Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 292
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Am Chem Soc ; 146(4): 2339-2344, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38237055

ABSTRACT

Li-O2 batteries (LOBs) are considered as one of the most promising energy storage devices due to their ultrahigh theoretical energy density, yet they face the critical issues of sluggish cathode redox kinetics during the discharge and charge processes. Here we report a direct synthetic strategy to fabricate a single-atom alloy catalyst in which single-atom Pt is precisely dispersed in ultrathin Pd hexagonal nanoplates (Pt1Pd). The LOB with the Pt1Pd cathode demonstrates an ultralow overpotential of 0.69 V at 0.5 A g-1 and negligible activity loss over 600 h. Density functional theory calculations show that Pt1Pd can promote the activation of the O2/Li2O2 redox couple due to the electron localization caused by the single Pt atom, thereby lowering the energy barriers for the oxygen reduction and oxygen evolution reactions. Our strategy for designing single-atom alloy cathodic catalysts can address the sluggish oxygen redox kinetics in LOBs and other energy storage/conversion devices.

2.
Small ; 20(8): e2303473, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37840383

ABSTRACT

Hierarchical porous materials have attracted the attention of researchers due to their enormous specific surface area, maximized active site utilization efficiency, and unique structure and properties. In this context, metal-organic frameworks (MOFs) offer a unique mix of properties that make them particularly appealing as tunable porous substrates containing highly active sites. This review focuses on recent advances in the types and synthetic strategies of hierarchical porous MOFs and their derived materials. Furthermore, it highlights the relationship between the mass diffusion and transport of hierarchical porous structures and the pore size with examples and simulations, while identifying their potential and limitations. On this basis, how the synthesis conditions affect the structure and electrochemical properties of MOFs based hierarchical porous materials with different structures is discussed, highlighting the prospects and challenges for the synthetization, as well as further scientific research and practical applications. Finally, some insights into current research and future design ideas for advanced MOFs based hierarchical porous materials are presented.

3.
Mol Plant Microbe Interact ; 36(1): 47-58, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36282555

ABSTRACT

The pathogenic fungus Phomopsis longicolla causes numerous plant diseases, such as Phomopsis seed decay, pod and stem blight, and stem canker, which seriously affect the yield and quality of soybean production worldwide. Because of a lack of technology for efficient manipulation of genes for functional genomics, understanding of P. longicolla pathogenesis is limited. Here, we developed an efficient polyethylene glycol-mediated protoplast transformation system in P. longicolla that we used to characterize the functions of two genes involved in the cell wall integrity (CWI) pathway of the mitogen-activated protein kinase (MAPK) cascade, including PlMkk1, which encodes MAPK kinase, and its downstream gene PlSlt2, which encodes MAPK. Both gene knockout mutants ΔPlMkk1 and ΔPlSlt2 displayed a reduced growth rate, fragile aerial hyphae, abnormal polarized growth and pigmentation, defects in sporulation, inadequate CWI, enhanced sensitivity to abiotic stress agents, and significant deficiencies in virulence, although there were some differences in degree. The results suggest that PlMkk1 and PlSlt2 are crucial for a series of growth and development processes as well as pathogenicity. The developed transformation system will be a useful tool for additional gene function research and will aid in the elucidation of the pathogenic mechanisms of P. longicolla. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Ascomycota , Phomopsis , Ascomycota/genetics , Cell Wall/metabolism
4.
Mol Cancer ; 22(1): 174, 2023 10 26.
Article in English | MEDLINE | ID: mdl-37884951

