Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Small ; 19(31): e2206222, 2023 08.
Article in English | MEDLINE | ID: mdl-36907994

ABSTRACT

Optimizing photosynthesis is imperative for providing energy and organics for all life on the earth. Here, carbon dots doped with pyridinic nitrogen (named lev-CDs) are synthesized by the one-pot hydrothermal method, and the structure-function relationship between functional groups on lev-CDs and photosynthesis of Chlorella pyrenoidosa (C. pyrenoidosa) is proposed. Pyridinic nitrogen plays a key role in the positive effect on photosynthesis caused by lev-CDs. In detail, lev-CDs act as electron donors to supply photo-induced electrons to P680+ and QA+ , causing electron transfer from lev-CDs to the photosynthetic electron transport chain in the photosystems. In return, the recombination efficiency of electron-hole pairs on lev-CDs decreases. As a result, the electron transfer rate in the electron transport chain, the activity of photosystem II, and the Calvin cycle are enhanced. Moreover, the electron transfer rate between C. pyrenoidosa and external circumstances enhanced by lev-CDs is about 50%, and electrons exported from C. pyrenoidosa can be used to reduce iron(III). This study is of great significance for engineering nanomaterials to improve photosynthesis.


Subject(s)
Chlorella , Quantum Dots , Electron Transport , Electrons , Carbon/pharmacology , Nitrogen , Ferric Compounds/pharmacology , Photosynthesis
2.
Chemistry ; 29(47): e202300947, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37309246

ABSTRACT

The reductive amination of carbonyl compounds is one of the most straightforward protocols to construct C-N bonds, but highly desires active and selective catalysts. Herein, Pd/MoO3-x catalysts are proposed for furfural amination, in which the interactions between Pd nanoparticles and MoO3-x supports can be easily ameliorated by varying the preparation temperature toward efficient catalytic turnover. Thanks to the synergistic cooperation of MoV -rich MoO3-x and highly dispersed Pd, the optimal catalysts afford the high yield of furfurylamine (84 %) at 80 °C. Thereinto, MoV species not only acts as the acidic promoter to facilitate the activation of carbonyl groups, but also interacts with Pd nanoparticles to promote the subsequent hydrogenolysis of Schiff base N-furfurylidenefurfurylamine and its germinal diamine. The good efficiency of Pd/MoO3-x within a broad substrate scope further highlights the key contribution of metal-support interactions to the refinery of biomass feedstocks.

3.
Int J Mol Sci ; 24(23)2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38069114

ABSTRACT

Purple lettuce (Lactuca sativa L. cv. Zhongshu Purple Lettuce) was chosen as the trial material, and LED intelligent light control consoles were used as the light sources. The purpose was to increase the yield and quality of purple lettuce while lowering its nitrate level. By adding various ratios of NO3--N and NH4+-N to the nutrient solution and 20 µmol m-2 s-1 UV-A based on white, red, and blue light (130, 120, 30 µmol m-2 s-1), the effects of different NO3--N/NH4+-N ratios (NO3--N, NO3--N/NH4+-N = 3/1, NH4+-N) and UV-A interaction on yield, quality, photosynthetic characteristics, anthocyanins, and nitrogen assimilation of purple lettuce were studied. In order to produce purple lettuce hydroponically under controlled environmental conditions, a theoretical foundation and technological specifications were developed, taking into account an appropriate UV-A dose and NO3--N/NH4+-N ratio. Results demonstrate that adding a 20 µmol m-2 s-1 UV-A, and a NO3--N/NH4+-N treatment of 3/1, significantly reduced the nitrate level while increasing the growth, photosynthetic rate, chlorophyll, carotenoid, and anthocyanin content of purple lettuce. The purple leaf lettuce leaves have an enhanced capacity to absorb nitrogen. Furthermore, plants have an acceleration of nitrogen metabolism, which raises the concentration of free amino acids and soluble proteins and promotes biomass synthesis. Thus, based on the NO3--N/NH4+-N (3/1) treatment, adding 20 µmol m-2 s-1 UV-A will be helpful in boosting purple lettuce production and decreasing its nitrate content.


