Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Pharmacol Res ; : 107346, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39127263

ABSTRACT

Synovitis is characterized by a distinct metabolic profile featuring the accumulation of lactate, a byproduct of cellular metabolism within inflamed joints. This study reveals that the activation of the CD31 signal by lactate instigates a metabolic shift, specifically initiating endothelial cell autophagy. This adaptive process plays a pivotal role in fulfilling the augmented energy and biomolecule demands associated with the formation of new blood vessels in the synovium of Rheumatoid Arthritis (RA). Additionally, the amino acid substitutions in the CD31 cytoplasmic tail at the Y663F and Y686F sites of the immunoreceptor tyrosine-based inhibitory motifs (ITIM) in Crispr/Cas9 transgenic mice alleviate RA. Mechanistically, this results in the downregulation of glycolysis and autophagy pathways. These findings significantly advance our understanding of potential therapeutic strategies for modulating these processes in synovitis and, potentially, other autoimmune diseases.

2.
Foods ; 13(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38201176

ABSTRACT

The aim of this study was to investigate the impact of a pulsed electric field (PEF) on the structural and functional properties of quinoa protein isolate (QPI). The findings revealed a significant alteration in the secondary structure of QPI following PEF treatment, converting the random coil into the ß-sheet, resulting in an improvement in structure orderliness and an enhancement of thermal stability. The PEF treatment led to a reduction in particle size, induced structural unfolding, and increased the surface hydrophobicity, resulting in a statistically significant enhancement in the solubility, foaming, and emulsifying properties of QPI (p < 0.05). Specifically, PEF treatment at 7.5 kV/cm for 30 pulses was identified as the optimal condition for modifying QPI. This study provides a basis for the precision and range of application of pulsed electric field treatment and offers the possibility of improving the physical and chemical properties of quinoa protein.

3.
BMC Med Genomics ; 17(1): 172, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943134

ABSTRACT

Placental hypoxia is hazardous to maternal health as well as fetal growth and development. Preeclampsia and intrauterine growth restriction are common pregnancy problems, and one of the causes is placental hypoxia. Placental hypoxia is linked to a number of pregnancy illnessesv. To investigate their potential function in anoxic circumstances, we mimicked the anoxic environment of HTR-8/Svneo cells and performed lncRNA and circRNA studies on anoxic HTR-8/Svneo cells using high-throughput RNA sequencing. The miRNA target genes were predicted by integrating the aberrant expression of miRNAs in the placenta of preeclampsia and intrauterine growth restriction, and a ceRNA network map was developed to conduct a complete transcriptomic and bioinformatics investigation of circRNAs and lncRNAs. The signaling pathways in which the genes were primarily engaged were predicted using GO and KEGG analyses. To propose a novel explanation for trophoblastic organism failure caused by lncRNAs and circRNAs in an anoxic environment.


Subject(s)
Gene Regulatory Networks , RNA, Circular , RNA, Long Noncoding , Humans , RNA, Circular/genetics , RNA, Circular/metabolism , RNA, Long Noncoding/genetics , Cell Line , RNA-Seq , Cell Hypoxia/genetics , Pregnancy , MicroRNAs/genetics , MicroRNAs/metabolism , Female , Placenta/metabolism , Trophoblasts/metabolism , Trophoblasts/cytology , Computational Biology/methods , Gene Expression Profiling
4.
Sci Rep ; 14(1): 130, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38167649

ABSTRACT

Ovarian cancer (OVCA), a prevalent gynecological malignancy, ranks as the fourth most common cancer among women. Mitotic Arrest Deficient 2 Like 2 (MAD2L2), a chromatin-binding protein and a component of DNA polymerase ζ, has been previously identified as an inhibitor of tumor growth in colorectal cancer. However, the roles of MAD2L2 in OVCA, including its expression, impact, and prognostic significance, remain unclear. We employed bioinformatics tools, Cox Regression analysis, and in vitro cell experiments to investigate its biological functions. Our findings reveal that MAD2L2 typically undergoes genomic alterations, such as amplifications and deep deletions. Moreover, we observed an overexpression of MAD2L2 mRNA in OVCA patients, correlating with reduced survival rates, particularly in those with Grade IV tumors. Furthermore, analysis of mRNA biofunctions indicated that MAD2L2 is predominantly localized in the organellar ribosome, engaging mainly in NADH dehydrogenase activity. This was deduced from the results of gene ontology enrichment analysis, which also identified its role as a structural constituent in mitochondrial translation elongation. These findings were corroborated by KEGG pathway analysis, further revealing MAD2L2's involvement in tumor metabolism and the cell death process. Notably, MAD2L2 protein expression showed significant associations with various immune cells, including CD4+T cells, CD8+T cells, B cells, natural killer cells, and Myeloid dendritic cells. Additionally, elevated levels of MAD2L2 were found to enhance cell proliferation and migration in OVCA cells. The upregulation of MAD2L2 also appears to inhibit the ferroptosis process, coinciding with increased mTOR signaling activity in these cells. Our study identifies MAD2L2 as a novel regulator in ovarian tumor progression and offers new insights for treating OVCA.