ABSTRACT

BACKGROUND: Vascular invasion is a major route for intrahepatic and distant metastasis in hepatocellular carcinoma (HCC) and is a strong negative prognostic factor. Circular RNAs (circRNAs) play important roles in tumorigenesis and metastasis. However, the regulatory functions and underlying mechanisms of circRNAs in the development of vascular invasion in HCC are largely unknown. METHODS: High throughput sequencing was used to screen dysregulated circRNAs in portal vein tumor thrombosis (PVTT) tissues. The biological functions of candidate circRNAs in the migration, vascular invasion, and metastasis of HCC cells were examined in vitro and in vivo. To explore the underlying mechanisms, RNA sequencing, MS2-tagged RNA affinity purification, mass spectrometry, and RNA immunoprecipitation assays were performed. RESULTS: circRNA sequencing followed by quantitative real-time PCR (qRT-PCR) revealed that circRNA pleckstrin and Sect. 7 domain containing 3 (circPSD3) was significantly downregulated in PVTT tissues. Decreased circPSD3 expression in HCC tissues was associated with unfavourable characteristics and predicted poor prognosis in HCC. TAR DNA-binding protein 43 (TDP43) inhibited the biogenesis of circPSD3 by interacting with the downstream intron of pre-PSD3. circPSD3 inhibited the intrahepatic vascular invasion and metastasis of HCC cells in vitro and in vivo. Serpin family B member 2 (SERPINB2), an endogenous bona fide inhibitor of the urokinase-type plasminogen activator (uPA) system, is the downstream target of circPSD3. Mechanistically, circPSD3 interacts with histone deacetylase 1 (HDAC1) to sequester it in the cytoplasm, attenuating the inhibitory effect of HDAC1 on the transcription of SERPINB2. In vitro and in vivo studies demonstrated that circPSD3 is a promising inhibitor of the uPA system. CONCLUSIONS: circPSD3 is an essential regulator of vascular invasion and metastasis in HCC and may serve as a prognostic biomarker and therapeutic target.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , RNA, Circular/genetics , Urokinase-Type Plasminogen Activator/genetics , Urokinase-Type Plasminogen Activator/metabolism , RNA/genetics , Plasminogen Activator Inhibitor 2/genetics , Gene Expression Regulation, Neoplastic
5.
PLoS Pathog ; 17(1): e1009080, 2021 01.
Article in English | MEDLINE | ID: mdl-33411855

ABSTRACT

The fungal cell wall plays an essential role in maintaining cell morphology, transmitting external signals, controlling cell growth, and even virulence. Relaxation and irreversible stretching of the cell wall are the prerequisites of cell division and development, but they also inevitably cause cell wall stress. Both Mitotic Exit Network (MEN) and Cell Wall Integrity (CWI) are signaling pathways that govern cell division and cell stress response, respectively, how these pathways cross talk to govern and coordinate cellular growth, development, and pathogenicity remains not fully understood. We have identified MoSep1, MoDbf2, and MoMob1 as the conserved components of MEN from the rice blast fungus Magnaporthe oryzae. We have found that blocking cell division results in abnormal CWI signaling. In addition, we discovered that MoSep1 targets MoMkk1, a conserved key MAP kinase of the CWI pathway, through protein phosphorylation that promotes CWI signaling. Moreover, we provided evidence demonstrating that MoSep1-dependent MoMkk1 phosphorylation is essential for balancing cell division with CWI that maintains the dynamic stability required for virulence of the blast fungus.


Subject(s)
Cell Wall/physiology , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Magnaporthe/pathogenicity , Mitosis , Oryza/microbiology , Plant Diseases/microbiology , Cell Wall/microbiology , Fungal Proteins/genetics , Phosphorylation , Signal Transduction
6.
PLoS Pathog ; 17(10): e1010001, 2021 10.
Article in English | MEDLINE | ID: mdl-34648596