Subject(s)
Nitrogen , Nitrogen/metabolism , Nitrates/metabolism , Anthocyanins , Dietary Supplements , Plant Leaves/metabolism
4.
Int J Mol Sci ; 23(23)2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36499239

ABSTRACT

Cucumber is one of the most widely cultivated greenhouse vegetables, and its quality and yield are threatened by drought stress. Studies have shown that carbon dioxide concentration ([CO2]) enrichment can alleviate drought stress in cucumber seedlings; however the mechanism of this [CO2] enrichment effect on root drought stress is not clear. In this study, the effects of different drought stresses (simulated with 0, 5% and 10% PEG 6000, i.e., no, moderate, and severe drought stress) and [CO2] (400 µmol·mol-1 and 800 ± 40 µmol·mol-1) on the cucumber seedling root proteome were analyzed using the tandem mass tag (TMT) quantitative proteomics method. The results showed that after [CO2] enrichment, 346 differentially accumulating proteins (DAPs) were found only under moderate drought stress, 27 DAPs only under severe drought stress, and 34 DAPs under both moderate and severe drought stress. [CO2] enrichment promoted energy metabolism, amino acid metabolism, and secondary metabolism, induced the expression of proteins related to root cell wall and cytoskeleton metabolism, effectively maintained the balance of protein processing and degradation, and enhanced the cell wall regulation ability. However, the extent to which [CO2] enrichment alleviated drought stress in cucumber seedling roots was limited under severe drought stress, which may be due to excessive damage to the seedlings.


Subject(s)
Cucumis sativus , Seedlings , Seedlings/metabolism , Cucumis sativus/metabolism , Proteomics/methods , Carbon Dioxide/metabolism , Droughts , Stress, Physiological , Plant Roots/metabolism , Plant Proteins/metabolism
5.
J Sci Food Agric ; 101(4): 1676-1684, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-32888328

ABSTRACT

BACKGROUND: Recently, it become an important strategy using light to regulate plant growth and quality, especially on daily edible leafy vegetable. Pak-choi is rich in healthy functional compounds, e.g. flavonoid and glucosinolate. Many studies have focused on the plant response to increased radiation and transformed visible light quality, however, we know less about different blue and UV-A light wavelengths. Therefore, the goal of this study was to identify whether different blue and UV-A light wavelengths could improve quality in two cultivars of pak-choi and further cultivate potentially healthy functional plants. RESULTS: The different blue and UV-A light wavelength treatments significantly increased the fresh and dry weight in two cultivars of pak-choi. Compared with control, the content of soluble protein was higher after the different blue and UV-A light treatments. Similarly, the contents of total phenolics and total flavonoids increased significantly under the light treatments, and the highest content presented under T430 (supplemental blue light at 430 nm) in red-leaf pak-choi and under T400 (supplemental UV-A light at 400 nm) in green-leaf pak-choi. The total anthocyanins content and 2,2-diphenyl-1-picrylhydrazyl (DPPH) of two pak-choi cultivars improved positively with decreasing treatment wavelength, and other healthy compounds were affected to varying degrees under supplemental light treatments. CONCLUSION: The growth and healthy compound contents of pak-choi were significantly improved by supplemental blue and UV-A light, and there were wavelength- and cultivar-dependent effects. Compared with control, T430 presented the higher biomass and the contents of total phenolics, flavonoids and pigment in two pak-choi cultivars, and T380 was an efficient strategy to increase antioxidants and health-promoting compounds of red-leaf pak-choi. © 2020 Society of Chemical Industry.


