Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Cell ; 163(7): 1716-29, 2015 Dec 17.
Article in English | MEDLINE | ID: mdl-26686653

ABSTRACT

Cellular lipid requirements are achieved through a combination of biosynthesis and import programs. Using isotope tracer analysis, we show that type I interferon (IFN) signaling shifts the balance of these programs by decreasing synthesis and increasing import of cholesterol and long chain fatty acids. Genetically enforcing this metabolic shift in macrophages is sufficient to render mice resistant to viral challenge, demonstrating the importance of reprogramming the balance of these two metabolic pathways in vivo. Unexpectedly, mechanistic studies reveal that limiting flux through the cholesterol biosynthetic pathway spontaneously engages a type I IFN response in a STING-dependent manner. The upregulation of type I IFNs was traced to a decrease in the pool size of synthesized cholesterol and could be inhibited by replenishing cells with free cholesterol. Taken together, these studies delineate a metabolic-inflammatory circuit that links perturbations in cholesterol biosynthesis with activation of innate immunity.


Subject(s)
Cholesterol/metabolism , Immunity, Innate , Interferon-gamma/metabolism , Signal Transduction , Animals , Cell Line, Tumor , Humans , Interferon beta-1b , Membrane Proteins/metabolism , Mevalonic Acid/metabolism , Mice , Mice, Inbred C57BL , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 2/metabolism
2.
Mol Ther ; 32(4): 1000-1015, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38414243

ABSTRACT

Adoptive cell therapy (ACT) using T cells expressing chimeric antigen receptors (CARs) is an area of intense investigation in the treatment of malignancies and chronic viral infections. One of the limitations of ACT-based CAR therapy is the lack of in vivo persistence and maintenance of optimal cell function. Therefore, alternative strategies that increase the function and maintenance of CAR-expressing T cells are needed. In our studies using the humanized bone marrow/liver/thymus (BLT) mouse model and nonhuman primate (NHP) model of HIV infection, we evaluated two CAR-based gene therapy approaches. In the ACT approach, we used cytokine enhancement and preconditioning to generate greater persistence of anti-HIV CAR+ T cells. We observed limited persistence and expansion of anti-HIV CAR T cells, which led to minimal control of the virus. In our stem cell-based approach, we modified hematopoietic stem/progenitor cells (HSPCs) with anti-HIV CAR to generate anti-HIV CAR T cells in vivo. We observed CAR-expressing T cell expansion, which led to better plasma viral load suppression. HSPC-derived CAR cells in infected NHPs showed superior trafficking and persistence in multiple tissues. Our results suggest that a stem cell-based CAR T cell approach may be superior in generating long-term persistence and functional antiviral responses against HIV infection.


Subject(s)
HIV Infections , HIV-1 , Receptors, Chimeric Antigen , Mice , Animals , T-Lymphocytes , Receptors, Chimeric Antigen/genetics , Hematopoietic Stem Cells , Immunotherapy, Adoptive
3.
PLoS Pathog ; 17(8): e1009895, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34460861

ABSTRACT

[This corrects the article DOI: 10.1371/journal.ppat.1009404.].