Subject(s)
Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/pathology , Proteins , Neoplastic Processes , Cell Proliferation/genetics , RNA, Messenger/genetics , Cell Line, Tumor , Mad2 Proteins/genetics , Mad2 Proteins/metabolism
5.
Food Chem ; 440: 138314, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38160595

ABSTRACT

Emulsive liquid-liquid microextraction (ELLME), a simple, rapid, and environmentally friendly technique, was established to identify chiral prothioconazole and its chiral metabolite in water, juice, tea, and vinegar using ultra-high-performance liquid chromatography (UPLC). Environmentally friendly extractant was mixed with pure water to prepare a high-concentration emulsion, which was added to samples to complete the emulsification and extraction in 1 s. Afterward, an electrolyte solution was added to complete the demulsification without centrifugation. ELLME did not use dispersants compared to the familiar dispersive liquid-liquid microextraction (DLLME), thus reducing the use of toxic solvents and avoiding the effect of dispersants on the partition coefficient. The linear range was from 0.01 to 1 mg/L. The limit of detection was 0.003 mg/L. The extraction recoveries ranged from 82.4 % to 101.6 %, with relative standard deviations of 0.7-5.2 %. The ELLME method developed has the potential to serve as an alternative to DLLME.


Subject(s)
Liquid Phase Microextraction , Triazoles , Water Pollutants, Chemical , Chromatography, High Pressure Liquid/methods , Water/analysis , Acetic Acid/analysis , Liquid Phase Microextraction/methods , Emulsions/analysis , Solvents/chemistry , Tea , Water Pollutants, Chemical/analysis , Limit of Detection
6.
Exp Mol Med ; 56(4): 946-958, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38556546

ABSTRACT

Acute liver injury is the basis of the pathogenesis of diverse liver diseases. However, the mechanism underlying liver injury is complex and not completely understood. In our study, we revealed that CERK, which phosphorylates ceramide to produce ceramide-1-phosphate (C1P), was the sphingolipid pathway-related protein that had the most significantly upregulated expression during acute liver injury. A functional study confirmed that CERK and C1P attenuate hepatic injury both in vitro and in vivo through antioxidant effects. Mechanistic studies have shown that CERK and C1P positively regulate the protein expression of NRF2, which is a crucial protein that helps maintain redox homeostasis. Furthermore, our results indicated that C1P disrupted the interaction between NRF2 and KEAP1 by competitively binding to KEAP1, which allowed for the nuclear translocation of NRF2. In addition, pull-down assays and molecular docking analyses revealed that C1P binds to the DGR domain of KEAP1, which allows it to maintain its interaction with NRF2. Importantly, these findings were verified in human primary hepatocytes and a mouse model of hepatic ischemia‒reperfusion injury. Taken together, our findings demonstrated that CERK-mediated C1P metabolism attenuates acute liver injury via the binding of C1P to the DGR domain of KEAP1 and subsequently the release and nuclear translocation of NRF2, which activates the transcription of cytoprotective and antioxidant genes. Our study suggested that the upregulation of CERK and C1P expression may serve as a potential antioxidant strategy to alleviate acute liver injury.


Subject(s)
Kelch-Like ECH-Associated Protein 1 , NF-E2-Related Factor 2 , Phosphotransferases (Alcohol Group Acceptor) , Animals , Humans , Male , Mice , Ceramides/metabolism , Disease Models, Animal , Hepatocytes/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Molecular Docking Simulation , NF-E2-Related Factor 2/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Protein Binding
7.
Gastroenterol Res Pract ; 2024: 1458297, 2024.
Article in English | MEDLINE | ID: mdl-38774521

ABSTRACT

Background: Distal malignant biliary obstruction (DMBO) can result in obstructive jaundice. Endoscopic ultrasound- (EUS-) guided biliary drainage (EUS-BD) has been an alternative for DMBO after failed ERCP. Aim: To compare the efficacy and safety between antegrade and transluminal approaches in patients with unresectable DMBO when ERCP failed. Methods: Patients with DMBO leading to obstructive jaundice after failed ERCP were enrolled in this study. We retrospectively evaluated the safety and efficacy between EUS-guided transluminal stenting (TLS group) and antegrade stenting (AGS group). Results: 82 patients were enrolled, of which 45 patients were in TLS group and 37 in AGS group. There were no statistical differences in the malignancy type, baseline common bile duct diameter, total bilirubin level, reason for EUS-BD, and history of biliary drainage between TLS and AGS groups. The technical success rate was statistically higher in TLS group than in AGS group (97.8 vs. 81.1%, P = 0.031). There were no statistical differences in clinical success rate, procedure-related adverse events, stent migration rate, stent dysfunction rate, reintervention rate, and overall patient survival time between TLS and AGS groups. The median time to stent dysfunction or patient death in TLS and AGS groups was 53 and 81 days, respectively (P = 0.017). Conclusions: Although AGS had a lower technical success rate than TLS, it was superior to TLS in stent patency in patients with DMBO.