Subject(s)
Brassica/metabolism , Brassica/radiation effects , Plant Leaves/chemistry , Anthocyanins/analysis , Anthocyanins/metabolism , Antioxidants/analysis , Antioxidants/metabolism , Brassica/chemistry , Color , Flavonoids/analysis , Flavonoids/metabolism , Glucosinolates/analysis , Glucosinolates/metabolism , Plant Leaves/metabolism , Plant Leaves/radiation effects , Ultraviolet Rays , Vegetables/chemistry , Vegetables/metabolism , Vegetables/radiation effects
6.
Molecules ; 25(23)2020 Dec 02.
Article in English | MEDLINE | ID: mdl-33276420

ABSTRACT

Brassicaceae baby-leaves are good source of functional phytochemicals. To investigate how Chinese kale and pak-choi baby-leaves in response to different wavebands of blue (430 nm and 465 nm) and UV-A (380 nm and 400 nm) LED, the plant growth, glucosinolates, antioxidants, and minerals were determined. Both agronomy traits and phytochemical contents were significantly affected. Blue and UV-A light played a predominant role in increasing the plant biomass and morphology, as well as the contents of antioxidant compounds (vitamin C, vitamin E, phenolics, and individual flavonols), the antioxidant activity (DPPH and FRAP), and the total glucosinolates accumulation. In particular, four light wavebands significantly decreased the content of progoitrin, while 400 nm UV-A light and 430 nm blue light were efficient in elevating the contents of sinigrin and glucobrassicin in Chinese kale. Meanwhile, 400 nm UV-A light was able to increase the contents of glucoraphanin, sinigrin, and glucobrassicin in pak-choi. From the global view of heatmap, blue lights were more efficient in increasing the yield and phytochemical levels of two baby-leaves.


Subject(s)
Antioxidants/analysis , Brassicaceae/anatomy & histology , Light , Phytochemicals/analysis , Plant Leaves/anatomy & histology , Ultraviolet Rays , Antioxidants/radiation effects , Brassicaceae/metabolism , Brassicaceae/radiation effects , Lighting/instrumentation , Phytochemicals/radiation effects , Plant Leaves/metabolism , Plant Leaves/radiation effects
7.
Plants (Basel) ; 13(12)2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38931100

ABSTRACT

The effects of red and blue light on growth and steady-state photosynthesis have been widely studied, but there are few studies focusing on dynamic photosynthesis and the effects of LED pre-treatment on cucumber seedlings' growth, so in this study, cucumber (Cucumis sativus L. cv. Jinyou 365) was chosen as the test material. White light (W), monochromatic red light (R), monochromatic blue light (B), and mixed red and blue lights with different red-to-blue ratios (9:1, 7:3, 5:5, 3:7, and 1:9) were set to explore the effects of red and blue light on cucumber seedlings' growth, steady-state photosynthesis, dynamic photosynthesis, and subsequent growth under fluctuating light. The results showed that compared with R and B, mixed red and blue light was more suitable for cucumber seedlings' growth, and the increased blue light ratios would decrease the biomass of cucumber seedlings under mixed red and blue light; cucumber seedlings under 90% red and 10% blue mixed light (9R1B) grew better than other treatments. For steady-state photosynthesis, blue light decreased the actual net photosynthetic rate but increased the maximum photosynthetic capacity by promoting stomatal development and opening; 9R1B exhibited higher actual net photosynthetic rate, but the maximum photosynthetic capacity was low. For dynamic photosynthesis, the induction rate of photosynthetic rate and stomatal conductance were also accelerated by blue light. For subsequent growth under fluctuating light, higher maximum photosynthetic capacity and photoinduction rate could not promote the growth of cucumber seedlings under subsequent fluctuating light, while seedlings pre-treated with 9R1B and B grew better under subsequent fluctuating light due to the high plant height and leaf area. Overall, cucumber seedlings treated with 9R1B exhibited the highest biomass and it grew better under subsequent fluctuating light due to the higher actual net photosynthetic rate, plant height, and leaf area.

8.
ChemSusChem ; 16(14): e202300180, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-36988187

ABSTRACT

The electro-reductive coupling of nitro and carbonyl compounds enables a facile, environmentally friendly and energy benign transformation toward value-added nitrones or imines, but the selectivity is still challenging. Here, the surface roughness of Cu electrodes is introduced for the first time as the determinant to switch products from nitrones to imines owing to the controllable reduction of nitroarenes to hydroxylamines or amines on tailored CuI /Cu0 interfaces. The roughness-dependent selectivity, that is the decrease of nitrones and the increase of imines with enhanced roughness, is visible in the electro-reductive coupling of nitrobenzene and furfural. Thus, the high selectivity of nitrone (98 %) and imine (80 %) can be achieved on a surface smooth Cu foil and the one electrochemically roughened in the presence of I- , respectively. Such roughness-dependence of nitrone/imine selectivity on Cu electrodes is further verified in a wide substrate scope, highlighting the promise of surface/interfacial engineering for electrochemical synthesis.