4.
PLoS Pathog ; 17(4): e1009404, 2021 04.
Article in English | MEDLINE | ID: mdl-33793675

ABSTRACT

Due to the durability and persistence of reservoirs of HIV-1-infected cells, combination antiretroviral therapy (ART) is insufficient in eradicating infection. Achieving HIV-1 cure or sustained remission without ART treatment will require the enhanced and persistent effective antiviral immune responses. Chimeric Antigen Receptor (CAR) T-cells have emerged as a powerful immunotherapy and show promise in treating HIV-1 infection. Persistence, trafficking, and maintenance of function remain to be a challenge in many of these approaches, which are based on peripheral T cell modification. To overcome many of these issues, we have previously demonstrated successful long-term engraftment and production of anti-HIV CAR T cells in modified hematopoietic stem cells (HSCs) in vivo. Here we report the development and in vivo testing of second generation CD4-based CARs (CD4CAR) against HIV-1 infection using a HSCs-based approach. We found that a modified, truncated CD4-based CAR (D1D2CAR) allows better CAR-T cell differentiation from gene modified HSCs, and maintains similar CTL activity as compared to the full length CD4-based CAR. In addition, D1D2CAR does not mediate HIV infection or stimulation mediated by IL-16, suggesting lower risk of off-target effects. Interestingly, stimulatory domains of 4-1BB but not CD28 allowed successful hematopoietic differentiation and improved anti-viral function of CAR T cells from CAR modified HSCs. Addition of 4-1BB to CD4 based CARs led to faster suppression of viremia during early untreated HIV-1 infection. D1D2CAR 4-1BB mice had faster viral suppression in combination with ART and better persistence of CAR T cells during ART. In summary, our data indicate that the D1D2CAR-41BB is a superior CAR, showing better HSC differentiation, viral suppression and persistence, and less deleterious functions compared to the original CD4CAR, and should continue to be pursued as a candidate for clinical study.


Subject(s)
HIV Infections/virology , Hematopoietic Stem Cells/cytology , Lymphocyte Activation , Receptors, Antigen, T-Cell/immunology , Receptors, Chimeric Antigen/immunology , Animals , HIV Infections/immunology , HIV-1/immunology , Hematopoietic Stem Cells/immunology , Humans , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Mice , Receptors, Antigen, T-Cell/genetics , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/therapeutic use
5.
J Virol ; 93(20)2019 10 15.
Article in English | MEDLINE | ID: mdl-31341054

ABSTRACT

The HIV/AIDS pandemic remains an important threat to human health. We have recently demonstrated that a novel microRNA (miR), miR-128, represses retrotransposon long interspaced element 1 (L1) by a dual mechanism, namely, by directly targeting the coding region of the L1 RNA and by repressing a required nuclear import factor (TNPO1). We have further determined that miR-128 represses the expression of all three TNPO proteins (transportins TNPO1, TNPO2, and TNPO3). Here, we establish that miR-128 also influences HIV-1 replication by repressing TNPO3, a factor that regulates HIV-1 nuclear import and viral; replication of TNPO3 is well established to regulate HIV-1 nuclear import and viral replication. Here, we report that type I interferon (IFN)-inducible miR-128 directly targets two sites in the TNPO3 mRNA, significantly downregulating TNPO3 mRNA and protein expression levels. Challenging miR-modulated Jurkat cells or primary CD4+ T-cells with wild-type (WT), replication-competent HIV-1 demonstrated that miR-128 reduces viral replication and delays spreading of infection. Manipulation of miR-128 levels in HIV-1 target cell lines and in primary CD4+ T-cells by overexpression or knockdown showed that reduction of TNPO3 levels by miR-128 significantly affects HIV-1 replication but not murine leukemia virus (MLV) infection and that miR-128 modulation of HIV-1 replication is reduced with TNPO3-independent HIV-1 virus, suggesting that miR-128-indued TNPO3 repression contributes to the inhibition of HIV-1 replication. Finally, we determine that anti-miR-128 partly neutralizes the IFN-mediated block of HIV-1. Thus, we have established a novel role of miR-128 in antiviral defense in human cells, namely inhibiting HIV-1 replication by altering the cellular milieu through targeting factors that include TNPO3.IMPORTANCE HIV-1 is the causative agent of AIDS. During HIV-1 infection, type I interferons (IFNs) are induced, and their effectors limit HIV-1 replication at multiple steps in its life cycle. However, the cellular targets of INFs are still largely unknown. In this study, we identified the interferon-inducible microRNA (miR) miR-128, a novel antiviral mediator that suppresses the expression of the host gene TNPO3, which is known to modulate HIV-1 replication. Notably, we observe that anti-miR-128 partly neutralizes the IFN-mediated block of HIV-1. Elucidation of the mechanisms through which miR-128 impairs HIV-1 replication may provide novel candidates for the development of therapeutic interventions.