ABSTRACT

Sexual reproduction is an essential stage of the oomycete life cycle. However, the functions of critical regulators in this biological process remain unclear due to a lack of genome editing technologies and functional genomic studies in oomycetes. The notorious oomycete pathogen Pythium ultimum is responsible for a variety of diseases in a broad range of plant species. In this study, we revealed the mechanism through which PuM90, a stage-specific Puf family RNA-binding protein, regulates oospore formation in P. ultimum. We developed the first CRISPR/Cas9 system-mediated gene knockout and in situ complementation methods for Pythium. PuM90-knockout mutants were significantly defective in oospore formation, with empty oogonia or oospores larger in size with thinner oospore walls compared with the wild type. A tripartite recognition motif (TRM) in the Puf domain of PuM90 could specifically bind to a UGUACAUA motif in the mRNA 3' untranslated region (UTR) of PuFLP, which encodes a flavodoxin-like protein, and thereby repress PuFLP mRNA level to facilitate oospore formation. Phenotypes similar to PuM90-knockout mutants were observed with overexpression of PuFLP, mutation of key amino acids in the TRM of PuM90, or mutation of the 3'-UTR binding site in PuFLP. The results demonstrated that a specific interaction of the RNA-binding protein PuM90 with the 3'-UTR of PuFLP mRNA at the post-transcriptional regulation level is critical for the sexual reproduction of P. ultimum.


Subject(s)
Pythium/physiology , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , 3' Untranslated Regions , Plant Diseases/microbiology , Reproduction
7.
PLoS Pathog ; 17(6): e1009657, 2021 06.
Article in English | MEDLINE | ID: mdl-34133468

ABSTRACT

GTP-binding protein (G-protein) and regulator of G-protein signaling (RGS) mediated signal transduction are critical in the growth and virulence of the rice blast pathogen Magnaporthe oryzae. We have previously reported that there are eight RGS and RGS-like proteins named MoRgs1 to MoRgs8 playing distinct and shared regulatory functions in M. oryzae and that MoRgs1 has a more prominent role compared to others in the fungus. To further explore the unique regulatory mechanism of MoRgs1, we screened a M. oryzae cDNA library for genes encoding MoRgs1-interacting proteins and identified MoCkb2, one of the two regulatory subunits of the casein kinase (CK) 2 MoCk2. We found that MoCkb2 and the sole catalytic subunit MoCka1 are required for the phosphorylation of MoRgs1 at the plasma membrane (PM) and late endosome (LE). We further found that an endoplasmic reticulum (ER) membrane protein complex (EMC) subunit, MoEmc2, modulates the phosphorylation of MoRgs1 by MoCk2. Interestingly, this phosphorylation is also essential for the GTPase-activating protein (GAP) function of MoRgs1. The balance among MoRgs1, MoCk2, and MoEmc2 ensures normal operation of the G-protein MoMagA-cAMP signaling required for appressorium formation and pathogenicity of the fungus. This has been the first report that an EMC subunit is directly linked to G-protein signaling through modulation of an RGS-casein kinase interaction.


Subject(s)
Ascomycota/metabolism , Ascomycota/pathogenicity , Fungal Proteins/metabolism , Host-Parasite Interactions/physiology , Virulence/physiology , Casein Kinases/metabolism , Phosphorylation , Signal Transduction/physiology
8.
PLoS Pathog ; 17(11): e1010104, 2021 11.
Article in English | MEDLINE | ID: mdl-34843607

ABSTRACT

In plants, the apoplast is a critical battlefield for plant-microbe interactions. Plants secrete defense-related proteins into the apoplast to ward off the invasion of pathogens. How microbial pathogens overcome plant apoplastic immunity remains largely unknown. In this study, we reported that an atypical RxLR effector PsAvh181 secreted by Phytophthora sojae, inhibits the secretion of plant defense-related apoplastic proteins. PsAvh181 localizes to plant plasma membrane and essential for P. sojae infection. By co-immunoprecipitation assay followed by liquid chromatography-tandem mass spectrometry analyses, we identified the soybean GmSNAP-1 as a candidate host target of PsAvh181. GmSNAP-1 encodes a soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein, which associates with GmNSF of the SNARE complex functioning in vesicle trafficking. PsAvh181 binds to GmSNAP-1 in vivo and in vitro. PsAvh181 interferes with the interaction between GmSNAP-1 and GmNSF, and blocks the secretion of apoplastic defense-related proteins, such as pathogenesis-related protein PR-1 and apoplastic proteases. Taken together, these data show that an atypical P. sojae RxLR effector suppresses host apoplastic immunity by manipulating the host SNARE complex to interfere with host vesicle trafficking pathway.