8.
Int J Biol Macromol ; 272(Pt 1): 132674, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38850815

ABSTRACT

This study aimed to develop novel nanoparticles that can serve as an excellent oil-in-water (O/W) Pickering stabilizer. The polysaccharide-protein complex nanoparticles (PPCNs-20 and PPCNs-40) were prepared at different ultrasonication amplitudes (20 % and 40 %, respectively) from the polysaccharide-protein complexes (PPCs) which were extracted from the residue of Clitocybe squamulose. Compared with PPCs and PPCNs-20, the PPCNs-40 exhibited dispersed blade and rod shape, smaller average size, and larger zeta potential, which indicated significant potential in O/W Pickering emulsion stabilizers. Subsequently, PPCNs-40 stabilized Pickering emulsions were characterized at different concentrations, pHs, and oil phase contents. The average size, micromorphology, rheological properties, and storage stability of the emulsions were improved as the concentration of PPCNs-40, the ratio of the soybean oil phase and pH value increased. Pickering emulsions showed the best stability when the concentration of PPCNs-40 was 3 wt%, and the soybean oil fraction was 30 % under both neutral and alkaline conditions. The emulsions demonstrated shear thinning and gelation behavior. These findings have implications for the use of eco-friendly nanoparticles as stabilizers for Pickering emulsions and provide strategies for increasing the added value of C. squamulosa.


Subject(s)
Emulsions , Nanoparticles , Polysaccharides , Water , Emulsions/chemistry , Nanoparticles/chemistry , Polysaccharides/chemistry , Water/chemistry , Rheology , Particle Size , Hydrogen-Ion Concentration , Oils/chemistry
9.
Front Pharmacol ; 15: 1424940, 2024.
Article in English | MEDLINE | ID: mdl-39040472

ABSTRACT

Background: Porcine bile powder (PBP) is a traditional Chinese medicine that has been used for centuries in various therapeutic applications. However, PBP has not previously undergone comprehensive component analysis and not been evaluated for safety through standard in vivo toxicological studies. Methods: In our study, we characterized the component of PBP by liquid chromatography-mass spectrometry. The acute and subchronic oral toxicity, genotoxicity, and teratogenicity studies of PBP were designed and conducted in Kunming mice and Sprague-Dawley (SD) rats. Results: The chemical analysis of PBP showed that the main components of PBP were bile acids (BAs), especially glycochenodeoxycholic acid. There were no signs of toxicity observed in the acute oral test and the subchronic test. In the genotoxicity tests, no positive results were observed in the bacterial reverse mutation test. Additionally, in the mammalian micronucleus test and mouse spermatocyte chromosomal aberration test, no abnormal chromosomes were observed. In the teratogenicity test, no abnormal fetal development was observed. Conclusion: Our findings demonstrate that PBP, composed mainly of BAs, is non-toxic and safe based on the conditions tested in this study.

10.
Cell Rep Med ; 5(5): 101543, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38697101

ABSTRACT

Cognitive impairment in the elderly is associated with alterations in bile acid (BA) metabolism. In this study, we observe elevated levels of serum conjugated primary bile acids (CPBAs) and ammonia in elderly individuals, mild cognitive impairment, Alzheimer's disease, and aging rodents, with a more pronounced change in females. These changes are correlated with increased expression of the ileal apical sodium-bile acid transporter (ASBT), hippocampal synapse loss, and elevated brain CPBA and ammonia levels in rodents. In vitro experiments confirm that a CPBA, taurocholic acid, and ammonia induced synaptic loss. Manipulating intestinal BA transport using ASBT activators or inhibitors demonstrates the impact on brain CPBA and ammonia levels as well as cognitive decline in rodents. Additionally, administration of an intestinal BA sequestrant, cholestyramine, alleviates cognitive impairment, normalizing CPBAs and ammonia in aging mice. These findings highlight the potential of targeting intestinal BA absorption as a therapeutic strategy for age-related cognitive impairment.