Subject(s)
Gene Expression Regulation/drug effects , HIV Infections/genetics , HIV Infections/virology , HIV-1/physiology , Interferons/pharmacology , MicroRNAs/genetics , Virus Replication , beta Karyopherins/genetics , 3' Untranslated Regions , Cell Line , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/genetics , Humans , Models, Biological , RNA Interference
7.
Mol Ther ; 27(5): 960-973, 2019 05 08.
Article in English | MEDLINE | ID: mdl-30962161

ABSTRACT

HIV-1-infected individuals are treated with lifelong antiretroviral drugs to control the infection. A means to strengthen the antiviral T cell response might allow them to control viral loads without antiretroviral drugs. We report the development of a lentiviral vector-based dendritic cell (DC) vaccine in which HIV-1 antigen is co-expressed with CD40 ligand (CD40L) and a soluble, high-affinity programmed cell death 1 (PD-1) dimer. CD40L activates the DCs, whereas PD-1 binds programmed death ligand 1 (PD-L1) to prevent checkpoint activation and strengthen the cytotoxic T lymphocyte (CTL) response. The injection of humanized mice with DCs transduced with vector expressing CD40L and the HIV-1 SL9 epitope induced antigen-specific T cell proliferation and memory differentiation. Upon HIV-1 challenge of vaccinated mice, viral load was suppressed by 2 logs for 6 weeks. Introduction of the soluble PD-1 dimer into a vector that expressed full-length HIV-1 proteins accelerated the antiviral response. The results support development of this approach as a therapeutic vaccine that might allow HIV-1-infected individuals to control virus replication without antiretroviral therapy.


Subject(s)
Dendritic Cells/immunology , HIV Infections/therapy , Programmed Cell Death 1 Receptor/immunology , T-Lymphocytes, Cytotoxic/immunology , Virus Replication/immunology , AIDS Vaccines/immunology , AIDS Vaccines/pharmacology , Animals , CD40 Ligand , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , Epitopes, T-Lymphocyte/immunology , Genetic Vectors/immunology , Genetic Vectors/pharmacology , HIV Infections/immunology , HIV Infections/virology , HIV-1/immunology , HIV-1/pathogenicity , Humans , Lymphocyte Activation/immunology , Mice
8.
PLoS Pathog ; 13(12): e1006753, 2017 12.
Article in English | MEDLINE | ID: mdl-29284044

ABSTRACT

Chimeric Antigen Receptor (CAR) T-cells have emerged as a powerful immunotherapy for various forms of cancer and show promise in treating HIV-1 infection. However, significant limitations are persistence and whether peripheral T cell-based products can respond to malignant or infected cells that may reappear months or years after treatment remains unclear. Hematopoietic Stem/Progenitor Cells (HSPCs) are capable of long-term engraftment and have the potential to overcome these limitations. Here, we report the use of a protective CD4 chimeric antigen receptor (C46CD4CAR) to redirect HSPC-derived T-cells against simian/human immunodeficiency virus (SHIV) infection in pigtail macaques. CAR-containing cells persisted for more than 2 years without any measurable toxicity and were capable of multilineage engraftment. Combination antiretroviral therapy (cART) treatment followed by cART withdrawal resulted in lower viral rebound in CAR animals relative to controls, and demonstrated an immune memory-like response. We found CAR-expressing cells in multiple lymphoid tissues, decreased tissue-associated SHIV RNA levels, and substantially higher CD4/CD8 ratios in the gut as compared to controls. These results show that HSPC-derived CAR T-cells are capable of long-term engraftment and immune surveillance. This study demonstrates for the first time the safety and feasibility of HSPC-based CAR therapy in a large animal preclinical model.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , HIV Infections/immunology , HIV Infections/therapy , Hematopoietic Stem Cells/immunology , Receptors, Antigen, T-Cell/metabolism , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/therapy , Animals , CD4-Positive T-Lymphocytes/transplantation , Cell Differentiation/immunology , Cell Lineage/immunology , Disease Models, Animal , Genetic Therapy/methods , HIV Infections/virology , Hematopoietic Stem Cell Transplantation/methods , Immunotherapy/methods , Macaca nemestrina , Male , Receptors, Antigen, T-Cell/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/metabolism , Simian Acquired Immunodeficiency Syndrome/virology
9.
PLoS Pathog ; 12(1): e1005356, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26808628

