were designed to explore effective and multifunctional applications. Under the excitation of near-ultraviolet (n-UV) light, the BLB:Ce3+ phosphor showed broad-band blue emission. After codoping with Mn2+ ions, the single-phase white light phosphor is achieved through the energy transfer (ET) between Ce3+ and Mn2+. In addition, thermal stability is significantly enhanced by the addition of Tb3+ (BLB:0.02Ce3+,0.20Tb3+) compared to that codoped with Mn2+ (BLB:0.02Ce3+,0.10Mn2+). The light-emitting diode (LED) device with warm white light emission is fabricated with UV-chip-coated BLB:0.02Ce3+,0.05Tb3+ and Sr2Si5N8:Eu2+ phosphors, showing a good potential application value for LEDs. Additionally, the spectral properties of borate-based phosphors (BLB:0.02Ce3+) under high pressure were studied for the first time. Surprisingly, the change of pressure enabled the emission peak of BLB:0.02Ce3+ to be tuned from 485 to 552 nm, and dλ/dP is 3.51 nm GPa-1. The color changes from blue to yellow with an increase of pressure. Compared with the reported data, the pressure-sensing sensitivity based on the central peak shift in this work is the highest in all Ce3+ single-doped samples. In addition, the emitting color and intensity were gradually regained after decompression. The intensity can reach 80% of the initial intensity. All data demonstrate that the BLB:0.02Ce3+ phosphor has the potential to be utilized as an optical pressure sensor due to the high-pressure sensitivity and visible color tuning.

5.
Inorg Chem ; 63(8): 3882-3892, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38358930

ABSTRACT

Optical pressure sensing by phosphors is a growing area of research. However, the main pressure measurement methods rely on the movement of the central peak position, which has significant drawbacks for practical applications. This paper demonstrates the feasibility of using the fluorescence intensity ratio (FIR) of different emission peaks for pressure sensing. The FIR (IBi3+/ILn3+) values of the synthesized YNbO4:Bi3+/Ln3+ (Ln = Eu or Sm) phosphors are all first-order exponentially related to pressure, and YNbO4:Bi3+/Ln3+ (Ln = Eu or Sm) phosphors have high pressure-sensing sensitivities (Sp and Spr), which are 6 times higher than those from our previously reported work. In addition, the changes in FIR values during the decompression process were also calculated, and the trend was similar to that during the compression process. The YNbO4:Bi3+,Eu3+ phosphor has better pressure recovery performance. In summary, the YNbO4:Bi3+/Ln3+ (Ln = Eu or Sm) phosphors reported in this paper are expected to be applied in the field of optical pressure sensing, and this study provides a new approach and perspective for designing new phosphors for pressure measurement.

6.
Phys Chem Chem Phys ; 26(19): 14186-14193, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38713092

ABSTRACT

Cost-effective and readily accessible 3d transition metals (TMs) have been considered as promising candidates for alkane activation while 3d TMs especially the early TMs are usually not very reactive with light alkanes. In this study, the reactivity of Vn+ and VnO+ (n = 1-9) cluster cations towards ethane under thermal collision conditions has been investigated using mass spectrometry and density functional theory calculations. Among Vn+ (n = 1-9) clusters, only V3-5+ can react with C2H6 to generate dehydrogenation products and the reaction rate constants are below 10-13 cm3 molecule-1 s-1. In contrast, the reaction rate constants for all VnO+ (n = 1-9) with C2H6 significantly increase by about 2-4 orders of magnitude. Theoretical analysis evidences that the addition of ligand O affects the charge distribution of the metal centers, resulting in a significant increase in the cluster reactivity. The analysis of frontier orbitals indicates that the agostic interaction determines the size-dependent reactivity of VnO+ cluster cations. This study provides a novel approach for improving the reactivity of early 3d TMs.

7.
J Phys Chem A ; 128(7): 1218-1225, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38340065

ABSTRACT

Investigation of the reactivity of heteronuclear metal oxide clusters is an important way to uncover the molecular-level mechanisms of the doping effect. Herein, we performed a comparative study on the reactions of CH4 with NiAl3O6+ and Al4O6+ cluster cations at room temperature to understand the role of Ni during the activation and transformation of methane. Mass spectrometric experiments identify that both NiAl3O6+ and Al4O6+ could bring about hydrogen atom abstraction reaction to generate CH3• radical; however, only NiAl3O6+ has the potential to stabilize [CH3] moiety and then transform [CH3] to CH2O. Density functional theory calculations demonstrate that the terminal oxygen radicals (Ot-•) bound to Al act as the reactive sites for the two clusters to activate the first C-H bond. Although the Ni atom cannot directly participate in methane activation, it can manipulate the electronic environment of the surrounding bridging oxygen atoms (Ob) and enable such Ob to function as an electron reservoir to help Ot-• oxidize CH4 to [H-O-CH3]. The facile reduction of Ni3+ to Ni+ also facilitates the subsequent step of activating the second C-H bond by the bridging "lattice oxygen" (Ob2-), finally enabling the oxidation of methane into formaldehyde. The important role of the dopant Ni played in improving the product selectivity of CH2O for methane conversion discovered in this study allows us to have a possible molecule-level understanding of the excellent performance of the catalysts doping with nickel.

8.
J Phys Chem A ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937133

ABSTRACT

Metal oxide clusters with atomic oxygen radical anions are important model systems to study the mechanisms of activating and transforming very stable alkane molecules under ambient conditions. It is extremely challenging to characterize the activation and conversion of methane, the most stable alkane molecule, by metal oxide cluster anions due to the low reactivity of the anionic species. In this study, using a ship-lock type reactor that could be run at relatively high pressure conditions to provide a high number of collisions in ion-molecule reactions, the rate constants of the reactions between (MoO3)NO- (N = 1-21) cluster anions and the light alkanes (C1-C4) were measured under thermal collision conditions. The relationships among the reaction rates of different alkanes were obtained to establish a model to predict the low rate constants with methane from the high rate constants with C2-C4 alkanes. The model was tested by using available experimental results in literature. This study provides a new method to estimate the relatively low reactivity of atomic oxygen radical anions with methane on metal oxide clusters.

9.
Int J Biometeorol ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963429

ABSTRACT

Understanding the impact of climate warming on crop yield and its associated mechanisms is paramount for ensuring food security. Here, we conduct a thorough analysis of the impact of vapor pressure deficit (VPD) on maize yield, leveraging a rich dataset comprising temporal and spatial observations spanning 40 years across 31 maize-growing locations in Northeast and North China. Our investigation extends to the influencing meteorological factors that drive changes in VPD during the maize growing phase. Regression analysis reveals a linear negative relationship between VPD and maize yield, demonstrating diverse spatiotemporal characteristics. Spatially, maize yield exhibits higher sensitivity to VPD in Northeast China (NEC), despite the higher VPD levels in North China Plain (NCP). The opposite patterns reveal that high VPD not invariably lead to detrimental yield impacts. Temporal analysis sheds light on an upward trend in VPD, with values of 0.05 and 0.02 kPa/10yr, accompanied by significant abrupt changes around 1996 in NEC and 2006 in NCP, respectively. These temporal shifts contribute to the heightened sensitivity of maize yield in both regions. Importantly, we emphasize the need to pay closer attention to the substantial the impact of actual vapor pressure on abrupt VPD changes during the maize growing phase, particularly in the context of ongoing climate warming.

10.
Appl Environ Microbiol ; 89(11): e0101823, 2023 11 29.
Article in English | MEDLINE | ID: mdl-37855634

ABSTRACT

IMPORTANCE: Understanding the regulatory pathways by which fungi respond to environmental signals through interlinked genes provides insights into the interactions between fungi and insects. The coordinated optimization of the regulatory networks is necessary for fungi to adapt to their habitats. We demonstrated that the synergistic regulation of sensor histidine kinase (SLN1) and acetyl-CoA carboxylase (ACC1) plays a critical role in regulating the fungal response to Sinella curviseta stress. Furthermore, we found that the enhanced production of trehalose, carotenoids, and 5-MTHF plays crucial role in the resistance to the fungivore. Our results provide insights into the understanding of the adaptation of N. crassa to environmental stimuli.


Subject(s)
Arthropods , Neurospora crassa , Animals , Histidine Kinase , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/metabolism , Neurospora crassa/genetics
11.
Chemistry ; 29(44): e202301266, 2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37226708

ABSTRACT

The α-diimine-ligated dimagnesium(I) compound [K(thf)3 ]2 [LMg-MgL] (1, L=[(2,6-iPr2 C6 H3 )NC(Me)]2 2- ) displays diverse reactivities toward carbodiimides (RN=C=NR) with different R substituents. In the reaction of 1 with Me3 SiNCNSiMe3 , one of the easily leaving trimethylsilyl groups is lost to yield the Me3 SiNCN- moiety that either bridges two MgII centers (2) or terminally coordinated (3). In contrast, with the similarly bulky tBuNCNtBu, the carbodiimide inserts into Mg-Mg bond with accompanying C-H activation of a ligand or solvent (products 4 and 5). In the case of dicyclohexyl or diisopropyl carbodiimide, reductive C-C coupling of two RNCNR molecules occurs to form the [C2 (NR)4 ]2- diamido moiety, which bridges two Mg centers, giving complexes [{K(dme)2 }2 LMg(µ-{C2 (NR)4 })MgL] (6, R=Cy; 7, R=iPr) and [L⋅- Mg(µ-{C2 (NR)4 })MgL⋅- ] (8). Most interestingly, upon treating 1 with Me3 SiC≡CSiMe3 , the acetylide complex [K(dme)][LMg(C≡CSiMe3 )(dme)] (9) was prepared, which undergoes a rare "double insertion" with CyNCNCy to afford [K(solv)][K(dme)2 LMg(NCy)2 C-C≡C-C(NCy)2 MgL] (10) containing an acetylenediide-coupled bis(amidinate) ligand that bridges two Mg atoms.

12.
BMC Cancer ; 23(1): 29, 2023 Jan 07.
Article in English | MEDLINE | ID: mdl-36611131

ABSTRACT

PURPOSE: Despite the poor prognosis of triple-negative breast cancer (TNBC), it has been demonstrated that neoadjuvant immunotherapy in combination with chemotherapy can improve the pathologic complete response (pCR) rate and/or long-term outcome of TNBC. However, there have been no real-world studies reporting on the effectiveness of neoadjuvant checkpoint inhibitors in early TNBC. METHODS: Between November 2019 and December 2021, 63 early TNBC patients treated with anti-PD-1 antibodies (pembrolizumab or camrelizumab) or anti-PD-L1 antibody (atezolizumab) in combination with chemotherapy at seven institutions were included. PCR1 defined as ypT0/Tis and ypN0 was the primary endpoint. Secondary endpoints included pCR2 defined as ypT0/Tis, overall response rate (ORR), disease-free survival (DFS), drug-related adverse events (AEs) and biomarkers. RESULTS: Among the patients in the current study, 34.9% of patients were able to achieve pCR1, and 47.6% of patients had achieved pCR2. The ORR was 82.5%. 33 patients with non-pCR2 tumors were found to have a median DFS of 20.7 months (95% CI 16.3 months-not reached). The DFS of patients with pCR2 and non-pCR2 after neoadjuvant therapy was significantly different (HR = 0.28, 95% CI 0.10-0.79; P = 0.038). The most common AEs were nausea (63.4%), fatigue (42.7%), leucopenia (30.0%) and elevated transaminase (11.7%). CONCLUSION: It is possible to achieve a meaningful pCR rate and DFS by combining neoadjuvant checkpoint blockade with chemotherapy in patients with high-risk TNBC. Compared to clinical trials, however, there was a slightly lower pCR rate in this multicentered real-world study.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/pathology , Neoadjuvant Therapy , Disease-Free Survival , Antineoplastic Combined Chemotherapy Protocols/adverse effects
13.
Chemphyschem ; 24(9): e202200879, 2023 May 02.
Article in English | MEDLINE | ID: mdl-36650611

ABSTRACT

Late transition metal-bonded atomic oxygen radicals (LTM-O⋅- ) have been frequently proposed as important active sites to selectively activate and transform inert alkane molecules. However, it is extremely challenging to characterize the LTM-O⋅- -mediated elementary reactions for clarifying the underlying mechanisms limited by the low activity of LTM-O⋅- radicals that is inaccessible by the traditional experimental methods. Herein, benefiting from our newly-designed ship-lock type reactor, the reactivity of iron-vanadium bimetallic oxide cluster anions FeV3 O10 - and FeV5 O15 - featuring with Fe-O⋅- radicals to abstract a hydrogen atom from C2 -C4 alkanes has been experimentally characterized at 298 K, and the rate constants are determined in the orders of magnitude of 10-14 to 10-16  cm3 molecule-1 s-1 , which are four orders of magnitude slower than the values of counterpart ScV3 O10 - and ScV5 O15 - clusters bearing Sc-O⋅- radicals. Theoretical results reveal that the rearrangements of the electronic and geometric structures during the reaction process function to modulate the activity of Fe-O⋅- . This study not only quantitatively characterizes the elementary reactions of LTM-O⋅- radicals with alkanes, but also provides new insights into structure-activity relationship of M-O⋅- radicals.

14.
Inorg Chem ; 62(10): 4361-4372, 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36861488

ABSTRACT

A novel green-light-emitting silicon-based oxynitride phosphor Ca4Y3Si7O15N5:Eu2+ with low thermal quenching and ideal pressure sensitivity is reported. The Ca3.99Y3Si7O15N5:0.01Eu2+ phosphor can be efficiently excited by 345 nm ultraviolet light and shows very low thermal quenching (integrated and peak emission intensities at 373 and 423 K were 96.17, 95.86, and 92.73, 90.66% of those at 298 K, respectively). The correlation between high thermal stability and structural rigidity is investigated in detail. The white-light-emitting diode (W-LED) is assembled by depositing the obtained green-light-emitting phosphor Ca3.99Y3Si7O15N5:0.01Eu2+ and commercial phosphors on a ultraviolet (UV)-emitting chip (λ = 365 nm). The CIE color coordinates, color rendering index (Ra), and corrected color temperature (CCT) of the obtained W-LED are (0.3724, 0.4156), 92.9, and 4806 K, respectively. In addition, when subjected to in situ high-pressure fluorescence spectroscopy, the phosphor exhibits an evident red shift of 40 nm with an increase in pressure from 0.2 to 32.1 GPa. The phosphor has the advantage of high-pressure sensitivity (dλ/dP = 1.13 nm GPa-1) and visualization with pressure changes. The possible reasons and mechanisms are deeply discussed in detail. Based on the above advantages, Ca3.99Y3Si7O15N5:0.01Eu2+ phosphor is expected to have potential applications in W-LEDs and optical pressure sensing.

15.
Inorg Chem ; 62(16): 6288-6296, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37036292

ABSTRACT

The reactivity of two α-diimine-ligated digallanes, [L2-Ga-GaL2-] (La = [(2,6-iPr2C6H3)NC(CH3)]2, dpp-dad, 1; Lb = 1,2-[(2,6-iPr2C6H3)NC]2C10H6, dpp-bian, 2), and a gallylene, [(La)2-GaNa(THF)3] (3), toward organic azides was studied. Reaction of digallane 1 or 2 with trimethylsilyl azide (Me3SiN3), 2-azido-benzonitrile (2-CNC6H4N3), or tosylazide (TosN3) results in imido-bridged complexes, [(La)·-Ga(µ-NSiMe3)2Ga(La)·-] (4) [(Lb)·-Ga(µ-NSiMe3)2Ga(Lb)·-] (5), [(Lb)·-Ga(µ-2-CNC6H4N)2Ga(Lb)·-] (6), and [(Lb)·-Ga(µ-NTos)2Ga(Lb)·-] (7), with elimination of dinitrogen. Treatment of 1 or 2 with 1-adamantyl azide (1-AdN3), on the other hand, affords the unsymmetrical dinuclear complexes [(La)·-Ga(NAd)(N3Ad)Ga(La)·-] (8) and [(Lb)·-Ga(NAd)(N3Ad)Ga(Lb)·-] (9), which contain both imido and triazene bridges. Different from the Ga(II) complexes 1 and 2, the reactions of Ga(I) species 3 with benzylazide or trimethylsilyl azide result in the tetrazene complex {Na(THF)}2[(La)2-Ga(benzyl-N4-benzyl)]2 (10) and amide complex {Na(THF)4}[(La)2-Ga(NHSiMe3)(benzyl)] (11). It is likely that these latter transformations proceed via the transient formation of the corresponding Ga═N imide complex, which undergoes either cycloaddition with a second azide (to form 10) or activation of the C-H bond of methyl in one solvent toluene molecule (to yield 11).

16.
Nanotechnology ; 34(18)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36720154

ABSTRACT

A Z-scheme Cd0.85Zn0.15S/Co9S8(CZS-CS) photocatalyst was reasonably fabricated by a simple solvothermal method for the effective visible-light-driven H2evolution and organic pollutants degradation. The precise construction of the CZS-CS composites provided an efficient heterogeneous contact interface and abundant reaction sites for the proposed photocatalytic reaction. The homogeneous Co9S8nanocrystals were uniformly wrapped on the surface of Cd0.85Zn0.15S nanorods, forming an intimate-contact interface, markedly contributed to the light collection and effectively inhibited the charge-carrier recombination. The optimized CZS-CS-15 composites exhibited a special H2production rate reaching 19.15 mmol·h-1·g-1, roughly 1915 and 4.5 times of pure Co9S8and Cd0.85Zn0.15S samples and 85% of tetracycline (TC) molecule within 15 min was degraded. Furthermore, trapping experiments confirmed that h+was the main active species for TC photodegradation. Moreover, the obtained photocatalysts manifested stability without apparent activity declines during the proposed reactions. Finally, the Z-scheme photocatalytic mechanism was verified to illustrate the characteristics of efficient charge transfer and high redox ability. This study provided a rational and learnable strategy for designing dual-functional Z-scheme heterojunction photocatalysts.

17.
J Chem Phys ; 158(19)2023 May 21.
Article in English | MEDLINE | ID: mdl-37191213

ABSTRACT

Understanding the properties of small particles working under high-temperature conditions at the atomistic scale is imperative for exact control of related processes, but it is quite challenging to achieve experimentally. Herein, benefitting from state-of-the-art mass spectrometry and by using our newly designed high-temperature reactor, the activity of atomically precise particles of negatively charged vanadium oxide clusters toward hydrogen atom abstraction (HAA) from methane, the most stable alkane molecule, has been measured at elevated temperatures up to 873 K. We discovered the positive correlation between the reaction rate and cluster size that larger clusters possessing greater vibrational degrees of freedom can carry more vibrational energies to enhance the HAA reactivity at high temperature, in contrast with the electronic and geometric issues that control the activity at room temperature. This finding opens up a new dimension, vibrational degrees of freedom, for the simulation or design of particle reactions under high-temperature conditions.

18.
Oral Dis ; 29(1): 105-115, 2023 Jan.
Article in English | MEDLINE | ID: mdl-33872442

ABSTRACT

Recently, lncRNAs are associated with the progression and development of various cancers. We aimed to explore the effects of lncRNA SNHG1 on the proliferation, apoptosis, migration, and invasion of oral squamous cell carcinoma (OSCC) cells. Quantitative real-time PCR (RT-qPCR) was used for measurement of SNHG1 in OSCC cells. Cell proliferation, apoptosis, migration, and invasion were detected by CCK-8 assay, flow cytometry, Cell Death Detection ELISA PLUS kit, and transwell assays. Dual-luciferase reporter assay and RNA-binding protein immunoprecipitation (RIP) assay were used to clarify the relationship between SNHG1 and miR-186. SNHG1 was overexpressed in OSCC cells. SNHG1 silencing prevented cell proliferation and increased the incidence of apoptosis, DNA fragments, cleaved-caspase 3, and Bax protein levels. Cell migration and invasion were reduced after SNHG1 deletion, and MMP2 and MMP9 protein levels were decreased. SNHG1 overexpression promoted cell survival, migration, and invasion, reduced DNA fragments formation. Mechanistically, we demonstrated that SNHG1 could directly bind to miR-186 and positively regulated α1, 6-fucosyltransferase (FUT8) level. Functional investigation showed that miR-186 depletion reversed the roles of SNHG1 silencing in cell proliferation, apoptosis, and migration. Taken together, our findings illuminated that SNHG1 regulated cell proliferation, migration, and invasion by sponging miR-186 to depress FUT8 expression.


Subject(s)
Fucosyltransferases , MicroRNAs , Mouth Neoplasms , RNA, Long Noncoding , Squamous Cell Carcinoma of Head and Neck , Humans , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Fucosyltransferases/genetics , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Mouth Neoplasms/genetics , RNA, Long Noncoding/genetics , Squamous Cell Carcinoma of Head and Neck/genetics
19.
Plant Physiol ; 185(4): 1666-1681, 2021 04 23.
Article in English | MEDLINE | ID: mdl-33569600

ABSTRACT

Aquaporins such as the plasma membrane intrinsic proteins (PIPs) allow water to move through cell membranes and are vital for stomatal movement in plants. Despite their importance, the dynamic changes in aquaporins during water efflux and influx have not been directly observed in real time in vivo. Here, to determine which factors regulate these changes during the bidirectional translocation of water, we examined aquaporin dynamics during the stomatal immune response to the bacterial flagellin-derived peptide flg22. The Arabidopsis (Arabidopsis thaliana) aquaporin mutant pip2;1 showed defects in the flg22-induced stomatal response. Variable-angle total internal reflection fluorescence microscopy revealed that the movement dynamics and dwell times of AQ6]GFP-AtPIP2;1 in guard cells and subsidiary cells exhibited cell type-specific dependencies on flg22. The cytoskeleton, rather than the cell wall, was the major factor regulating AtPIP2;1 dynamics, although both the cytoskeleton and cell wall might form bounded domains that restrict the diffusion of AtPIP2;1 in guard cells and subsidiary cells. Finally, our analysis revealed the different roles of cortical actin and microtubules in regulating AtPIP2;1 dynamics in guard cells, as well as subsidiary cells, under various conditions. Our observations shed light on the heterogeneous mechanisms that regulate membrane protein dynamics in plants in response to pathogens.


Subject(s)
Aquaporins/metabolism , Arabidopsis Proteins/metabolism , Cell Membrane/metabolism , Plant Roots/cytology , Plant Roots/metabolism , Plant Stomata/cytology , Plant Stomata/metabolism , Aquaporins/genetics , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant , Genes, Plant , Mutation , Plant Roots/genetics , Plant Stomata/genetics
20.
Chemistry ; 28(33): e202200062, 2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35419859

ABSTRACT

Methane is an abundant and cheap feedstock to produce valuable chemicals. The catalytic reaction of methane conversion generally requires the participation of multiple molecules (such as two or three CH4 molecules, O2 , CO2 , etc.). Such complex process includes the cleavage of original chemical bonds, formation of new chemical bonds, and desorption of products. The gas phase study provides a unique arena to gain molecular-level insights into the detailed mechanisms of bond-breaking and bond-forming involved in complicated catalytic reactions. In this Review, we introduce the methane conversion catalyzed by gas phase ions containing metals and three topics will be discussed: (1) the direct coupling of methane molecules, (2) the conversion of CH4 with O2 , O3 and N2 O, and (3) the conversion of CH4 with CO2 and H2 O. The obtained mechanistic aspects may provide new clues for rational design of better-performing catalysts for conversion of methane to value-added products.

SELECTION OF CITATIONS
SEARCH DETAIL