Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 218
Filter
Add more filters

Publication year range
2.
Cell ; 152(3): 467-78, 2013 Jan 31.
Article in English | MEDLINE | ID: mdl-23374343

ABSTRACT

RIG-I is a critical RNA virus sensor that serves to initiate antiviral innate immunity. However, posttranslational regulation of RIG-I signaling remains to be fully understood. We report here that RNA viruses, but not DNA viruses or bacteria, specifically upregulate lectin family member Siglecg expression in macrophages by RIG-I- or NF-κB-dependent mechanisms. Siglec-G-induced recruitment of SHP2 and the E3 ubiquitin ligase c-Cbl to RIG-I leads to RIG-I degradation via K48-linked ubiquitination at Lys813 by c-Cbl. By increasing type I interferon production, targeted inactivation of Siglecg protects mice against lethal RNA virus infection. Taken together, our data reveal a negative feedback loop of RIG-I signaling and identify a Siglec-G-mediated immune evasion pathway exploited by RNA viruses with implication in antiviral applications. These findings also provide insights into the functions and crosstalk of Siglec-G, a known adaptive response regulator, in innate immunity.


Subject(s)
DEAD-box RNA Helicases/metabolism , Gram-Negative Bacterial Infections/immunology , Immunity, Innate , Lectins/metabolism , RNA Virus Infections/immunology , Receptors, Antigen, B-Cell/metabolism , Animals , DEAD Box Protein 58 , DEAD-box RNA Helicases/chemistry , Dendritic Cells/immunology , Gram-Negative Bacteria/metabolism , Interferon Regulatory Factor-3/metabolism , Lectins/genetics , Lysine/metabolism , Macrophages/immunology , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Proto-Oncogene Proteins c-cbl/metabolism , RNA Viruses/metabolism , Receptors, Antigen, B-Cell/genetics , Sialic Acid Binding Immunoglobulin-like Lectins , Ubiquitination
3.
Blood ; 143(1): 21-31, 2024 01 04.
Article in English | MEDLINE | ID: mdl-37647633

ABSTRACT

ABSTRACT: Patients who undergo human leukocyte antigen-matched unrelated donor (MUD) allogeneic hematopoietic stem cell transplantation (HSCT) with myeloablative conditioning for hematologic malignancies often develop acute graft-versus-host disease (GVHD) despite standard calcineurin inhibitor-based prophylaxis in combination with methotrexate. This trial evaluated a novel human CD24 fusion protein (CD24Fc/MK-7110) that selectively targets and mitigates inflammation due to damage-associated molecular patterns underlying acute GVHD while preserving protective immunity after myeloablative conditioning. This phase 2a, multicenter study evaluated the pharmacokinetics, safety, and efficacy of CD24Fc in combination with tacrolimus and methotrexate in preventing acute GVHD in adults undergoing MUD HSCT for hematologic malignancies. A double-blind, placebo-controlled, dose-escalation phase to identify a recommended dose was followed by an open-label expansion phase with matched controls to further evaluate the efficacy and safety of CD24Fc in preventing acute GVHD. A multidose regimen of CD24Fc produced sustained drug exposure with similar safety outcomes when compared with single-dose regimens. Grade 3 to 4 acute GVHD-free survival at day 180 was 96.2% (95% confidence interval [CI], 75.7-99.4) in the CD24Fc expansion cohort (CD24Fc multidose), compared with 73.6% (95% CI, 63.2-81.4) in matched controls (hazard ratio, 0.1 [95% CI, 0.0-0.6]; log-rank test, P = .03). No participants in the CD24Fc escalation or expansion phases experienced dose-limiting toxicities (DLTs). The multidose regimen of CD24Fc was well tolerated with no DLTs and was associated with high rates of severe acute GVHD-free survival after myeloablative MUD HSCT. This trial was registered at ClinicalTrials.gov as #NCT02663622.


