Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Opt Express ; 32(3): 3501-3511, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38297570

ABSTRACT

An amorphous germanium-tin (a-Ge0.83Sn0.17) waveguide bolometer featuring a one-dimension (1D) metasurface absorber is proposed for mid-infrared photodetection at room-temperature. The device is based on the germanium-on-silicon (GOS) photonic platform. The impacts of the 1D metasurface on the performances of the waveguide bolometer are investigated. The responsivity of the a-Ge0.83Sn0.17 waveguide bolometer could be significantly enhanced by the metasurface. A responsivity of around -3.17%/µW within the 4.1 ∼ 4.3 µm wavelength range is achieved. In addition, a 3-dB roll-off frequency higher than 10 kHz is obtained.

2.
Opt Express ; 32(10): 17525-17534, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38858934

ABSTRACT

The anisotropic optical properties of aluminum scandium nitride (Al1-xScxN) thin films for both ordinary and extraordinary light are investigated. A quantitative analysis of the band structures of the wurtzite Al1-xScxN is carried out. In addition, Al1-xScxN photonic waveguides and bends are fabricated on 8-inch Si substrates. With x = 0.087 and 0.181, the light propagation losses are 5.98 ± 0.11 dB/cm and 8.23 ± 0.39 dB/cm, and the 90° bending losses are 0.05 dB/turn and 0.08 dB/turn at 1550 nm wavelength, respectively.

3.
Opt Lett ; 49(11): 3162-3165, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824353

ABSTRACT

Lithium niobate (LN) photonics has gained significant interest for their distinct material properties. However, achieving monolithically integrated photodetectors on lithium niobate on an insulator (LNOI) platform for communication wavelengths remains a challenge due to the large bandgap and extremely low electrical conductivity of LN material. A two-dimensional (2D) material photodetector is an ideal solution for LNOI photonics with a strong light-matter interaction and simple integration technique. In this work, a van der Waals heterostructure photodiode composed of a p-type black phosphorus layer and an n-type MoS2 layer is successfully demonstrated for photodetection at communication wavelengths on a LNOI platform. The LNOI waveguide-integrated BP-MoS2 photodetector exhibits a dark current as low as 0.21 nA and an on/off ratio exceeding 200 under zero voltage bias with an incident power of 13.93 µW. A responsivity as high as 1.46 A/W is achieved at -1 V bias with a reasonable dark current around 2.33 µA. With the advantages of high responsivity, low dark current, and simple fabrication process, it is promising for the monolithically integrated photodetector application for LNOI photonic platforms at communication wavelengths.

4.
Appl Opt ; 63(6): 1522-1528, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38437364

ABSTRACT

A non-uniform distributed silicon optical phased array (OPA) is proposed and numerically demonstrated to realize high directionality and a wide range for beam steering. The OPA is composed of grating antennas with dual-layer corrugations along silicon strip waveguides, which can achieve a high directionality of 0.96 and a small divergence angle of 0.084°. To reduce the crosstalk between adjacent antennas and realize a wide steering range, the genetic algorithm is improved and utilized to arrange the locations of grating antennas. As a proof of concept, a 32-channel non-uniform distributed OPA is designed and thoroughly optimized. The simulation results successfully demonstrate a two-dimensional wide steering range of 70∘×18.7∘ with a side-mode suppression ratio (SMSR) over 10 dB.

5.
Appl Opt ; 63(12): 3242-3249, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38856473

ABSTRACT

Traditional long-wave infrared polarimetry usually relies on complex optical setups, making it challenging to meet the increasing demand for system miniaturization. To address this problem, we design an all-silicon broadband achromatic polarization-multiplexing metalens (BAPM) operating at the wavelength range of 9-12 µm. A machine-learning-based design method is developed to replace the tedious and computationally intensive simulation of a large number of meta-atoms. The results indicate that the coefficients of variation in focal length of the BAPM are 3.95% and 3.71%, and the average focusing efficiencies are 41.3% and 40.5% under broadband light incidence with x- and y-polarizations, respectively.

6.
Materials (Basel) ; 17(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38793343

ABSTRACT

Metasurface holograms, with the capability to manipulate spatial light amplitudes and phases, are considered next-generation solutions for holographic imaging. However, conventional fabrication approaches for meta-atoms are heavily dependent on electron-beam lithography (EBL), a technique known for its expensive and time-consuming nature. In this paper, a polarization-insensitive metasurface hologram is proposed using a cost-effective and rapid nanoimprinting method with titanium dioxide (TiO2) nanoparticle loaded polymer (NLP). Based on a simulation, it has been found that, despite a reduction in the aspect ratio of meta-atoms of nearly 20%, which is beneficial to silicon master etching, NLP filling, and the mold release processes, imaging efficiency can go up to 54% at wavelength of 532 nm. In addition, it demonstrates acceptable imaging quality at wavelengths of 473 and 671 nm. Moreover, the influence of fabrication errors and nanoimprinting material degradation in terms of residual layer thickness, meta-atom loss or fracture, thermal-induced dimensional variation, non-uniform distribution of TiO2 particles, etc., on the performance is investigated. The simulation results indicate that the proposed device exhibits a high tolerance to these defects, proving its applicability and robustness in practice.

SELECTION OF CITATIONS
SEARCH DETAIL