Subject(s)
Glycine max/parasitology , Host-Pathogen Interactions , Phytophthora infestans/physiology , Plant Diseases/parasitology , Plant Proteins/metabolism , Virulence Factors/metabolism , Virulence , N-Ethylmaleimide-Sensitive Proteins/genetics , N-Ethylmaleimide-Sensitive Proteins/metabolism , Plant Diseases/immunology , Plant Proteins/genetics , Protein Interaction Domains and Motifs , SNARE Proteins/genetics , SNARE Proteins/metabolism , Glycine max/immunology , Glycine max/metabolism , Virulence Factors/genetics
9.
Liver Int ; 43(7): 1558-1576, 2023 07.
Article in English | MEDLINE | ID: mdl-37208938

ABSTRACT

BACKGROUND AND AIMS: Accumulating circular RNAs (circRNAs) play important roles in tissue repair and organ regeneration. However, the biological effects of circRNAs on liver regeneration remain largely unknown. This study aims to systematically elucidate the functions and mechanisms of circRNAs derived from lipopolysaccharide-responsive beige-like anchor protein (LRBA) in regulating liver regeneration. METHODS: CircRNAs derived from mouse LRBA gene were identified using CircBase. In vivo and in vitro experiments were conducted to confirm the effects of circLRBA on liver regeneration. RNA pull-down and RNA immunoprecipitation assays were used to investigate the underlying mechanisms. Clinical samples and cirrhotic mouse models were used to evaluate the clinical significance and transitional value of circLRBA. RESULTS: Eight circRNAs derived from LRBA were registered in CircBase. The circRNA mmu_circ_0018031 (circLRBA) was significantly upregulated in the liver tissues after 2/3 partial hepatectomy (PHx). Adeno-associated virus serotype 8 (AAV8)-mediated knockdown of circLRBA markedly inhibited mouse liver regeneration after 2/3 PHx. In vitro experiments confirmed that circLRBA exerted its growth-promoting function mainly through liver parenchymal cells. Mechanistically, circLRBA acted as a scaffold for the interaction between E3 ubiquitin-protein ligase ring finger protein 123 and p27, facilitating the ubiquitination degradation of p27. Clinically, circLRBA was lowly expressed in cirrhotic liver tissues and negatively correlated with perioperative levels of total bilirubin. Furthermore, overexpression of circLRBA enhanced cirrhotic mouse liver regeneration after 2/3 PHx. CONCLUSIONS: We conclude that circLRBA is a novel growth promoter in liver regeneration and a potential therapeutic target related to deficiency of cirrhotic liver regeneration.


Subject(s)
MicroRNAs , RNA, Circular , Animals , Mice , Liver Cirrhosis , Liver Regeneration , MicroRNAs/genetics , RNA/genetics , RNA, Circular/genetics , RNA, Circular/metabolism , Ubiquitination
10.
Environ Sci Technol ; 57(48): 20282-20291, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37966724

ABSTRACT

The atropisomeric enrichment of chiral polychlorinated biphenyls (PCBs) can trace the movement of PCBs through food webs, but it is a challenge to elucidate the prey uptake and stereoselective biotransformation of PCBs in different species. The present study investigated the concentrations and enantiomer fractions (EFs) of chiral PCBs in invertebrates, fishes, amphibians, and birds. Chiral PCB signature was estimated in total prey for different predators based on quantitative prey sources. The nonracemic PCBs in snakehead (Ophiocephalus argus) were mainly from prey. EFs of PCBs in amphibians and birds were mainly influenced by biotransformation, which showed enrichment of (+)-CBs 132 and 135/144 and different enantiomers of CBs 95 and 139/149. Biomagnification factors (BMFs) of chiral PCBs were higher than 1 for amphibians and passerine birds and lower than 1 for kingfisher (Alcedo atthis) and snakehead. BMFs were significantly correlated with EFs of chiral PCBs in predators and indicative of atropisomeric enrichment of PCBs across different species. Trophic magnification factors (TMFs) were higher in the riparian food web than in the aquatic food web because of the high metabolism capacity of chiral PCBs in aquatic predators. The results highlight the influences of species-specific prey sources and biotransformation on the trophic dynamics of chiral PCBs.