Subject(s)
Graft vs Host Disease , Hematologic Neoplasms , Hematopoietic Stem Cell Transplantation , Adult , Humans , Methotrexate/therapeutic use , Hematopoietic Stem Cell Transplantation/adverse effects , Transplantation, Homologous , Neoplasm Recurrence, Local/drug therapy , Graft vs Host Disease/etiology , Graft vs Host Disease/prevention & control , Transplantation Conditioning/adverse effects
4.
Immunity ; 44(6): 1284-98, 2016 06 21.
Article in English | MEDLINE | ID: mdl-27332731

ABSTRACT

T helper 17 (Th17) cells are key players in autoimmune diseases. However, the roles of non-coding RNAs in Th17 cell development and function are largely unknown. We found that deletion of the endoribonuclease-encoding Dicer1 specifically in Th17 cells protected mice from experimental autoimmune encephalomyelitis. We found that the Dicer1-regulated microRNA (miR)-183-96-182 cluster (miR-183C) was highly expressed in Th17 cells and was induced by cytokine IL-6-STAT3 signaling. miR-183C expression enhanced pathogenic cytokine production from Th17 cells during their development and promoted autoimmunity. Mechanistically, miR-183C in Th17 cells directly repressed expression of the transcription factor Foxo1. Foxo1 negatively regulated the pathogenicity of Th17 cells in part by inhibiting expression of cytokine receptor IL-1R1. These findings indicate that the miR-183C drives Th17 pathogenicity in autoimmune diseases via inhibition of Foxo1 and present promising therapeutic targets.


Subject(s)
DEAD-box RNA Helicases/metabolism , Encephalomyelitis, Autoimmune, Experimental/immunology , Forkhead Box Protein O1/metabolism , MicroRNAs/genetics , Multiple Sclerosis/immunology , Ribonuclease III/metabolism , Th17 Cells/physiology , Animals , Cells, Cultured , DEAD-box RNA Helicases/genetics , Forkhead Box Protein O1/genetics , Humans , Interleukin-6/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Interleukin-1 Type I/metabolism , Ribonuclease III/genetics , STAT3 Transcription Factor/metabolism
5.
Small ; 20(3): e2305567, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37702141

ABSTRACT

Mesoporous silica nanoparticles (MSNs) have been widely praised as nanoadjuvants in vaccine/tumor immunotherapy thanks to their excellent biocompatibility, easy-to-modify surface, adjustable particle size, and remarkable immuno-enhancing activity. However, the application of MSNs is still greatly limited by some severe challenges including the unclear and complicated relationships of structure and immune effect. Herein, three commonly used MSNs with different skeletons including MSN with tetrasulfide bonds (TMSN), MSN containing ethoxy framework (EMSN), and pure -Si-O-Si- framework of MSN (MSN) are comprehensively compared to study the impact of chemical construction on immune effect. The results fully demonstrate that the three MSNs have great promise in improving cellular immunity for tumor immunotherapy. Moreover, the TMSN performs better than the other two MSNs in antigen loading, cellular uptake, reactive oxygen species (ROS) generation, lymph node targeting, immune activation, and therapeutic efficiency. The findings provide a new paradigm for revealing the structure-function relationship of mesoporous silica nanoadjuvants, paving the way for their future clinical application.


Subject(s)
Nanoparticles , Neoplasms , Nitriles , Humans , Porosity , Silicon Dioxide/chemistry , Immunotherapy , Nanoparticles/chemistry , Neoplasms/therapy , Skeleton
6.
Phys Rev Lett ; 132(20): 203602, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38829095

ABSTRACT

Fock states with a well-defined number of photons in an oscillator have shown a wide range of applications in quantum information science. Nonetheless, their usefulness has been marred by single and multiphoton losses due to unavoidable environment-induced dissipation. Though several dissipation engineering methods have been developed to counteract the leading single-photon-loss error, averting multiple-photon losses remains elusive. Here, we experimentally demonstrate a dissipation engineering method that autonomously stabilizes multiphoton Fock states against losses of multiple photons using a cascaded selective photon-addition operation in a superconducting quantum circuit. Through measuring the photon-number populations and Wigner tomography of the oscillator states, we observe a prolonged preservation of nonclassical Wigner negativities for the stabilized Fock states |N⟩ with N=1, 2, 3 for a duration of about 10 ms. Furthermore, the dissipation engineering method demonstrated here also facilitates the implementation of a nonunitary operation for resetting a binomially encoded logical qubit. These results highlight potential applications in error-correctable quantum information processing against multiple-photon-loss errors.