9.
Biosens Bioelectron ; 219: 114848, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36327556

ABSTRACT

Divalent copper is a double-edged sword for plants, excess or shortage of copper ions will cause adverse reactions in plants. Currently, Cu2+ sensor for plants is still underdeveloped and new technology is urgently required for realizing one-step and real-time detection of Cu2+ in plants. Herein, a home-made and low-cost sensing platform is constructed by using carbon dots (CDs) as the optical probe, electronic devices for image acquisition, and a built-in algorithm program for image processing, which allows the dynamic monitoring of Cu2+ distribution in different plant species with high spatial and temporal resolution. We found that the detection limit of R-CDs for Cu2+ in water sample was 0.375 nM, and 11.7 mg/kg or even less Cu2+ in plants can be visually observed and accurately detected by the sensing platform. Moreover, this sensing platform has also been employed for reporting the spatial distribution of Cu2+ in the external environment of plants, demonstrating its applicability for monitoring Cu2+ both in living plants and the surrounding environment. This study provides a smart sensing platform for precise detection in plant internal and external environments, offering a promising strategy for precision agriculture in real-time and remote-control manners.

10.
Front Nutr ; 10: 1165841, 2023.
Article in English | MEDLINE | ID: mdl-37275647

ABSTRACT

Introduction: China is one of the major producers and exporters of various kinds of citrus fruits. As one of China's major citrus planting bases, Sichuan has a citrus planting area that exceeds 400,000 hectares. Meanwhile, citrus cultivation has become one of the important agricultural pillar industries in the region. Citrus fruits are reported to show various health-promoting effects, especially antioxidant activity. However, reports on the functional, nutritional and qualitative characteristics of different citrus varieties in Sichuan are still scarce. Methods: The quality attributes (color parameters, shape, and size), juice properties (titratable acids and total soluble sugar), mineral elements, and health-promoting nutritional and functional components (protein, carbohydrates, fat, dietary fiber, ascorbic acid, phenolic acids, and flavonoids), as well as antioxidant properties of 10 typical citrus varieties cultivated in Sichuan, were systematically investigated and analyzed. Results and Discussion: Significant differences among different citrus varieties were found. In particular, the total soluble sugar content of Mingrijian was higher than that of other citrus, suggesting its potential for fresh consumption and food processing. Moreover, a total of five flavonoids and nine phenolic acids were identified and quantified. Yuanhong, with higher contents of ascorbic acid and phenolic acids, was considered to be a valuable variety with excellent antioxidant capacity and can be used for value-added processing in the food industry. Principal component analysis and hierarchical cluster heatmap analysis suggested that there were significant differences among the 10 citrus varieties. Correlation analysis confirmed the significant contribution of ascorbic acid and phenolic acids to antioxidant capacity in citrus. The results can provide some references for the cultivation and selection of nutritious citrus fruits.

11.
J Mater Chem B ; 10(34): 6433-6442, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35984665

ABSTRACT

As a special type of biomass, herbal medicine often contains a variety of biologically active substances, and taking it as a carbon source, it is expected to produce various types of biologically functional carbon dots (CDs). However, there are few reports in this field, especially in achieving enhanced performance of CDs by improving the utilization efficiency of active substances in medicinal materials. In this work, by adding glycine as an auxiliary agent in the preparation of CDs from herbal medicine (Exocarpium Citri Grandis), the carboxyl and amino groups of the adjuvant provided more reactive sites, which greatly improved the yield of CDs (about 6 times). More importantly, the antioxidant and biological activities of herbal CDs were also improved. By controlling the functional groups of adjuvants, the effects of carboxyl and amino groups in adjuvants on the synthesis of herbal CDs were compared. The results reveal that both carboxyl and amino groups can react with the substances in the carbon source, and the influence of amino groups was greater. After adding glycine, the size of the CDs became larger, resulting from the more abundant functional groups on the carbon skeleton, which was the main reason for the improved performance of the CDs. Finally, the biological activity experiment demonstrated that CDs derived from Exocarpium Citri Grandis and glycine could greatly enhance the vitality of cells and activate immune cells, which are expected to be applied in the field of cell reproduction and biological immunity. The method proposed in this work provides a potential strategy for high-yield preparation of CDs from biomass.


Subject(s)
Carbon , Glycine , Adjuvants, Immunologic , Antioxidants/pharmacology , Biomass , Carbon/chemistry
12.
Nanoscale ; 9(35): 12976-12983, 2017 Sep 14.
Article in English | MEDLINE | ID: mdl-28832045

ABSTRACT

A new class of carbon dot (CD) grafted cellulose hybrid phosphors has been prepared in a facile and fast process. The reddish-orange emissive CDs can be effectively dispersed in cellulose matrices through hydrogen binding, and thus highly efficient orange-emissive CD-based phosphors were successfully obtained with a quantum yield of 44%. Moreover, the affinity of CDs for binding cellulose provides them the feasibility for fluorescence mapping of cellulosic plant cell walls. Several model plant tissues have been employed to investigate the pathway of CDs. Confocal analysis demonstrated that plant tissues can readily absorb CDs from aqueous solutions and bind them with cellulose-rich structures. These studies may open up new avenues for the exploration of CDs in long-wavelength emissive solid-state lighting and plant tissue imaging.


Subject(s)
Carbon/chemistry , Cellulose/chemistry , Luminescence , Quantum Dots/chemistry , Arabidopsis , Microscopy, Confocal , Onions , Plant Epidermis , Plant Leaves , Plant Stems , Spectrometry, Fluorescence , Vigna
13.
ACS Omega ; 2(7): 3958-3965, 2017 Jul 31.
Article in English | MEDLINE | ID: mdl-30023709

ABSTRACT

Carbon dots (CDs) obtained from rapeseed pollen with a high production yield, good biocompatibility, good water solubility, low cost, and simple synthesis are systematically characterized. They can be directly added to Hoagland nutrient solution for planting hydroponically cultivated Lactuca sativa L. to explore their influence on the plants at different concentrations. By measuring lettuce indices of growth, morphology, nutrition quality, gas exchange, and content of photosynthetic pigment, amazing growth-promotion effects of CDs were discovered, and the mechanism was analyzed. Moreover, the in vivo transport route of CDs in lettuce was evaluated by macroscopic and microscopic observations under UV light excitation. The results demonstrate that pollen-derived CDs can be potentially used as a miraculous fertilizer for agricultural applications and as a great in vivo plant bioimaging probe.

14.
ACS Appl Mater Interfaces ; 8(31): 19939-45, 2016 Aug 10.
Article in English | MEDLINE | ID: mdl-27425200

ABSTRACT

Fluorescent carbon dots (CDs) have been widely studied in bioscience and bioimaging, but the effect of CDs on plants has been rarely studied. Herein, mung bean was adopted as a model plant to study the phytotoxicity, uptake, and translocation of red emissive CDs in plants. The incubation with CDs at a concentration range from 0.1 to 1.0 mg/mL induced physiological response of mung bean plant and imposed no phytotoxicity on mung bean growth. The lengths of the root and stem presented an increasing trend up to the treatment of 0.4 mg/mL. Confocal imaging showed that CDs were transferred from the roots to the stems and leaves by the vascular system through the apoplastic pathway. The uptake kinetics study was performed and demonstrated that the CDs were abundantly incubated by mung beans during both germination and growth periods. Furthermore, in vivo visualization of CDs provides potential for their successful application as delivery vehicles in plants based on the unique optical properties.


Subject(s)
Vigna , Carbon , Germination , Plant Leaves
SELECTION OF CITATIONS
SEARCH DETAIL