Subject(s)
Polychlorinated Biphenyls , Water Pollutants, Chemical , Animals , Polychlorinated Biphenyls/analysis , Polychlorinated Biphenyls/metabolism , Food Chain , Fishes/metabolism , Biotransformation
11.
Environ Sci Technol ; 57(43): 16585-16594, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37842981

ABSTRACT

A trophic position (TP) model (TPmix model) that simultaneously considered trophic discrimination factor and ßGlu/Phe variations was developed in this study and was first applied to investigate the trophic transfer of halogenated organic pollutants (HOPs) in wetland food webs. The TPmix model characterized the structure of the wetland food web more accurately and significantly improved the reliability of TMF compared to the TPbulk, TPAAs, and TPsimmr models, which were calculated based on the methods of stable nitrogen isotope analysis of bulk, traditional AAs-N-CSIA, and weighted ßGlu/Phe, respectively. Food source analysis revealed three interlocking food webs (kingfisher, crab, and frogs) in this wetland. The highest HOP biomagnification capacities (TMFmix) were found in the kingfisher food web (0.24-82.0), followed by the frog (0.08-34.0) and crab (0.56-11.7) food webs. The parabolic trends of TMFmix across combinations of log KOW in the frog food web were distinct from those of aquatic food webs (kingfisher and crab), which may be related to differences in food web composition and HOP bioaccumulation behaviors between aquatic and terrestrial organisms. This study provides a new tool to accurately study the trophic transfer of contaminants in wetlands and terrestrial food webs with diverse species and complex feeding relationships.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Animals , Food Chain , Nitrogen Isotopes/analysis , Nitrogen Isotopes/metabolism , Wetlands , Amino Acids/metabolism , Reproducibility of Results , Fishes/metabolism , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods
12.
Chem Soc Rev ; 51(23): 9620-9693, 2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36345857

ABSTRACT

Anion-exchange membrane (AEM) water electrolyzers (AEMWEs) and fuel cells (AEMFCs) are technologies that, respectively, achieve transformation and utilization of renewable resources in the form of green hydrogen (H2) energy. The significantly reduced cost of their key components (membranes, electrocatalysts, bipolar plates, etc.), quick reaction kinetics, and fewer corrosion problems endow AEM water electrolyzers and fuel cells with overwhelming superiority over their conventional counterparts (e.g., proton-exchange membrane water electrolyzer/fuel cells and alkaline water electrolyzer/fuel cells). Limitations in our fundamental understanding of AEM devices, however, specifically in key components, working management, and operation monitoring, restrict the improvement of cell performance, and they further impede the deployment of AEM water electrolyzers and fuel cells. Therefore, a panoramic view to outline the fundamentals, technological progress, and future perspectives on AEMWEs and AEMFCs is presented. The objective of this review is to (1) present a timely overview of the market development status of green hydrogen technology that is closely associated with AEMWEs (hydrogen production) and AEMFCs (hydrogen utilization); (2) provide an in-depth and comprehensive analysis of AEMWEs and AEMFCs from the viewpoint of all key components (e.g., membranes, ionomers, catalysts, gas diffusion layers, bipolar plates, and membrane electrode assembly (MEA)); (3) summarize the state-of-the-art technologies for working management of AEMWEs and AEMFCs, including electrolyte engineering (electrolyte selection and feeding), water management, gas and heat management, etc.; (4) outline the advances in monitoring the operations of AEMWEs and AEMFCs, which include microscopic and spectroscopic techniques and beyond; and (5) present key aspects that need to be further studied from the perspective of science and engineering to accelerate the deployment of AEMWEs and AEMFCs.