7.
Immunity ; 42(4): 613-26, 2015 Apr 21.
Article in English | MEDLINE | ID: mdl-25862091

ABSTRACT

Epigenetic regulation of lineage-specific genes is important for the differentiation and function of T cells. Ten-eleven translocation (Tet) proteins catalyze 5-methylcytosine (5 mC) conversion to 5-hydroxymethylcytosine (5 hmC) to mediate DNA demethylation. However, the roles of Tet proteins in the immune response are unknown. Here, we characterized the genome-wide distribution of 5 hmC in CD4(+) T cells and found that 5 hmC marks putative regulatory elements in signature genes associated with effector cell differentiation. Moreover, Tet2 protein was recruited to 5 hmC-containing regions, dependent on lineage-specific transcription factors. Deletion of Tet2 in T cells decreased their cytokine expression, associated with reduced p300 recruitment. In vivo, Tet2 plays a critical role in the control of cytokine gene expression in autoimmune disease. Collectively, our findings suggest that Tet2 promotes DNA demethylation and activation of cytokine gene expression in T cells.


Subject(s)
Cytokines/biosynthesis , DNA-Binding Proteins/immunology , Epigenesis, Genetic/immunology , Proto-Oncogene Proteins/immunology , Th1 Cells/immunology , Th17 Cells/immunology , 5-Methylcytosine/analogs & derivatives , Animals , Cell Differentiation , Cytokines/immunology , Cytosine/analogs & derivatives , Cytosine/immunology , Cytosine/metabolism , DNA/immunology , DNA/metabolism , DNA Methylation , DNA-Binding Proteins/genetics , Dioxygenases , E1A-Associated p300 Protein/genetics , E1A-Associated p300 Protein/immunology , Gene Expression Regulation , Genome , Humans , Mice , Mice, Transgenic , Proto-Oncogene Proteins/genetics , STAT4 Transcription Factor/genetics , STAT4 Transcription Factor/immunology , T-Box Domain Proteins/genetics , T-Box Domain Proteins/immunology , Th1 Cells/cytology , Th1 Cells/enzymology , Th17 Cells/cytology , Th17 Cells/enzymology
8.
Curr Osteoporos Rep ; 22(3): 353-365, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38652430

ABSTRACT

PURPOSE OF REVIEW: This review aims to provide a theoretical basis and insights for quercetin's clinical application in the prevention and treatment of osteoporosis (OP), analyzing its roles in bone formation promotion, bone resorption inhibition, anti-inflammation, antioxidant effects, and potential mechanisms. RECENT FINDINGS: OP, a prevalent bone disorder, is marked by reduced bone mineral density and impaired bone architecture, elevating the risk of fractures in patients. The primary approach to OP management is pharmacotherapy, with quercetin, a phytochemical compound, emerging as a focus of recent interest. This natural flavonoid exerts regulatory effects on bone marrow mesenchymal stem cells, osteoblasts, and osteoclasts and promotes bone health and metabolic equilibrium via anti-inflammatory and antioxidative pathways. Although quercetin has demonstrated significant potential in regulating bone metabolism, there is a need for further high-quality clinical studies focused on medicinal quercetin.


Subject(s)
Antioxidants , Osteoporosis , Quercetin , Quercetin/therapeutic use , Quercetin/pharmacology , Humans , Osteoporosis/drug therapy , Antioxidants/therapeutic use , Antioxidants/pharmacology , Osteoclasts/drug effects , Osteogenesis/drug effects , Bone Density/drug effects , Anti-Inflammatory Agents/therapeutic use , Bone Resorption/drug therapy , Osteoblasts/drug effects , Mesenchymal Stem Cells , Bone Density Conservation Agents/therapeutic use , Bone Density Conservation Agents/pharmacology
9.
Nano Lett ; 23(21): 10034-10043, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37903236

ABSTRACT

Metabolic reprogramming, as one of the characteristics of cancer, is associated with tumorigenesis, growth, or migration, and the modulation of metabolic pathways has emerged as a novel approach for cancer therapy. However, the conventional metabolism-mediated apoptosis process in tumor cells exhibits limited immunogenicity and inadequate activation of antitumor immunity. Herein, phospholipid-coated sodium citrate nanoparticles (PSCT NPs) are successfully prepared, which dissolve in tumor cells and then release significant amounts of citrate ions and Na+ ions. Massive quantities of ions lead to increased intracellular osmotic pressure, which activates the caspase-1/gasdermin D (GSDMD) mediated pyroptosis pathway. Simultaneously, citrate induces activation of the caspase-8/gasdermin C (GSDMC) pathway. The combined action of these two pathways synergistically causes intense pyroptosis, exhibiting remarkable antitumor immune responses and tumor growth inhibition. This discovery provides new insight into the potential of nanomaterials in modulating metabolism and altering cell death patterns to enhance antitumor immunotherapy.