Subject(s)
Aging , Ammonia , Bile Acids and Salts , Cognitive Dysfunction , Intestinal Absorption , Animals , Bile Acids and Salts/metabolism , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/pathology , Intestinal Absorption/drug effects , Male , Female , Humans , Mice , Aging/metabolism , Ammonia/metabolism , Aged , Mice, Inbred C57BL , Cholestyramine Resin/pharmacology , Symporters/metabolism , Organic Anion Transporters, Sodium-Dependent/metabolism , Organic Anion Transporters, Sodium-Dependent/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Hippocampus/metabolism , Hippocampus/pathology , Rats , Aged, 80 and over
11.
Nat Commun ; 15(1): 3796, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714706

ABSTRACT

The metabolic implications in Alzheimer's disease (AD) remain poorly understood. Here, we conducted a metabolomics study on a moderately aging Chinese Han cohort (n = 1397; mean age 66 years). Conjugated bile acids, branch-chain amino acids (BCAAs), and glutamate-related features exhibited strong correlations with cognitive impairment, clinical stage, and brain amyloid-ß deposition (n = 421). These features demonstrated synergistic performances across clinical stages and subpopulations and enhanced the differentiation of AD stages beyond demographics and Apolipoprotein E ε4 allele (APOE-ε4). We validated their performances in eight data sets (total n = 7685) obtained from Alzheimer's Disease Neuroimaging Initiative (ADNI) and Religious Orders Study and Memory and Aging Project (ROSMAP). Importantly, identified features are linked to blood ammonia homeostasis. We further confirmed the elevated ammonia level through AD development (n = 1060). Our findings highlight AD as a metabolic disease and emphasize the metabolite-mediated ammonia disturbance in AD and its potential as a signature and therapeutic target for AD.


Subject(s)
Alzheimer Disease , Ammonia , Metabolomics , Phenotype , Humans , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Ammonia/metabolism , Aged , Female , Male , Middle Aged , Brain/metabolism , Brain/diagnostic imaging , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/genetics , Amyloid beta-Peptides/metabolism , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Bile Acids and Salts/metabolism , Aged, 80 and over , Cohort Studies
12.
Cell Metab ; 36(5): 1000-1012.e6, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38582087

ABSTRACT

The gut-brain axis is implicated in depression development, yet its underlying mechanism remains unclear. We observed depleted gut bacterial species, including Bifidobacterium longum and Roseburia intestinalis, and the neurotransmitter homovanillic acid (HVA) in individuals with depression and mouse depression models. Although R. intestinalis does not directly produce HVA, it enhances B. longum abundance, leading to HVA generation. This highlights a synergistic interaction among gut microbiota in regulating intestinal neurotransmitter production. Administering HVA, B. longum, or R. intestinalis to mouse models with chronic unpredictable mild stress (CUMS) and corticosterone (CORT)-induced depression significantly improved depressive symptoms. Mechanistically, HVA inhibited synaptic autophagic death by preventing excessive degradation of microtubule-associated protein 1 light chain 3 (LC3) and SQSTM1/p62 proteins, protecting hippocampal neurons' presynaptic membrane. These findings underscore the role of the gut microbial metabolism in modulating synaptic integrity and provide insights into potential novel treatment strategies for depression.


Subject(s)
Depression , Gastrointestinal Microbiome , Homovanillic Acid , Mice, Inbred C57BL , Animals , Gastrointestinal Microbiome/drug effects , Mice , Depression/drug therapy , Depression/metabolism , Male , Humans , Homovanillic Acid/metabolism , Synapses/metabolism , Synapses/drug effects , Hippocampus/metabolism , Hippocampus/drug effects , Neurons/metabolism , Neurons/drug effects , Female
13.
Nat Metab ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030389

ABSTRACT

Dysbiosis of the gut microbiota has been implicated in the pathogenesis of metabolic syndrome (MetS) and may impair host metabolism through harmful metabolites. Here, we show that Desulfovibrio, an intestinal symbiont enriched in patients with MetS, suppresses the production of the gut hormone glucagon-like peptide 1 (GLP-1) through the production of hydrogen sulfide (H2S) in male mice. Desulfovibrio-derived H2S is found to inhibit mitochondrial respiration and induce the unfolded protein response in intestinal L cells, thereby hindering GLP-1 secretion and gene expression. Remarkably, blocking Desulfovibrio and H2S with an over-the-counter drug, bismuth subsalicylate, improves GLP-1 production and ameliorates diet-induced metabolic disorder in male mice. Together, our study uncovers that Desulfovibrio-derived H2S compromises GLP-1 production, shedding light on the gut-relayed mechanisms by which harmful microbiota-derived metabolites impair host metabolism in MetS and suggesting new possibilities for treating MetS.

SELECTION OF CITATIONS
SEARCH DETAIL