ABSTRACT

Persistent viral infections are simultaneously associated with chronic inflammation and highly potent immunosuppressive programs mediated by IL-10 and PDL1 that attenuate antiviral T cell responses. Inhibiting these suppressive signals enhances T cell function to control persistent infection; yet, the underlying signals and mechanisms that program immunosuppressive cell fates and functions are not well understood. Herein, we use lymphocytic choriomeningitis virus infection (LCMV) to demonstrate that the induction and functional programming of immunosuppressive dendritic cells (DCs) during viral persistence are separable mechanisms programmed by factors primarily considered pro-inflammatory. IFNγ first induces the de novo development of naive monocytes into DCs with immunosuppressive potential. Type I interferon (IFN-I) then directly targets these newly generated DCs to program their potent T cell immunosuppressive functions while simultaneously inhibiting conventional DCs with T cell stimulating capacity. These mechanisms of monocyte conversion are constant throughout persistent infection, establishing a system to continuously interpret and shape the immunologic environment. MyD88 signaling was required for the differentiation of suppressive DCs, whereas inhibition of stimulatory DCs was dependent on MAVS signaling, demonstrating a bifurcation in the pathogen recognition pathways that promote distinct elements of IFN-I mediated immunosuppression. Further, a similar suppressive DC origin and differentiation was also observed in Mycobacterium tuberculosis infection, HIV infection and cancer. Ultimately, targeting the underlying mechanisms that induce immunosuppression could simultaneously prevent multiple suppressive signals to further restore T cell function and control persistent infections.


Subject(s)
Dendritic Cells/immunology , Immune Tolerance/immunology , Interferons/immunology , Virus Diseases/immunology , Animals , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , HIV , HIV Infections/immunology , Lymphocytic Choriomeningitis/immunology , Lymphocytic choriomeningitis virus , Mice , Mice, Inbred C57BL , Mice, Knockout , Neoplasms/immunology , Oligonucleotide Array Sequence Analysis , Real-Time Polymerase Chain Reaction , T-Lymphocytes/immunology , Tuberculosis/immunology
10.
Mol Ther ; 23(8): 1358-1367, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26050990

ABSTRACT

The human immunodeficiency virus (HIV)-specific cytotoxic T lymphocyte (CTL) response is critical in controlling HIV infection. Since the immune response does not eliminate HIV, it would be beneficial to develop ways to enhance the HIV-specific CTL response to allow long-term viral suppression or clearance. Here, we report the use of a protective chimeric antigen receptor (CAR) in a hematopoietic stem/progenitor cell (HSPC)-based approach to engineer HIV immunity. We determined that CAR-modified HSPCs differentiate into functional T cells as well as natural killer (NK) cells in vivo in humanized mice and these cells are resistant to HIV infection and suppress HIV replication. These results strongly suggest that stem cell-based gene therapy with a CAR may be feasible and effective in treating chronic HIV infection and other morbidities.


Subject(s)
HIV Infections/immunology , Hematopoietic Stem Cells/cytology , Receptors, Antigen/chemistry , Animals , Antigens, CD34/metabolism , CD4-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/cytology , Cell Differentiation , Cytokines/metabolism , Genetic Engineering/methods , Genetic Therapy/methods , Genetic Vectors , HEK293 Cells , HIV-1 , Humans , Killer Cells, Natural/immunology , Mice , Receptors, Antigen, T-Cell/metabolism , Spleen/metabolism , Spleen/virology , T-Lymphocytes, Cytotoxic/immunology
11.
J Virol ; 88(17): 9934-46, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-24942581

ABSTRACT

UNLABELLED: A unique aspect of human monocytes, compared to monocytes from many other species, is that they express the CD4 molecule. However, the role of the CD4 molecule in human monocyte development and function is not known. We determined that the activation of CD4 via interaction with major histocompatibility complex class II (MHC-II) triggers cytokine expression and the differentiation of human monocytes into functional mature macrophages. Importantly, we determined that CD4 activation induces intracellular signaling in monocytes and that inhibition of the MAPK and Src family kinase pathways blocked the ability of CD4 ligation to trigger macrophage differentiation. We observed that ligation of CD4 by MHC-II on activated endothelial cells induced CD4-mediated macrophage differentiation of blood monocytes. Finally, CD4 ligation by MHC-II increases the susceptibility of blood-derived monocytes to HIV binding and subsequent infection. Altogether, our studies have identified a novel function for the CD4 molecule on peripheral monocytes and suggest that a unique set of events that lead to innate immune activation differ between humans and mice. Further, these events can have effects on HIV infection and persistence in the macrophage compartment. IMPORTANCE: The CD4 molecule, as the primary receptor for HIV, plays an important role in HIV pathogenesis. There are many cell types that express CD4 other than the primary HIV target, the CD4(+) T cell. Other than allowing HIV infection, the role of the CD4 molecule on human monocytes or macrophages is not known. We were interested in determining the role of CD4 in human monocyte/macrophage development and function and the potential effects of this on HIV infection. We identified a role for the CD4 molecule in triggering the activation and development of a monocyte into a macrophage following its ligation. Activation of the monocyte through the CD4 molecule in this manner increases the ability of monocytes to bind to and become infected with HIV. Our studies have identified a novel function for the CD4 molecule on peripheral monocytes in triggering macrophage development that has direct consequences for HIV infection.


Subject(s)
CD4 Antigens/metabolism , Cell Differentiation , HIV Infections/immunology , Histocompatibility Antigens Class II/metabolism , Macrophages/physiology , Monocytes/physiology , Adult , Cytokines/metabolism , Humans , Macrophages/immunology , Monocytes/immunology , Protein Binding , Signal Transduction
12.
Viruses ; 16(2)2024 01 31.
Article in English | MEDLINE | ID: mdl-38399994

ABSTRACT

Chronic Human Immunodeficiency Virus (HIV) infection remains a significant challenge to global public health. Despite advances in antiretroviral therapy (ART), which has transformed HIV infection from a fatal disease into a manageable chronic condition, a definitive cure remains elusive. One of the key features of HIV infection is chronic immune activation and inflammation, which are strongly associated with, and predictive of, HIV disease progression, even in patients successfully treated with suppressive ART. Chronic inflammation is characterized by persistent inflammation, immune cell metabolic dysregulation, and cellular exhaustion and dysfunction. This review aims to summarize current knowledge of the interplay between chronic inflammation, immune metabolism, and T cell dysfunction in HIV infection, and also discusses the use of humanized mice models to study HIV immune pathogenesis and develop novel therapeutic strategies.


Subject(s)
HIV Infections , HIV-1 , Humans , Animals , Mice , HIV-1/physiology , Inflammation/pathology , T-Lymphocytes/metabolism
13.
ACS Med Chem Lett ; 15(5): 653-658, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38746895

ABSTRACT

Previously we identified a non-nucleotide agonist BDW568 that selectively activates the human STINGA230 allele. Here, we further characterized the mechanism of BDW568 and highlighted its potential use for selectively controlling the activation of engineered macrophages that constitutively express STINGA230 as a genetic adjuvant. We obtained the crystal structure of the C-terminal domain of STINGA230 complexed with BDW-OH (active metabolite) at 1.95 Å resolution. Structure-activity relationship studies revealed that all three heterocycles in BDW568 and the S-acetate side chain are critical for retaining activity. We demonstrated that BDW568 could robustly activate type I interferon signaling in purified human primary macrophages that were transduced with lentivirus expressing STINGA230. In contrast, BDW568 could not stimulate innate immune responses in human primary peripheral blood mononuclear cells in healthy donors in the absence of a STINGA230 allele. This high STING variant specificity suggested a promising application of STINGA230 agonists in macrophage-based therapeutic approaches.

14.
BMC Public Health ; 13: 964, 2013 Oct 17.
Article in English | MEDLINE | ID: mdl-24134057

ABSTRACT

BACKGROUND: China enacted a policy to ban smoking in hospitals. The Chinese Association for Tobacco Control (CATC) developed a program to help hospitals implement this policy. They conducted a program and an assessment in 3 Chinese cities (Beijing, Shanghai and Guangdong). A more in-depth evaluation was implemented with a sub-sample of hospitals in Beijing (N = 7) to provide an independent assessment. This independent assessment focused on evaluating policy development and an assessment of secondhand smoke (SHS) to determine compliance with the smoke-free policy initiative. METHODS: Pre- and post-survey data were collected at each of the selected hospitals with a total sample of 2835 physicians at pre-intervention and 2812 at post-intervention. Smoking rates pre- and post-policy implementation, change in knowledge, attitudes and practices among physicians, and compliance with policy were assessed. Measurements of airborne nicotine concentrations in selected locations in each hospital were taken: main hospital lobby; main outpatient center; emergency waiting room; and stairwell adjacent to a large inpatient ward. Hospital policies were collected, translated and rated for incorporated components necessary to implement a smoke-free policy. RESULTS: Physicians' smoking rates decreased and attitudes towards tobacco control improved significantly from pre-to post-intervention. Smoking was still reported in certain areas of the hospital with 96% of passive nicotine monitors as well as self-report indicating continued smoking. Nicotine levels ranged from <0.0056 to 3.94 µg/m3), with an overall mean of .667 µg/m3. Hospitals that established stronger policies seemed to have lower levels of nicotine, suggesting a relationship between policy development and compliance. This finding is interesting but just suggestive and requires further investigation to truly demonstrate if stronger policies improve compliance and produce better outcomes. CONCLUSION: As implementation strategies for smoke-free environments are improved and more resources are focused on hospitals, China is making progress toward achieving smoke-free hospitals. Using a model program could increase the prevalence of SHS policies across China. However, relying only on survey data may not provide an accurate assessment of this progress, and more extensive evaluation efforts are useful to understand how change can and does occur.


Subject(s)
Hospitals, Urban/organization & administration , Organizational Policy , Smoke-Free Policy , Smoking/epidemiology , Tobacco Smoke Pollution/prevention & control , Attitude of Health Personnel , China/epidemiology , Data Collection , Female , Humans , Male , Medical Staff, Hospital/psychology , Nicotine/analysis , Policy Making , Prevalence , Smoking Prevention , Surveys and Questionnaires
15.
Autophagy Rep ; 2(1)2023.
Article in English | MEDLINE | ID: mdl-38435700

ABSTRACT

Chronic immune activation and inflammation are hallmarks of Human Immunodeficiency Virus-1 (HIV-1) pathogenesis. Therefore, approaches to safely reduce systematic inflammation are essential to improve immune responses and thus slow or prevent HIV progression. Autophagy is a cellular mechanism for the disposal of damaged organelles and elimination of intracellular pathogens. It is not only vital for energy homeostasis, but also plays a critical role in regulating immunity. However, how it regulates inflammation and antiviral T cell responses during HIV infection is unclear. Our study demonstrated that impairment of autophagy leads to spontaneous type I-Interferons (IFN-I) signaling, while autophagy induction reduces IFN-I signaling in macrophages. Importantly, we demonstrated that in vivo treatment of autophagy inducer rapamycin in chronically HIV infected humanized mice decreased chronic IFN-I signaling, improved exhausted anti-viral T cell function, and reduced viral loads. Taken together, our study supports the therapeutic potential of rapamycin and potentially other autophagy inducers in alleviating HIV-1 immunopathogenesis and improving anti-viral T cell responses.

16.
bioRxiv ; 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37425806

ABSTRACT

Previously we identified a non-nucleotide tricyclic agonist BDW568 that activates human STING (stimulator of interferon genes) gene variant containing A230 in a human monocyte cell line (THP-1). STINGA230 alleles, including HAQ and AQ, are less common STING variants in human population. To further characterize the mechanism of BDW568, we obtained the crystal structure of the C-terminal domain of STINGA230 complexed with BDW-OH (active metabolite of BDW568) at 1.95 Å resolution and found the planar tricyclic structure in BDW-OH dimerizes in the STING binding pocket and mimics the two nucleobases of the endogenous STING ligand 2',3'-cGAMP. This binding mode also resembles a known synthetic ligand of human STING, MSA-2, but not another tricyclic mouse STING agonist DMXAA. Structure-activity-relationship (SAR) studies revealed that all three heterocycles in BDW568 and the S-acetate side chain are critical for retaining the compound's activity. BDW568 could robustly activate the STING pathway in human primary peripheral blood mononuclear cells (PBMCs) with STINGA230 genotype from healthy individuals. We also observed BDW568 could robustly activate type I interferon signaling in purified human primary macrophages that were transduced with lentivirus expressing STINGA230, suggesting its potential use to selectively activate genetically engineered macrophages in macrophage-based approaches, such as chimeric antigen receptor (CAR)-macrophage immunotherapies.

17.
Mol Ther Methods Clin Dev ; 30: 276-287, 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37575091

ABSTRACT

Hematopoietic stem cell gene therapy has been successfully used for a number of genetic diseases and is also being explored for HIV. However, toxicity of the conditioning regimens has been a major concern. Here we compared current conditioning approaches in a clinically relevant nonhuman primate model. We first customized various aspects of the therapeutic approach, including mobilization and cell collection protocols, conditioning regimens that support engraftment with minimal collateral damage, and cell manufacturing and infusing schema that reflect and build on current clinical approaches. Through a series of iterative in vivo experiments in two macaque species, we show that busulfan conditioning significantly spares lymphocytes and maintains a superior immune response to mucosal challenge with simian/human immunodeficiency virus, compared to total body irradiation and melphalan regimens. Comparative mobilization experiments demonstrate higher cell yield relative to our historical standard, primed bone marrow and engraftment of CRISPR-edited hematopoietic stem and progenitor cells (HSPCs) after busulfan conditioning. Our findings establish a detailed workflow for preclinical HSPC gene therapy studies in the nonhuman primate model, which in turn will support testing of novel conditioning regimens and more advanced HSPC gene editing techniques tailored to any disease of interest.

18.
J Vis Exp ; (188)2022 10 06.
Article in English | MEDLINE | ID: mdl-36282697

ABSTRACT

The human immunodeficiency virus (HIV-1) pandemic continues to spread unabated worldwide, and currently, there is no vaccine available against HIV. Although combinational antiretroviral therapy (cART) has been successful in suppressing viral replication, it cannot completely eradicate the reservoir from HIV-infected individuals. A safe and effective cure strategy for HIV infection will require multipronged methods, and therefore the advancements of animal models for HIV-1 infection are pivotal for the development of HIV cure research. Humanized mice recapitulate key features of HIV-1 infection. The humanized mouse model can be infected by HIV-1 and viral replication can be controlled with cART regimens. Moreover, cART interruption results in a prompt viral rebound in humanized mice. However, administration of cART to the animal can be ineffective, difficult, or toxic, and many clinically relevant cART regimens are unable to be optimally utilized. Along with being potentially unsafe for researchers, administration of cART by a commonly used intensive daily injection procedure induces stress by physical restraint of the animal. The novel oral cART method to treat HIV-1 infected humanized mice described in this article resulted in suppression of viremia below the detection level, increased rate of CD4+ restoration, and improved overall health in HIV-1 infected humanized mice.


Subject(s)
HIV Infections , HIV-1 , Mice , Humans , Animals , HIV Infections/drug therapy , Anti-Retroviral Agents/therapeutic use , Anti-Retroviral Agents/pharmacology , Viremia/drug therapy , Virus Replication , Viral Load , CD4-Positive T-Lymphocytes
19.
Front Immunol ; 13: 926696, 2022.
Article in English | MEDLINE | ID: mdl-36248834

ABSTRACT

Cannabis (Cannabis sativa) is a widely used drug in the United States and the frequency of cannabis use is particularly high among people living with HIV (PLWH). One key component of cannabis, the non-psychotropic (-)-cannabidiol (CBD) exerts a wide variety of biological actions, including anticonvulsive, analgesic, and anti-inflammatory effects. However, the exact mechanism of action through which CBD affects the immune cell signaling remains poorly understood. Here we report that CBD modulates type I interferon responses in human macrophages. Transcriptomics analysis shows that CBD treatment significantly attenuates cGAS-STING-mediated activation of type I Interferon response genes (ISGs) in monocytic THP-1 cells. We further showed that CBD treatment effectively attenuates 2'3-cGAMP stimulation of ISGs in both THP-1 cells and primary human macrophages. Interestingly, CBD significantly upregulates expression of autophagy receptor p62/SQSTM1. p62 is critical for autophagy-mediated degradation of stimulated STING. We observed that CBD treated THP-1 cells have elevated autophagy activity. Upon 2'3'-cGAMP stimulation, CBD treated cells have rapid downregulation of phosphorylated-STING, leading to attenuated expression of ISGs. The CBD attenuation of ISGs is reduced in autophagy deficient THP-1 cells, suggesting that the effects of CBD on ISGs is partially mediated by autophagy induction. Lastly, CBD decreases ISGs expression upon HIV infection in THP-1 cells and human primary macrophages, leading to increased HIV RNA expression 24 hours after infection. However, long term culture with CBD in infected primary macrophages reduced HIV viral spread, suggesting potential dichotomous roles of CBD in HIV replication. Our study highlights the immune modulatory effects of CBD and the needs for additional studies on its effect on viral infection and inflammation.


Subject(s)
Cannabidiol , HIV Infections , Interferon Type I , Anti-Inflammatory Agents , Cannabidiol/pharmacology , HIV Infections/drug therapy , Humans , Macrophages , Nucleotidyltransferases , RNA , Sequestosome-1 Protein
20.
JCI Insight ; 7(22)2022 11 22.
Article in English | MEDLINE | ID: mdl-36509289

ABSTRACT

A hallmark of HIV-1 infection is chronic inflammation, even in patients treated with antiretroviral therapy (ART). Chronic inflammation drives HIV-1 pathogenesis, leading to loss of CD4+ T cells and exhaustion of antiviral immunity. Therefore, strategies to safely reduce systematic inflammation are needed to halt disease progression and restore defective immune responses. Autophagy is a cellular mechanism for disposal of damaged organelles and elimination of intracellular pathogens. Autophagy is pivotal for energy homeostasis and plays critical roles in regulating immunity. However, how it regulates inflammation and antiviral T cell responses during HIV infection is unclear. Here, we demonstrate that autophagy is directly linked to IFN-I signaling, which is a key driver of immune activation and T cell exhaustion during chronic HIV infection. Impairment of autophagy leads to spontaneous IFN-I signaling, and autophagy induction reduces IFN-I signaling in monocytic cells. Importantly, in HIV-1-infected humanized mice, autophagy inducer rapamycin treatment significantly reduced persistent IFN-I-mediated inflammation and improved antiviral T cell responses. Cotreatment of rapamycin with ART led to significantly reduced viral rebound after ART withdrawal. Taken together, our data suggest that therapeutically targeting autophagy is a promising approach to treat persistent inflammation and improve immune control of HIV replication.


Subject(s)
HIV Infections , HIV-1 , Interferon Type I , Mice , Animals , Sirolimus/pharmacology , Sirolimus/therapeutic use , Autophagy
SELECTION OF CITATIONS
SEARCH DETAIL