13.
J Integr Plant Biol ; 65(9): 2204-2217, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37171031

ABSTRACT

Plants can be infected by multiple pathogens concurrently in natural systems. However, pathogen-pathogen interactions have rarely been studied. In addition to the oomycete Phytophthora sojae, fungi such as Fusarium spp. also cause soybean root rot. In a 3-year field investigation, we discovered that P. sojae and Fusarium spp. frequently coexisted in diseased soybean roots. Out of 336 P. sojae-soybean-Fusarium combinations, more than 80% aggravated disease. Different Fusarium species all enhanced P. sojae infection when co-inoculated on soybean. Treatment with Fusarium secreted non-proteinaceous metabolites had an effect equal to the direct pathogen co-inoculation. By screening a Fusarium graminearum mutant library, we identified Fusarium promoting factor of Phytophthora sojae infection 1 (Fpp1), encoding a zinc alcohol dehydrogenase. Fpp1 is functionally conserved in Fusarium and contributes to metabolite-mediated infection promotion, in which vitamin B6 (VB6) produced by Fusarium is key. Transcriptional and functional analyses revealed that Fpp1 regulates two VB6 metabolism genes, and VB6 suppresses expression of soybean disease resistance-related genes. These results reveal that co-infection with Fusarium promotes loss of P. sojae resistance in soybean, information that will inform the sustainable use of disease-resistant crop varieties and provide new strategies to control soybean root rot.


Subject(s)
Fusarium , Phytophthora , Glycine max/metabolism , Vitamin B 6/metabolism , Phytophthora/physiology , Disease Resistance/genetics , Vitamins/metabolism , Plant Diseases/genetics , Plant Diseases/microbiology
14.
Environ Geochem Health ; 45(8): 6043-6052, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37222968

ABSTRACT

The levels and distributions of hexabromocyclododecane diastereoisomers (HBCDs) (including α, ß, and γ-HBCD) and tetrabromobisphenol A (TBBPA) were investigated in indoor dust from bedrooms and offices. HBCDs diastereoisomers were the most abundant compounds in the dust samples, and the concentrations of ∑HBCDs in the bedrooms and offices ranged from 10.6 to 290.1 ng/g and 17.6 to 1521.9 ng/g, respectively. The concentrations of target compounds in the offices were generally higher than those in the bedrooms, probably due to the presence of more electrical equipment in the offices. In this study, highest levels of target compounds were all found in the electronics. In the bedrooms, the highest mean level of ∑HBCDs was found in air conditioning filter dust (118.57 ng/g), while the personal computer table surface dust showed the peak mean concentrations of ∑HBCDs (290.74 ng/g) and TBBPA (539.69 ng/g) in the offices. Interestingly, a significantly positive correlation was observed between the concentrations of ∑HBCDs in windowsills and beddings dust in the bedrooms, suggesting beddings was one of the crucial sources of ∑HBCDs in the bedrooms. The high dust ingestion values of ∑HBCDs and TBBPA were 0.046 and 0.086 ng/kg bw/day for adults, while 0.811 and 0.04 ng/kg bw/day for toddlers, respectively. The high dermal exposure values of ∑HBCDs were 0.026 and 0.226 ng/kg bw/day for adults and toddlers, respectively. Except for dust ingestion, other human exposure pathways (such as the dermal contact with beddings and furniture) should be paid attention.


Subject(s)
Air Pollution, Indoor , Flame Retardants , Hydrocarbons, Brominated , Adult , Humans , Environmental Exposure/analysis , Dust , Air Pollution, Indoor/analysis , Hydrocarbons, Brominated/analysis , Flame Retardants/analysis
15.
Angew Chem Int Ed Engl ; 62(22): e202217449, 2023 May 22.
Article in English | MEDLINE | ID: mdl-36959732

ABSTRACT

Nickel-based catalysts have been regarded as one of the most promising electrocatalysts for urea oxidation reaction (UOR), however, their activity is largely limited by the inevitable self-oxidation reaction of Ni species (NSOR) during the UOR. Here, we proposed an interface chemistry modulation strategy to trigger the occurrence of UOR before the NSOR via constructing a 2D/2D heterostructure that consists of ultrathin NiO anchored Ru-Co dual-atom support (Ru-Co DAS/NiO). Operando spectroscopic characterizations confirm this unique triggering mechanism on the surface of Ru-Co DAS/NiO. Consequently, the fabricated catalyst exhibits outstanding UOR activity with a low potential of 1.288 V at 10 mA cm-2 and remarkable long-term durability for more than 330 h operation. DFT calculations and spectroscopic characterizations demonstrate that the favorable electronic structure induced by this unique heterointerface endows the catalyst energetically more favorable for the UOR than the NSOR.

16.
Angew Chem Int Ed Engl ; 62(50): e202315621, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37902435

ABSTRACT

Electrochemical CO2 reduction reaction (CO2 RR) over Cu catalysts exhibits enormous potential for efficiently converting CO2 to ethylene (C2 H4 ). However, achieving high C2 H4 selectivity remains a considerable challenge due to the propensity of Cu catalysts to undergo structural reconstruction during CO2 RR. Herein, we report an in situ molecule modification strategy that involves tannic acid (TA) molecules adaptive regulating the reconstruction of a Cu-based material to a pathway that facilitates CO2 reduction to C2 H4 products. An excellent Faraday efficiency (FE) of 63.6 % on C2 H4 with a current density of 497.2 mA cm-2 in flow cell was achieved, about 6.5 times higher than the pristine Cu catalyst which mainly produce CH4 . The in situ X-ray absorption spectroscopy and Raman studies reveal that the hydroxyl group in TA stabilizes Cuδ+ during the CO2 RR. Furthermore, theoretical calculations demonstrate that the Cuδ+ /Cu0 interfaces lower the activation energy barrier for *CO dimerization, and hydroxyl species stabilize the *COH intermediate via hydrogen bonding, thereby promoting C2 H4 production. Such molecule engineering modulated electronic structure provides a promising strategy to achieve highly selective CO2 reduction to value-added chemicals.

17.
Mol Plant Microbe Interact ; 35(4): 301-310, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35037783

ABSTRACT

Nucleosome-free open chromatin often harbors transcription factor (TF)-binding sites that are associated with active cis-regulatory elements. However, analysis of open chromatin regions has rarely been applied to oomycete or fungal plant pathogens. In this study, we performed the assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) to identify open chromatin and cis-regulatory elements in Phytophthora sojae at the mycelial stage. We identified 10,389 peaks representing nucleosome-free regions (NFRs). The peaks were enriched in gene-promoter regions and associated with 40% of P. sojae genes; transcription levels were higher for genes with multiple peaks than genes with a single peak and were higher for genes with a single peak than genes without peak. Chromatin accessibility was positively correlated with gene transcription level. Through motif discovery based on NFR peaks in core promoter regions, 25 candidate cis-regulatory motifs with evidence of TF-binding footprints were identified. These motifs exhibited various preferences for location in the promoter region and associations with the transcription level of their target genes, which included some putative pathogenicity-related genes. As the first study revealing the landscape of open chromatin and the correlation between chromatin accessibility and gene transcription level in oomycetes, the results provide a technical reference and data resources for future studies on the regulatory mechanisms of gene transcription.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Chromatin Immunoprecipitation Sequencing , Phytophthora , Chromatin/genetics , High-Throughput Nucleotide Sequencing/methods , Phytophthora/genetics , Transcription Factors/genetics
18.
J Am Chem Soc ; 144(42): 19619-19626, 2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36223550

ABSTRACT

Ruthenium-based materials are considered great promising candidates to replace Pt-based catalysts for hydrogen production in alkaline conditions. Herein, we adopt a facile method to rationally design a neoteric Schottky catalyst in which uniform ultrafine ruthenium nanoparticles featuring lattice compressive stress are supported on nitrogen-modified carbon nanosheets (Ru NPs/NC) for efficient hydrogen evolution reaction (HER). Lattice strain and Schottky junction dual regulation ensures that the Ru NPs/NC catalyst with an appropriate nitrogen content displays superb H2 evolution in alkaline media. Particularly, Ru NPs/NC-900 with 1.3% lattice compressive strain displays attractive activity and durability for the HER with a low overpotential of 19 mV at 10 mA cm-2 in 1.0 M KOH electrolyte. The in situ X-ray absorption fine structure measurements indicate that the low-valence Ru nanoparticle with shrinking Ru-Ru bond acts as catalytic active site during the HER process. Furthermore, multiple spectroscopy analysis and density functional theory calculations demonstrate that the lattice strain and Schottky junction dual regulation tunes the electron density and hydrogen adsorption of the active center, thus enhancing the HER activity. This strategy provides a novel concept for the design of advanced electrocatalysts for H2 production.

19.
J Am Chem Soc ; 144(41): 18995-19007, 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36214519

ABSTRACT

The development of rechargeable Na-S batteries is very promising, thanks to their considerably high energy density, abundance of elements, and low costs and yet faces the issues of sluggish redox kinetics of S species and the polysulfide shuttle effect as well as Na dendrite growth. Following the theory-guided prediction, the rare-earth metal yttrium (Y)-N4 unit has been screened as a favorable Janus site for the chemical affinity of polysulfides and their electrocatalytic conversion, as well as reversible uniform Na deposition. To this end, we adopt a metal-organic framework (MOF) to prepare a single-atom hybrid with Y single atoms being incorporated into the nitrogen-doped rhombododecahedron carbon host (Y SAs/NC), which features favorable Janus properties of sodiophilicity and sulfiphilicity and thus presents highly desired electrochemical performance when used as a host of the sodium anode and the sulfur cathode of a Na-S full cell. Impressively, the Na-S full cell is capable of delivering a high capacity of 822 mAh g-1 and shows superdurable cyclability (97.5% capacity retention over 1000 cycles at a high current density of 5 A g-1). The proof-of-concept three-dimensional (3D) printed batteries and the Na-S pouch cell validate the potential practical applications of such Na-S batteries, shedding light on the development of promising Na-S full cells for future application in energy storage or power batteries.

20.
PLoS Pathog ; 16(1): e1008138, 2020 01.
Article in English | MEDLINE | ID: mdl-31961913

ABSTRACT

Eukaryotic heterotrimeric guanine nucleotide-binding proteins consist of α, ß, and γ subunits, which act as molecular switches to regulate a number of fundamental cellular processes. In the oomycete pathogen Phytophthora sojae, the sole G protein α subunit (Gα; encoded by PsGPA1) has been found to be involved in zoospore mobility and virulence, but how it functions remains unclear. In this study, we show that the Gα subunit PsGPA1 directly interacts with PsYPK1, a serine/threonine protein kinase that consists of an N-terminal region with unknown function and a C-terminal region with a conserved catalytic kinase domain. We generated knockout and knockout-complemented strains of PsYPK1 and found that deletion of PsYPK1 resulted in a pronounced reduction in the production of sporangia and oospores, in mycelial growth on nutrient poor medium, and in virulence. PsYPK1 exhibits a cytoplasmic-nuclear localization pattern that is essential for sporangium formation and virulence of P. sojae. Interestingly, PsGPA1 overexpression was found to prevent nuclear localization of PsYPK1 by exclusively binding to the N-terminal region of PsYPK1, therefore accounting for its negative role in sporangium formation. Our data demonstrate that PsGPA1 negatively regulates sporangium formation by repressing the nuclear localization of its downstream kinase PsYPK1.


Subject(s)
GTP-Binding Protein alpha Subunits/metabolism , Phytophthora/enzymology , Protein Serine-Threonine Kinases/metabolism , Spores/growth & development , Cell Nucleus/genetics , Cell Nucleus/metabolism , GTP-Binding Protein alpha Subunits/chemistry , GTP-Binding Protein alpha Subunits/genetics , Phytophthora/genetics , Phytophthora/growth & development , Phytophthora/pathogenicity , Plant Diseases/parasitology , Protein Binding , Protein Domains , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/genetics , Protein Transport , Glycine max/parasitology , Spores/enzymology , Spores/genetics , Spores/metabolism , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL