Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Inorg Chem ; 63(1): 775-783, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38134353

ABSTRACT

Polysulfide-based multilevel memorizers are promising as novel memorizers, in which the occurrence of Sn2- relaxation is key for their multilevel memory. However, the effects of crystal packing and the side group of organic ligands on Sn2- relaxation are still ambiguous. In this work, ionic [Zn(S6)2·Zn2(Bipy)2SO4 (1), Zn(S6)2·Zn(Pmbipy)3 (2)] and neutral [ZnS6(Ombipy) (3), ZnS6(Phen)2 (4)] Zn/polysulfide/organic complexes with different packing modes and structures of organic ligands have been synthesized and were fabricated as memory devices. In both ionic and neutral Zn complexes, the S62- relaxation will be blocked by steric hindrances due to the packing of counter-cations and hydrogen-bond restrictions. Consequently, only the binary memory performances can be seen in FTO/1/Ag, FTO/2/Ag, and FTO/4/Ag, which originate from the more condensed packing of conjugated ligands upon electrical stimulus. Interestingly, FTO/3/Ag illustrates the unique thermally triggered reversible binary-ternary switchable memory performance. In detail, after introducing a methyl group on the 6'-position of bipyridine in ZnS6(Ombipy) (3), the ring-to-chain relaxation of S62- anions at room temperature will be inhibited, but it can happen at a higher temperature of 120 °C, which has been verified by elongated S-S lengths and the strengthened C-H···S hydrogen bond upon heating. The rules drawn in this work will provide a useful guide for the design of stimulus-responsive memorizers that can be applied in special industries such as automobile, oil, and gas industries.

2.
Biotechnol Bioeng ; 119(2): 388-398, 2022 02.
Article in English | MEDLINE | ID: mdl-34837379

ABSTRACT

Xylitol is a salutary sugar substitute that has been widely used in the food, pharmaceutical, and chemical industries. Co-fermentation of xylose and glucose by metabolically engineered cell factories is a promising alternative to chemical hydrogenation of xylose for commercial production of xylitol. Here, we engineered a mutant of SecY protein-translocation channel (SecY [ΔP]) in xylitol-producing Escherichia coli JM109 (DE3) as a passageway for xylose uptake. It was found that SecY (ΔP) channel could rapidly transport xylose without being interfered by XylB-catalyzed synthesis of xylitol-phosphate, which is impossible for native XylFGH and XylE transporters. More importantly, with the coaction of SecY (ΔP) channel and carbon catabolite repression (CCR), the flux of xylose to the pentose phosphate (PP) pathway and the xylitol synthesis pathway in E. coli could be automatically controlled in response to glucose, thereby ensuring that the mutant cells were able to fully utilize sugars with high xylitol yields. The E. coli cell factory developed in this study has been proven to be applicable to a broad range of xylose-glucose mixtures, which is conducive to simplifying the mixed-sugar fermentation process for efficient and economical production of xylitol.


Subject(s)
Carbon Cycle/genetics , Escherichia coli , Metabolic Engineering/methods , Xylitol/metabolism , Escherichia coli/enzymology , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Fermentation , Glucose/metabolism , SEC Translocation Channels/genetics , Xylose/metabolism
3.
Angew Chem Int Ed Engl ; 60(31): 16911-16916, 2021 Jul 26.
Article in English | MEDLINE | ID: mdl-34060186

ABSTRACT

The development of new-type memristors with special performance is of great interest. Herein, an inorganic-organic hybrid crystalline polyoxometalate (POM) with usual dynamic structures is reported and used as active material for fabricating memristor with unique temperature-regulated resistive switching behaviors. The hybrid POM not only exhibits tunable thermochromic properties, but also thermal-induced reversible aggregation and disaggregation reactions, leading to reversible structural transformations in SCSC fashion. Further, the memory device using the hybrid POM as active layer exhibits uncommon performance, which can keep resistive switching silent in the low temperature range of 30-150 °C, but show nonvolatile memory behavior in the high temperature range of 150-270 °C. Particularly, the silent and working states at three special temperatures (30, 150 and 270 °C) can be monitored by chromism. The correlation between structure and resistive switching property of the material has been discussed. The work demonstrates that crystalline inorganic-organic hybrid POMs are promising materials for making memristors with superior performance.

4.
J Org Chem ; 80(5): 2912-7, 2015 Mar 06.
Article in English | MEDLINE | ID: mdl-25673360

ABSTRACT

A copper-mediated trifluoromethylthiolation of vinyl bromides has been developed. This method provides ready access to vinyl trifluoromethyl thioethers in good to high yields from simple, inexpensive starting materials. A broad substrate scope is achieved, and the reaction is compatible with various functional groups, including cyano, nitro, trifluoromethyl, alkoxy, amino, halide, and heterocyclic groups.


Subject(s)
Copper/chemistry , Halogens/chemistry , Heterocyclic Compounds/chemistry , Hydrocarbons, Fluorinated/chemical synthesis , Nitriles/chemistry , Sulfides/chemical synthesis , Vinyl Compounds/chemical synthesis , Catalysis , Hydrocarbons, Fluorinated/chemistry , Sulfides/chemistry , Vinyl Compounds/chemistry
5.
J Agric Food Chem ; 72(26): 14821-14829, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38897918

ABSTRACT

d-Allulose, a C-3 epimer of d-fructose, has great market potential in food, healthcare, and medicine due to its excellent biochemical and physiological properties. Microbial fermentation for d-allulose production is being developed, which contributes to cost savings and environmental protection. A novel metabolic pathway for the biosynthesis of d-allulose from a d-xylose-methanol mixture has shown potential for industrial application. In this study, an artificial antisense RNA (asRNA) was introduced into engineered Escherichia coli to diminish the flow of pentose phosphate (PP) pathway, while the UDP-glucose-4-epimerase (GalE) was knocked out to prevent the synthesis of byproducts. As a result, the d-allulose yield on d-xylose was increased by 35.1%. Then, we designed a d-xylose-sensitive translation control system to regulate the expression of the formaldehyde detoxification operon (FrmRAB), achieving self-inductive detoxification by cells. Finally, fed-batch fermentation was carried out to improve the productivity of the cell factory. The d-allulose titer reached 98.6 mM, with a yield of 0.615 mM/mM on d-xylose and a productivity of 0.969 mM/h.


Subject(s)
Escherichia coli , Fermentation , Methanol , RNA, Antisense , Xylose , Escherichia coli/genetics , Escherichia coli/metabolism , Xylose/metabolism , RNA, Antisense/genetics , RNA, Antisense/metabolism , Methanol/metabolism , Metabolic Engineering , Fructose/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism
6.
Biotechnol J ; 19(1): e2300085, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37789647

ABSTRACT

D-Allulose is an ultra-low-calorie sweetener with broad market prospects in the fields of food, beverage, health care, and medicine. The fermentative synthesis of D-allulose is still under development and considered as an ideal route to replace enzymatic approaches for large-scale production of D-allulose in the future. Generally, D-allulose is synthesized from D-fructose through Izumoring epimerization. This biological reaction is reversible, and a high temperature is beneficial to the conversion of D-fructose. Mild cell growth conditions seriously limit the efficiency of producing D-allulose through fermentation. FryABC permease was identified to be responsible for the transport of D-allulose in Escherichia coli by comparative transcriptomic analysis. A cell factory was then developed by expression of ptsG-F, dpe, and deletion of fryA, fruA, manXYZ, mak, and galE. The results show that the newly engineered E. coli was able to produce 32.33 ± 1.33 g L-1 of D-allulose through a unique thermo-swing fermentation process, with a yield of 0.94 ± 0.01 g g-1 on D-fructose.


Subject(s)
Escherichia coli , Metabolic Engineering , Escherichia coli/genetics , Escherichia coli/metabolism , Fermentation , Fructose/metabolism , Membrane Transport Proteins/metabolism
7.
Mar Pollut Bull ; 203: 116404, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718546

ABSTRACT

This study aims to address the suboptimal performance of conventional denitrifying strains in treating mariculture tail water (MTW) containing inorganic nitrogen (IN). The concentration of inorganic nitrogen in the mariculture tail water is about 5-20 mg·L-1. A biofilm treatment process was developed and evaluated using an anoxic-anoxic-aerobic biofilter composite system inoculated with the denitrifying strain Meyerozyma guilliermondii Y8. The removal effect of total nitrogen (TN), IN, and Chemical Oxygen Demand (CODMn) from MTW was investigated. The results indicate that the A2O composite biological filter has excellent pollutant removal efficiency within 25 days of operation, after the acclimation of the denitrifying microorganisms. The initial concentrations of TN, IN, and CODMn ranged between 10.24 and 12.89 mg·L-1, 7.84-10.49 mg·L-1, and 9.44-11.52 mg·L-1, respectively, and the removal rates of these indexes reached 38-68 %, 45-70 %, and 55-70 %, respectively. The experiments with different hydraulic retention times (HRT = 6 h, 8 h, 10 h) demonstrated that longer HRT was more conducive to the removal of inorganic nitrogen. Moreover, scanning electron microscopy observations revealed that the target strain successfully grew and attached to the filler in large quantities. The findings of this study provide practical guidance for the development of efficient biofilm processes for the treatment of MTW.


Subject(s)
Nitrogen , Water Pollutants, Chemical , Anaerobiosis , Biofilms , Waste Disposal, Fluid/methods , Denitrification , Biological Oxygen Demand Analysis , Aquaculture , Biodegradation, Environmental , Water Purification/methods
8.
J Colloid Interface Sci ; 642: 408-420, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37023513

ABSTRACT

The study about simultaneously enhancing the resistive switching level and ambient-air-stability of perovskite-based memorizers will promote its commercialization. Here, a new 3D perovskite (TAZ-H)PbBr3 (TAZ-H+ = protonated thiazole) has been fabricated as FTO/(TAZ-H)PbBr3/Ag device, which only exhibits binary memory performance with the high tolerant temperature of 170 °C. After encapsulating by polyvinylpyrrolidone (PVP), the (TAZ-H)PbBr3@PVP composite-based device can demonstrate ternary resistive switching behavior with considerable ON2/ON1/OFF ratio (105.9: 103.9:1) and high ternary yield (68 %). Specially, this device presents good ambient-air stability at RH 80 % and thermal tolerance of 100 °C. The binary resistive switching mechanism can be ascribed to the halogen ion migration induced by bromine defects in the (PbBr3)nn- framework. But the ternary resistive switching phenomenon in the (TAZ-H)PbBr3@PVP-based device could be depicted as the carrier transport from filled traps of PVP to (PbBr3)nn- framework (ON1 state) and then carriers flowing in the re-arranged (TAZ-H)nn+ chain in 3D channels (ON2 state). The PVP treatment can not only modify the grain boundary defects, but also facilitate the transport of injected carriers to the perovskite films via Pb-O coordinated bonds and inhibition of order-disorder transformation. This facial strategy for implementing ternary perovskite-based memorizers with good ambient-air-stability is quite meaningful for high-density memory in harsh environments.

9.
ACS Omega ; 8(44): 41145-41155, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37970050

ABSTRACT

The aspect ratio modulation in the alcoholysis process is highly significant for the production of high-quality sucralose. In this work, antisolvent crystallization (ASC) accompanied by preferred orientation was first adopted in the sucralose separation, based on which simultaneous modulations on aspect ratio, solubility, and stability have been realized. In detail, after the alcoholysis process in methanol, four antisolvents bearing different functional groups were used in ASC, i.e., isopentanol (IPN), isovaleraldehyde (IVD), isovaleric acid (IVA), and isobutyl propionate (IBP). To our interest, when IVA was used as the antisolvent, the highest separation efficiency (49.33%), fastest crystallizing rate (5.64%/h), lowest aspect ratio (1.55), and solubility (9.28 wt %) and good thermal stability (131.65 °C) of sucralose were achieved. Single crystal structures of sucralose using different antisolvents have been determined. Sucralose using IVA as the antisolvent exhibits the greatest molecular distortion and strongest intermolecular C-H···Cl hydrogen bonds; thus, the preferred growth along {002}/{011} directions has occurred and accounted for its lower aspect ratio, worse solubility, and better stability. The strongest methanol···IVA interactions due to the presence of a carboxyl group can accelerate the formation of the emulsion, resulting in the fastest crystallizing rate. The antisolvent screening and the discovery about relative mechanisms will provide a theoretical guide for the production of high-quality sucralose.

10.
Mater Horiz ; 10(7): 2535-2541, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37070656

ABSTRACT

The use of crystalline metal-organic complexes with definite structures as multilevel memories can enable explicit structure-property correlations, which is significant for designing the next generation of memories. Here, four Zn-polysulfide complexes with different degrees of conjugation have been fabricated as memory devices. ZnS6(L)2-based memories (L = pyridine and 3-methylpyridine) can exhibit only bipolar binary memory performances, but ZnS6(L)-based memories (L = 2,2'-bipyridine and 1,10-phenanthroline) illustrate non-volatile ternary memory performances with high ON2/ON1/OFF ratios (104.22/102.27/1 and 104.85/102.58/1) and ternary yields (74% and 78%). Their ON1 states stem from the packing adjustments of organic ligands upon the injection of carriers, and the ON2 states are a result of the ring-to-chain relaxation of S62- anions. The lower conjugated degrees in ZnS6(L)2 result in less compact packing; consequently, the adjacent S62- rings are too long to trigger the S62- relaxation. The deep structure-property correlation in this work provides a new strategy for implementing multilevel memory by triggering polysulfide relaxation based on the conjugated degree regulation of organic ligands.

11.
Sci Total Environ ; 830: 154649, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35307422

ABSTRACT

Walnut oil production waste (WOPW) is a by-product of walnut oil processing. The organic waste is rich in holocellulose and lignin, showing good potential to be converted by thermal process to valuable products. Superheated steam (SHS) torrefaction is a recently proposed thermal process enabling fast and unformal biomass heating, resulting in high-quality solid products as direct fuel. The potential of SHS to torrefy lipids and proteins (being rich in WOPW) is attractive for broader application of SHS torrefaction to upgrade more biomass wastes. SHS torrefaction was studied in this work to upgrade WOPW for solid products with different reaction temperatures (200, 250, 300 °C) and residence times (20, 40, 60 min). The lowest weight yield was 43.64 wt% under the severest treatment of 300 °C and 60 min, accompanied with the highest energy enhancement of 1.34 (reaching HHV of 27.03 MJ/kg). Response surface method is employed to reveal the effects of temperature and residence time. Residence time of 40 min under 300 °C was supposed to be an ideal condition to upgrade WOPW with HHV of 26.68 MJ/kg and in the range of coal from Van Krevelen diagram. Combustion indices (e.g., fuel ratio, combustion index, and volatile ignitability) indicated that the aforementioned torrefied WOPW had favourable properties as co-firing material. On the other hand, combustion behaviours analysis demonstrated that SHS torrefied WOPW could perform well as direct fuel. Aqueous effluent was also condensed and analyzed, where products from lipids and proteins were massively presented, giving an insight into the decomposition of those two constitutes undergoing SHS torrefaction.


Subject(s)
Juglans , Steam , Biomass , Lipids , Temperature
12.
Front Bioeng Biotechnol ; 10: 1050808, 2022.
Article in English | MEDLINE | ID: mdl-36338116

ABSTRACT

D-Allose is a potential alternative to sucrose in the food industries and a useful additive for the healthcare products in the future. At present, the methods for large-scale production of D-allose are still under investigation, most of which are based on in vitro enzyme-catalyzed Izumoring epimerization. In contrast, fermentative synthesis of D-allose has never been reported, probably due to the absence of available natural microorganisms. In this work, we co-expressed D-galactose: H+ symporter (GalP), D-glucose isomerase (DGI), D-allulose 3-epimerase (DAE), and ribose-5-phosphate isomerase (RPI) in Escherichia coli, thereby constructing an in vivo Izumoring pathway for yielding D-allose from D-glucose. The carbon fluxes and carbon catabolite repression (CCR) were rationally regulated by knockout of FruA, PtsG, Glk, Mak, PfkA, and PfkB involved in the pathways capable of phosphorylating D-fructose, D-glucose, and fructose-6-phosphate. Moreover, the native D-allose transporter was damaged by inactivation of AlsB, thus driving the reversible Izumoring reactions towards the target product. Fermentation was performed in the M9 medium supplemented with glycerol as a carbon source and D-glucose as a substrate. The results show that the engineered E. coli cell factory was able to produce approximately 127.35 mg/L of D-allose after 84 h. Our achievements in the fermentative production of D-allose in this work may further promote the green manufacturing of rare sugars.

13.
Front Bioeng Biotechnol ; 10: 947469, 2022.
Article in English | MEDLINE | ID: mdl-35814008

ABSTRACT

D-Allulose is an ultra-low calorie sweetener with broad market prospects. As an alternative to Izumoring, phosphorylation-dephosphorylation is a promising method for D-allulose synthesis due to its high conversion of substrate, which has been preliminarily attempted in enzymatic systems. However, in vitro phosphorylation-dephosphorylation requires polyphosphate as a phosphate donor and cannot completely deplete the substrate, which may limit its application in industry. Here, we designed and constructed a metabolic pathway in Escherichia coli for producing D-allulose from D-fructose via in vivo phosphorylation-dephosphorylation. PtsG-F and Mak were used to replace the fructose phosphotransferase systems (PTS) for uptake and phosphorylation of D-fructose to fructose-6-phosphate, which was then converted to D-allulose by AlsE and A6PP. The D-allulose titer reached 0.35 g/L and the yield was 0.16 g/g. Further block of the carbon flux into the Embden-Meyerhof-Parnas (EMP) pathway and introduction of an ATP regeneration system obviously improved fermentation performance, increasing the titer and yield of D-allulose to 1.23 g/L and 0.68 g/g, respectively. The E. coli cell factory cultured in M9 medium with glycerol as a carbon source achieved a D-allulose titer of ≈1.59 g/L and a yield of ≈0.72 g/g on D-fructose.

14.
J Agric Food Chem ; 70(44): 14255-14263, 2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36286250

ABSTRACT

d-Allulose is a rare hexose with great application potential, owing to its moderate sweetness, low energy, and unique physiological functions. The current strategies for d-allulose production, whether industrialized or under development, utilize six-carbon sugars such as d-glucose or d-fructose as a substrate and are usually based on the principle of reversible Izumoring epimerization. In this work, we designed a novel route that coupled the pathways of methanol reduction, pentose phosphate (PP), ribulose monophosphate (RuMP), and allulose monophosphate (AuMP) for Escherichia coli to irreversibly synthesize d-allulose from d-xylose and methanol. After improving the expression of AlsE by SUMO fusion and regulating the carbon fluxes by knockout of FrmRAB, RpiA, PfkA, and PfkB, the titer of d-allulose in fed-batch fermentation reached ≈70.7 mM, with a yield of ≈0.471 mM/mM on d-xylose or ≈0.512 mM/mM on methanol.


Subject(s)
Escherichia coli , Xylose , Xylose/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Methanol/metabolism , Carbon/metabolism , Fructose/metabolism , Carbon Cycle
15.
J Agric Food Chem ; 69(45): 13578-13585, 2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34736320

ABSTRACT

d-Allulose is considered an ideal alternative to sucrose and has shown tremendous application potential in many fields. Recently, most efforts on production of d-allulose have focused on in vitro enzyme-catalyzed epimerization of cheap hexoses. Here, we proposed an approach to efficiently produce d-allulose through fermentation using metabolically engineered Escherichia coli JM109 (DE3), in which a SecY (ΔP) channel and a d-allulose 3-epimerase (DPEase) were co-expressed, ensuring that d-fructose could be transported in its nonphosphorylated form and then converted into d-allulose by cells. Further deletion of fruA, manXYZ, mak, galE, and fruK and the use of Ni2+ in a medium limited the carbon flux flowing into the byproduct-generating pathways and the Embden-Meyerhof-Parnas (EMP) pathway, achieving a ≈ 0.95 g/g yield of d-allulose on d-fructose using E. coli (DPEase, SecY [ΔP], ΔFruA, ΔManXYZ, ΔMak, ΔGalE, ΔFruK) and 8 µM Ni2+. In fed-batch fermentation, the titer of d-allulose reached ≈23.3 g/L.


Subject(s)
Escherichia coli , Fructose , Escherichia coli/genetics , Fermentation , Racemases and Epimerases
16.
Dalton Trans ; (25): 4888-95, 2009 Jul 07.
Article in English | MEDLINE | ID: mdl-19662280

ABSTRACT

Under the direction of large conjugated organic cationic SDAs (structure-directing agents), three silver(I) iodides, (ipq)4(Ag2I6 x 2I2) (1), {[pql][Ag2I3]}n (2), [(npql)2(Ag4I6)]n (3) (ipq+ = N-(isopentyl)-quinolinium, pql+ = N-propyl-quinolinium, npql+ = N-(n-pentyl)-quinolinium) have been synthesized. 1 presents a zero-dimensional structure constituting of ipq+ cations, [Ag2I6]4- anions and molecular iodine. But 2 and 3 consist of one-dimensional coordination polymers that could be described as edge-sharing AgI4 tetrahedra. Electrostatic interactions between organic counter cations and inorganic moieties are present and contribute to the crystal packing. The structural differences between 1, 2 and 3 illustrate the influences of substituents of SDAs on the linkage modes of AgI4 tetrahedra. DFT calculations were carried out to reveal their electronic structures.

SELECTION OF CITATIONS
SEARCH DETAIL