Subject(s)
Nanoparticles , Neoplasms , Humans , Pyroptosis , Sodium Citrate , Gasdermins , Intracellular Signaling Peptides and Proteins , Neoplasms/drug therapy , Immunotherapy , Nanoparticles/therapeutic use , Ions , Biomarkers, Tumor , Pore Forming Cytotoxic Proteins
10.
Angew Chem Int Ed Engl ; 63(9): e202317218, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38212251

ABSTRACT

With the rapid development of external minimally invasive or noninvasive therapeutic modalities, ultrasound-based sonodynamic therapy (SDT) is a new alternative for treating deep tumors. However, inadequate sonosensitizer efficiency and poor biosecurity limit clinical applications. In this study, we prepared an oxygen-vacancy-engineered W18 O49-x nanobrush with a band gap of 2.79 eV for highly efficient SDT using a simple solvothermal method. The suitable band structures of the W18 O49-x nanobrush endows it with the potential to simultaneously produce singlet oxygen (1 O2 ), superoxide anions (⋅O2 - ), and hydroxyl radicals (⋅OH) under ultrasound irradiation. Additionally, abundant oxygen vacancies that serve as further charge traps that inhibit electron-hole recombination are incidentally introduced through one-step thermal reduction. Collectively, the in vitro and in vivo results demonstrate that the oxygen-vacancy-engineered W18 O49-x nanobrush delivers highly efficient reactive oxygen species (ROS) for SDT in a very biosafe manner. Overall, this study provides a new avenue for discovering and designing inorganic nanosonosensitizers with enhanced therapeutic efficiencies for use in SDT.


Subject(s)
Neoplasms , Oxygen Isotopes , Ultrasonic Therapy , Humans , Ultrasonic Therapy/methods , Neoplasms/therapy , Reactive Oxygen Species , Oxygen , Superoxides , Cell Line, Tumor
11.
Small ; 19(29): e2300370, 2023 07.
Article in English | MEDLINE | ID: mdl-37029698

ABSTRACT

Ion-interference therapy (IIT) utilizes ions to disturb intracellular biological processes and has been received increasing attention in tumor treatments recently. However, the low therapeutic efficiency still hinders its further biological applications. Herein, via a simple and one-pot gas diffusion process, polyethylene glycol (PEG)-modified Mn2+ ions and usnic acid (UA)-incorporated CaCO3 nanomaterials (PEG CaMnUA) as Ca2+ /Mn2+ ions reservoirs are prepared for magnetic resonance imaging (MRI)-guided UA-elevated IIT. Among PEG CaMnUA, UA not only increases cytoplasmic Ca2+ ions to amplify Ca2+ overload caused by CaCO3 decomposition, but also enhances Mn2+ ions-participated Fenton-like biocatalysis by intracellular H2 O2 generation and glutathione consumption. Then increasing the intracellular oxidative stress and decreasing the triphosadenine supply induce apoptosis together, resulting in UA-boosted IIT. The simple and efficient design of the dual ions reservoirs will contribute to improve the antitumor activity of IIT and further development of calcium-based nanomaterials in the future.


Subject(s)
Nanoparticles , Neoplasms , Usnea , Biocatalysis , Cell Line, Tumor , Ions , Magnetic Resonance Imaging/methods , Polyethylene Glycols
12.
Brief Bioinform ; 22(3)2021 05 20.
Article in English | MEDLINE | ID: mdl-32823273

ABSTRACT

Based on clinical outcomes in colorectal cancer, high microsatellite instability (MSI-H) has recently been approved by the Food and Drug Administration (FDA) as a genetic test to select patients for immunotherapy targeting PD-1 and/or CTLA-4 without limitation to cancer type. However, it is unclear whether the MSI-H would broadly alter the tumor microenvironment to confer the therapeutic response of different cancer types to immunotherapy. To fill in this gap, we performed an in silico analysis of tumor immunity among different MSI statuses in five cancer types. We found that consistent with clinical responses to immunotherapy, MSI-H and non-MSI-H samples from colorectal cancer (COAD-READ) exhibited distinct infiltration levels and immune phenotypes. Surprisingly, the immunological difference between MSI-H and non-MSI-H samples was diminished in stomach adenocarcinoma and esophageal carcinoma (STAD-ESCA) and completely disappeared in uterine corpus endometrial carcinoma (UCEC). Regardless of cancer types, the abundance of tumor-infiltrating immune cells, rather than MSI status, strongly associated with the clinical outcome. Since preexisting antitumor immune response in the tumor (hot cancer) is accepted as a prerequisite to the therapeutic response to anti-PD-1/CTLA-4 immunotherapy, our data demonstrate that the impact of MSI varied on immune contexture will lead to the further evaluation of predictive immunotherapy responsiveness based on the universal biomarker of MSI status.


Subject(s)
Microsatellite Instability , Neoplasms/genetics , Neoplasms/immunology , Tumor Microenvironment , Biomarkers, Tumor/metabolism , Humans , Prognosis , Single-Cell Analysis/methods
13.
Inorg Chem ; 62(39): 15943-15951, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37721404

ABSTRACT

Until now, effective blue light-emitting materials are essentially needed for the creation of white light and precise color renderings in real-world applications, but the efficiency of blue light-emitting materials has lagged far behind. Here, we present a hydrothermal method to synthesize tin-based metal halide single crystals (RbCdCl3:Sn2+ and Rb3SnCl7). Two single crystal materials with different shapes and phases can simultaneously be synthesized in the same stoichiometric ratio. Rb3SnCl7 has a bulk shape, while RbCdCl3:Sn2+ has a needle shape. The deep blue emission (436 nm) of RbCdCl3:Sn2+ can be obtained under the optimal excitation wavelength irradiation. However, pure blue emission (460 nm) to white light can be obtained by changing the excitation wavelength in Rb3SnCl7. The refinement spectra of the electronic structures of RbCdCl3:Sn2+ and Rb3SnCl7 are investigated by density functional theory. It is concluded that the difference in the distribution of Cl energy states leads to the existence of Cl local defect states, which is the reason for the rich luminescence of the two single crystals. These findings provide a path for realizing single-phase broadband white-emitting materials.

14.
Mol Cell ; 57(4): 708-720, 2015 Feb 19.
Article in English | MEDLINE | ID: mdl-25639470

ABSTRACT

mTOR senses nutrient and energy status to regulate cell survival and metabolism in response to environmental changes. Surprisingly, targeted mutation of Tsc1, a negative regulator of mTORC1, caused a broad reduction in miRNAs due to Drosha degradation. Conversely, targeted mutation of Raptor, an essential component of mTORC1, increased miRNA biogenesis. mTOR activation increased expression of Mdm2, which is hereby identified as the necessary and sufficient ubiquitin E3 ligase for Drosha. Drosha was induced by nutrient and energy deprivation and conferred resistance to glucose deprivation. Using a high-throughput screen of a miRNA library, we identified four miRNAs that were necessary and sufficient to protect cells against glucose-deprivation-induced apoptosis. These miRNA was regulated by glucose through the mTORC1-MDM2-DROSHA axis. Taken together, our data reveal an mTOR-Mdm2-Drosha pathway in mammalian cells that broadly regulates miRNA biogenesis as a response to alteration in cellular environment.


Subject(s)
MicroRNAs/biosynthesis , Multiprotein Complexes/physiology , Proto-Oncogene Proteins c-mdm2/physiology , Ribonuclease III/physiology , TOR Serine-Threonine Kinases/physiology , Amino Acids/metabolism , Animals , Gene Expression Regulation , Glucose/metabolism , HeLa Cells , Humans , Mechanistic Target of Rapamycin Complex 1 , Mice, Inbred C57BL , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Proteolysis , Proto-Oncogene Proteins c-mdm2/genetics , Proto-Oncogene Proteins c-mdm2/metabolism , Ribonuclease III/genetics , Ribonuclease III/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Tumor Suppressor Protein p53/physiology , Ubiquitination
15.
Int J Mol Sci ; 24(6)2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36982574

ABSTRACT

Single-cell RNA sequencing (RNA-seq) has been demonstrated to be a proven method for quantifying gene-expression heterogeneity and providing insight into the transcriptome at the single-cell level. When combining multiple single-cell transcriptome datasets for analysis, it is common to first correct the batch effect. Most of the state-of-the-art processing methods are unsupervised, i.e., they do not utilize single-cell cluster labeling information, which could improve the performance of batch correction methods, especially in the case of multiple cell types. To better utilize known labels for complex dataset scenarios, we propose a novel deep learning model named IMAAE (i.e., integrating multiple single-cell datasets via an adversarial autoencoder) to correct the batch effects. After conducting experiments with various dataset scenarios, the results show that IMAAE outperforms existing methods for both qualitative measures and quantitative evaluation. In addition, IMAAE is able to retain both corrected dimension reduction data and corrected gene expression data. These features make it a potential new option for large-scale single-cell gene expression data analysis.


Subject(s)
Gene Expression Profiling , Single-Cell Analysis , Gene Expression Profiling/methods , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Cluster Analysis , Transcriptome
16.
Int J Mol Sci ; 24(2)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36674658

ABSTRACT

Recent years have seen tremendous success in the design of novel drug molecules through deep generative models. Nevertheless, existing methods only generate drug-like molecules, which require additional structural optimization to be developed into actual drugs. In this study, a deep learning method for generating target-specific ligands was proposed. This method is useful when the dataset for target-specific ligands is limited. Deep learning methods can extract and learn features (representations) in a data-driven way with little or no human participation. Generative pretraining (GPT) was used to extract the contextual features of the molecule. Three different protein-encoding methods were used to extract the physicochemical properties and amino acid information of the target protein. Protein-encoding and molecular sequence information are combined to guide molecule generation. Transfer learning was used to fine-tune the pretrained model to generate molecules with better binding ability to the target protein. The model was validated using three different targets. The docking results show that our model is capable of generating new molecules with higher docking scores for the target proteins.


Subject(s)
Drug Design , Proteins , Molecular Structure , Proteins/chemistry , Amino Acids , Ligands , Machine Learning
17.
Angew Chem Int Ed Engl ; 62(10): e202215307, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36629270

ABSTRACT

Although zeolitic imidazolate framework-8 (ZIF-8) has been applied in various tumor therapies, the intrinsic immunogenicity remains unclear. Here, we initiatively discover that ZIF-8 nanoparticles (NPs) can intrinsically induce pyroptosis by a caspase-1/gasdermin D (GSDMD)-dependent pathway. The pyroptotic cell death is accompanied by necrosis and immunogenic cell death (ICD) simultaneously for efficient in situ immunity initiation. Meanwhile, carbonyl cyanide m-chlorophenyl hydrazone (CCCP), a mitochondrial depolarizing agent, is successfully loaded into ZIF-8 NPs and found to further enhance the pyroptosis process. Collectively, the obtained Pluronic F127-modified CCCP-incorporated ZIF-8 NPs (F127 ZIF-8CCCP NPs) activate antitumor immunity and reprogram immunosuppressive tumor microenvironment (TME), realizing high-efficiency tumor growth inhibition. This work will facilitate biomedicine applications of ZIF-8 and provide good inspiration for pyroptosis-induced cancer therapy.


Subject(s)
Nanoparticles , Neoplasms , Zeolites , Pyroptosis , Carbonyl Cyanide m-Chlorophenyl Hydrazone , Immunotherapy
18.
Angew Chem Int Ed Engl ; 62(40): e202307706, 2023 10 02.
Article in English | MEDLINE | ID: mdl-37587061

ABSTRACT

Although immunotherapy has a broad clinical application prospect, it is still hindered by low immune responses and immunosuppressive tumor microenvironment. Herein, a simple and drug-free inorganic nanomaterial, alkalescent sodium bicarbonate nanoparticles (NaHCO3 NPs), is prepared via a fast microemulsion method for amplified cancer immunotherapy. The obtained alkalescent NaHCO3 regulates lactic acid metabolism through acid-base neutralization so as to reverse the mildly acidic immunosuppressive tumor environment. Additionally, it can further release high amounts of Na+ ions inside tumor cells and induce a surge in intracellular osmolarity, and thus activate the pyroptosis pathway and immunogenic cell death (ICD), release damage-associated molecular patterns (DAMPs) and inflammatory factors, and improve immune responses. Collectively, NaHCO3 NPs observably inhibit primary/distal tumor growth and tumor metastasis through acid neutralization remitted immunosuppression and pyroptosis induced immune activation, showing an enhanced antitumor immunity efficiency. This work provides a new paradigm for lactic acid metabolism and pyroptosis mediated tumor treatment, which has a potential for application in clinical tumor immunotherapy.


Subject(s)
Nanoparticles , Neoplasms , Humans , Lactic Acid , Sodium Bicarbonate/therapeutic use , Pyroptosis , Immunotherapy , Immunosuppressive Agents , Tumor Microenvironment , Neoplasms/drug therapy , Cell Line, Tumor
19.
Small ; 18(34): e2202462, 2022 08.
Article in English | MEDLINE | ID: mdl-35896867

ABSTRACT

In spite of the widespread application of vaccine adjuvants in various preventive vaccines at present, the existing adjuvants are still hindered by weak cellular immunity responses in therapeutic cancer vaccines. Herein, a hollow silica nanoadjuvant containing aluminum hydroxide spikes on the surface (SiAl) is synthesized for the co-loading of chemotherapeutic drug doxorubicin (Dox) and tumor fragment (TF) as tumor antigens (SiAl@Dox@TF). The obtained nanovaccines show significantly elevated anti-tumor immunity responses thanks to silica and aluminum-based composite nanoadjuvant-mediated tumor antigen release and Dox-induced immunogenic cell death (ICD). In addition, the highest frequencies of dendritic cells (DCs), CD4+ T cells, CD8+ T cells, and memory T cells as well as the best mice breast cancer (4T1) tumor growth inhibitory are also observed in SiAl@Dox@TF group, indicating favorable potential of SiAl nanoadjuvants for further applications. This work is believed to provide inspiration for the design of new-style nanoadjuvants and adjuvant-based cancer vaccines.


Subject(s)
Cancer Vaccines , Adjuvants, Immunologic/pharmacology , Aluminum Hydroxide/metabolism , Animals , Antigens, Neoplasm , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Dendritic Cells/metabolism , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Immunogenic Cell Death , Immunotherapy , Mice , Silicon Dioxide
20.
Dig Dis Sci ; 67(8): 4112-4121, 2022 08.
Article in English | MEDLINE | ID: mdl-34727282

ABSTRACT

BACKGROUND: A prediction model for 30-day readmission in patients with acute pancreatitis (AP) was needed. AIMS: To develop a nomogram to predict 30-day readmission in patients with AP and validate the usefulness of serum indicators after discharge for the prediction of 30-day readmission. METHODS: This was a retrospective cohort study enrolling patients with the first attack of AP. Baseline characteristics, clinical profiles, and serum indicators after discharge were compared. Multivariate logistic regression analysis and a nomogram were employed to determine the independent risk factors for 30-day readmission. RESULTS: A total of 7.32% (121/1653) of the patients were readmitted within 30 days after discharge. Different etiologies (biliary pancreatitis (adjusted odds ratio (AdjOR), 9.63; 95% confidence interval (CI), 1.28-72.52; P = 0.028), other causes (AdjOR, 9.37; 95% CI, 1.15-76.12, P = 0.026), mixed causes (AdjOR, 10.76; 95% CI, 1.27-91.35; P = 0.03) compared with alcoholic pancreatitis)), infected pancreatitis necrosis (IPN) (AdjOR, 2.3; 95% CI, 1.2-4.42; P = 0.013), total bilirubin level ≥ 20.5 µmol/L (AdjOR, 2.42; 95% CI, 1.23-4.77; P = 0.01), glucose level ≥ 6.1 mmol/L (AdjOR, 1.93; 95% CI, 1.16-3.19; P = 0.011), and albumin level < 40 g/L (AdjOR, 4.25; 95% CI, 2.44-7.41; P < 0.001) were independently associated with 30-day readmission. A nomogram incorporating these factors demonstrated good discrimination, calibration, and clinical utility. Serum indicators after discharge added predictive value compared with clinical variables alone (AUC, 0.78 vs. 0.685; P = 0.0001). CONCLUSIONS: The nomogram combining etiology, IPN, and serum indicators after discharge has favorable predictive performance for 30-Day readmission. The close monitoring and reexamination of serum indicators are essential for AP patients at high risk.


Subject(s)
Pancreatitis , Patient Readmission , Acute Disease , Humans , Nomograms , Pancreatitis/complications , Retrospective Studies , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL